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Summary: Unprecedented (η5-cyclohexadienyl)Mn(CO)3
complexes bearing an electron-donating group at the end
of the π system have been selectively prepared using Pd
catalysis and primary, secondary cyclic, and acyclic
amines. This catalytic methodology has been extended
to O-, S-, and P-based derivatives. The X-ray structure
of one coupling product exhibits an unusual conforma-
tion in its η5 system.

In the course of reactions involving electrophilic η6-
arene metal complexes and nucleophiles,1 η5-cyclohexa-
dienyl transition-metal complexes can be isolated or
transformed in situ into highly fuctionalized arenes or
cyclohexadienes. Those entities coordinated to chro-
mium have been intensively studied, demonstrating
their use in organic synthesis.2

In contrast, relatively few investigations have been
undertaken to exploit the potential of (η5-cyclohexadi-
enyl)manganese complexes as valuable tools for organic
synthesis.3 This is probably due to the fact that, until
recently, the only way to obtain the required (η5-
cyclohexadienyl)manganese complexes consisted of a
nucleophilic addition to the parent η6 complex. Such
reactions are known to be efficient with carbon nucleo-

philes and hydrides.4,5 Nucleophilic attack on the sub-
stituted arene takes place at the 6- or 5-position of the
aromatic ring, depending on the electronic effect of a
substituent.6 Electron-withdrawing substituents such as
chloride in complex 1 are known to induce mainly an
ortho addition, giving complex 2 (Scheme 1, path a).6b,7

In contrast, electron-donating groups (4; Y ) OMe, NR2)
exclusively direct meta addition, yielding complex 5
(Scheme 1, path b).3d Indeed, electronic effects preclude
ortho nucleophilic addition and thereby avoid the for-
mation of the 1-substituted η5-complex 6 (Scheme 1,
path c). In other words, no synthesis of (η5-cyclohexa-
dienyl)manganese complexes substituted with an elec-
tron-donating group at the end of the π-system, 6, had
been previously reported. We thought that a possible
strategy to prepare these complexes might be found in
the reaction of the palladium intermediate 3, arising
from the insertion of Pd(0) into the carbon-chloride
bond of (η5-chlorocyclohexadienyl)manganese complexes
2,8 with nucleophiles such as amine, alcoholate, and
thiolate in a Buchwald-Hartwig type methodology to
afford complex 6 (Scheme 1, path a).9 Therefore, in this
communication we describe an efficient synthesis of
previously unknown complexes using a palladium-
catalyzed coupling reaction. While elaborate catalytic
systems seem to be required and beneficial in Buch-
wald-Hartwig reactions, the present strategy takes
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advantage of the use of a simple Pd/AsPh3
10 catalytic

combination.
The requisite (η5-1-chlorocyclohexadienyl)Mn(CO)3

complexes 7-10 were readily prepared by hydride
addition to the parent (η6-chloroarene)Mn(CO)3

+ com-
plexes, as already described.11 In a preliminary experi-
ment, morpholine and Cs2CO3 were added to premixed
complex 7, Pd2(dba)3, and AsPh3 in freshly distilled and
degassed THF under a nitrogen atmosphere (Scheme
2). Complete disappearance of the starting material was
observed over 6 h at 60 °C, giving rise to the formation
of 11 in 84% yield (Table 1, entry 1). A control experi-
ment conducted under the same reaction conditions but
without using a catalyst gave no reaction (entry 2).
These initial results prompted us to extend this strategy
to different substituted starting materials and a variety
of amines. Indeed, the (η5-1-chloro-4-substituted cyclo-
hexadienyl)Mn(CO)3 complexes 8 and 9 underwent
amination using secondary and primary amines, re-
spectively (entries 3 and 4). Only complex 10 did not
display the expected amination product, probably due
to steric hindrance (entry 5).

Next we examined the palladium-catalyzed reactions
of various heteronucleophiles such as O-, S-, and P-
based derivatives (Table 2). Preformed sodium isoamy-
late reacted with complex 8 under the aforementioned

conditions to afford the corresponding ether, 15, in 37%
yield (entry 1). Alkyl and aryl thioethers 16-18 were
isolated in better yields (73-93%) using the same
methodology (entries 2-4). Extension of this methodol-
ogy to P-based nucleophiles was also successful. Indeed,
diethyl phosphite oxide and diphenylphosphine gave the
corresponding complexes 19 and 20 in 77 and 65%
yields, respectively (entries 5 and 6). Reactions involving
P-based nucleophiles require the use of triethylamine
instead of NaH as a base.

Taking advantage of these observations, we have
carried out further investigations using complex 21, in
which the sp3 carbon is substituted by a phenyl group.12

Combinations of morpholine/Cs2CO3 and p-tolylSH/NaH
under palladium catalysis were effective for the intro-
duction of a nucleophile at position 1 (Scheme 3). No
problem with steric hindrance was detected. Complexes
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Scheme 1

Scheme 2

Table 1. Pd-Catalyzed Amination of
(η5-1-chlorocyclohexadienyl)Mn(CO)3 Complexes

entry complex YH complex yield (%)

1a,c 7, R1 ) H HN(CH2CH2)2O 11 84
2b,c 7, R1 ) H HN(CH2CH2)2O 0
3a,c 8, R1 ) 4-OMe HNEt2 12 84
4a,c 9, R1 ) 4-Me H2NPh-4-OMe 13 42
5a,c 10, R1 ) 2-OMe HN(CH2CH2)2O 14 0

a Catalyst: Pd2dba3, AsPh3. b Without catalyst. c Base: Cs2CO3.

Table 2. Pd-Catalyzed Reaction of
(η5-1-chlorocyclohexadienyl)Mn(CO)3 Complexes
with Alcohol, Thiols, Phosphine, and Phosphite

Oxide
entry complex YH complex yield (%)

1a,b 8 isoamyl-OH 15 37
2a,b 8 p-tolyl-SH 16 93
3a,b 8 C5H11SH 17 73
4a,b 7 p-tolyl-SH 18 81
5a,c 9 (EtO)2P(O)H 19 77
6a,c 10 PPh2H 20 65
a Catalyst: Pd2dba3,AsPh3. b Base: NaH. c Base: Et3N.

Scheme 3

Communications Organometallics, Vol. 21, No. 17, 2002 3501



22 and 23 were isolated in 55 and 91% yields, respec-
tively.

Well-formed crystals suitable for X-ray analysis were
obtained after crystallization of complex 16 from a
hexane/diethyl ether mixture.13 The structure undoubt-
edly confirmed the regioselectivity of the reaction.
Interestingly, the η5-cyclohexadienyl moiety did not
exhibit the expected classical five-coplanar-carbon ge-
ometry (C1, C2, C3, C4, C5)14 with one carbon, C6, lying
out of this plane. Rather, we observed that two carbons,
C6 and C2, are located out of the plane formed by the
other C1, C3, C4, and C5 sp2 carbons and away from the
metal center. Indeed, the Mn-C1/C3/C4/C5 bond lengths
lie between 2.15 and 2.20 Å, whereas Mn-C2 and Mn-
C6 bonds manifest lengths of 2.38 and 2.48 Å, respec-
tively. The dihedral angles between the C1,C3,C4,C5/
C1,C2,C3 and C1,C3,C4,C5/C1,C5,C6 planes reach 19.8 and
25.2°, respectively.

This could be better described as a π-allyl C3, C4, C5
σ-alkyl C1 derivative15 which might be represented by
a “high-heeled-shoe” conformation, as shown in Figure
1. For the moment it is difficult to explain this unex-
pected structure, and we can only suggest that the
thiophenyl residue might play an important role in
forcing the complex to adopt this conformation in the
solid state.

In conclusion, we have successfully developed a
general palladium-catalyzed approach to new (η5-cyclo-
hexadienyl)Mn(CO)3 complexes bearing electron-donat-
ing groups at the terminus of the π-system. These
complexes cannot be synthesized using classical meth-
ods. An X-ray structure of one of the C1-substituted
cyclohexadienyl manganese compounds shows an un-

usual conformation which contravenes the “rule” of
planarity among the five sp2 carbons. Further investiga-
tions on the structural and chemical properties of such
compounds are currently in progress.
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Figure 1. X-ray structure of complex 16 with the number-
ing scheme and the “high heeled-shoe” analogy. Thermal
ellipsoids are presented at the 30% probability level.
Selected bond lengths (Å) and angles (deg): Mn-C1 ) 2.17,
Mn-C2 ) 2.38, Mn-C3 ) 2.15, Mn-C4 ) 2.20, Mn-C5 )
2.17, Mn-C6 ) 2.46; [C1C2C3]/[C1C3C4C5] ) 19.8, [C1C5C6]/
[C1C3C4C5] ) 25.5.
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