DOI: 10.1002/ejic.200500528

(η^5 -Pentamethylcyclopentadienyl)iridium(III) Complexes with η^2 -N,O and η^2 -P,S Ligands

Michael Gorol,^[a] Herbert W. Roesky,^{*[a]} Mathias Noltemeyer,^[a] and Hans-Georg Schmidt^[a]

Keywords: Cyclopentadienyl ligands / Iridium / N,O ligands / P,S ligands

Chloro(η^5 -pentamethylcyclopentadienyl)(η^2 -pyridine-2-carboxylato)iridium(III) [Ir(η^5 -C₅Me₅)(η^2 -C₅H₄N-2-CO₂)Cl] (**2**) and chloro(η^5 -pentamethylcyclopentadienyl)[η^2 -2-(diphenyl-phosphanyl)thiophenolato]iridium(III) [Ir(η^5 -C₅Me₅)(η^2 -2-Ph₂PC₆H₄S)Cl] (**3**) were prepared and their structures determined by single-crystal X-ray diffraction analysis. Complex **2** crystallizes in the orthorhombic space group *Pbca*. The number of molecules per unit cell is eight, whereas **3** crystallizes in the orthorhombic space group *Pna*2₁ and the number of molecules per unit cell is four. The coordination of the η^2 -bound ligands in **2** and **3** leads to chelate bite angles N-Ir-O(2) and P-Ir-S of 77.0(2)° and 82.42(7)°, respectively. The iridium atoms in **2** and **3** are chiral and both enantiomers

are present in the unit cell. The substitution of the chloro ligand in **3** affords hydrido(η^5 -pentamethylcyclopentadienyl)-[η^2 -2-(diphenylphosphanyl)thiophenolato]iridium(III] [Ir($\eta^5C_5Me_5$)(η^2 -2-Ph₂PC₆H₄S)H] (**4**) and methyl(η^5 -pentamethylcyclopentadienyl)[η^2 -2-(diphenylphosphanyl)thiophenolato]iridium(III) [Ir(η^5 -C₅Me₅)(η^2 -2-Ph₂PC₆H₄S)Me] (**5**), respectively, in good yields. The ³¹P{¹H} NMR resonances of **4** (δ = 33.9 ppm) and **5** (δ = 35.8 ppm) prove unambiguously that the 2-(diphenylphosphanyl)thiophenolato ligand still remains η^2 -coordinated.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Introduction

The chemistry of $(\eta^5$ -pentamethylcyclopentadienyl)iridium(III) complexes has been extensively investigated during the last few decades.^[1] However, there are only a few compounds that contain anionic η^2 -coordinated ligands (η^2 -A,B), of which α -amino acid complexes are the best-known examples.^[2,3] The main aspect of research in this field is focused on the chiral-at-metal behavior of the isolated complexes. However, in general, the diastereoselectivity is low and, due to the configurational instability at the metal center, epimerization reactions occur in solution.^[4] Pyridine-2carboxylic acid is an analog to amino acids and is commercially available. Examples of n²-coordinated pyridine-2-carboxylato ligands (η^2 -N,O) applied in organoiridium chemistry are $[Ir(\eta^{5}-C_{5}Me_{5})(\eta^{2}-N,O)(OH_{2})]^{+}$ and $[Ir(\eta^{5} C_5Me_5(\eta^2-N,O)]_3(ClO_4)_3$, although they were structurally not characterized.^[5]

Stable thiolato complexes have for some time also been of special interest. Dimeric iridium(I) complexes with bridging thiolato ligands, for example, have been intensely examined for their catalytic activity in hydroformylation reactions.^[6] However, the elimination of the free thiol by reaction with dihydrogen has proved problematic. Chelating phosphanyl-thiolate ligands, like the 2-(diphenylphosphanyl)thiophenolato ligand (η^2 -P,S), have been introduced

InterScience

to ensure retention of the thiolate. Accordingly, the two compounds $[Ir(\eta^2-P,S)(Cl)_2(PMePh_2)_2]$ and $[Ir(\eta^2-P,S)_3]$ · 0.75CH₂Cl₂ have been observed.^[7] In addition, an increased stability due to the chelate effect has been observed for the iridium(I) complex $[Ir(\eta^2-P,S)(CO)(PPh_3)]$.^[8]

A particular objective of our research in organoiridium chemistry is the synthesis of stable monomeric complexes with a defined reaction center that allows further reactions. Thus, these compounds are useful as starting materials in the search for new applications in preparative chemistry as well as in catalysis. We present here the syntheses, characterizations, and crystal-structure analyses of the thus far unknown chloro(η^5 -pentamethylcyclopentadienyl)iridium(III) complexes [Ir(η^5 -C₅Me₅)(η^2 -C₅H₄N-2-CO₂)Cl] (2) and [Ir(η^5 -C₅Me₅)(η^2 -2-Ph₂PC₆H₄S)Cl] (3), which contain η^2 coordinated pyridine-2-carboxylato (η^2 -N,O) and 2-(diphenylphosphanyl)thiophenolato (η^2 -P,S) ligands, respectively. The substitution of the chloro ligand in 3 by a hydride ion and a methyl group are described too, and the analytical data are given.

Results and Discussion

The reaction of di- μ -chlorobis[chloro(η^5 -pentamethylcyclopentadienyl)iridium(III)] [Ir₂(η^5 -C₅Me₅)₂(μ -Cl)₂Cl₂] (1) with sodium pyridine-2-carboxylate in methanol or sodium 2-(diphenylphosphanyl)thiophenolate in tetrahydrofuran gives the orange crystalline compounds chloro(η^5 -pentamethylcyclopentadienyl)(η^2 -pyridine-2-carboxylato)iri-

 [[]a] Institut für Anorganische Chemie der Universität Göttingen, Tammannstr. 4, 37077 Göttingen, Germany Fax: + 49-551-393373
 E-mail: hroesky@gwdg.de

dium(III) [Ir(η^5 -C₅Me₅)(η^2 -C₅H₄N-2-CO₂)Cl] (2) in 89% yield and chloro(η^5 -pentamethylcyclopentadienyl)[η^2 -2-(diphenylphosphanyl)thiophenolato]iridium(III) [Ir(η^5 -C₅Me₅)-(η^2 -2-Ph₂PC₆H₄S)Cl] (3) in 72% yield, respectively (Scheme 1).

Scheme 1.

The resonances of the protons of the η^5 -C₅Me₅ groups appear in the ¹H NMR spectrum of **2** as a singlet (δ = 1.63 ppm, 15 H) and that of **3** as a doublet (δ = 1.56 ppm, $J_{\rm H,P}$ = 2.2 Hz, 15 H). In the ¹³C NMR spectrum of **2**, the resonances of the η^5 -C₅Me₅ ring carbon atoms are found

Figure 1. Molecular structure of $[Ir(\eta^5-C_5Me_5)(\eta^2-C_5H_4N-2-CO_2)$ CI] (2) with 50% probability ellipsoids and the labelling scheme; selected bond lengths [pm] and angles [°]: Ir–Cl 239.97(15), Ir–N 208.8(7), Ir–O(2) 210.1(5), O(1)–C(11) 122.5(9), O(2)–C(11) 127.9(10); C(1)–Ir–C(2) 37.2(3), C(1)–Ir–C(3) 64.8(3), C(1)–Ir–Cl 160.8(3), C(2)–Ir–C(2) 39.2(3), C(2)–Ir–Cl 129.8(2), C(3)–Ir–Cl 96.92(19), C(4)–Ir–C(3) 39.2(3), C(2)–Ir–Cl 26.5(3), C(4)–Ir–C(3) 39.1(3), C(4)–Ir–C(5) 39.2(3), C(4)–Ir–Cl 96.16(17), C(5)–Ir–C(1) 40.8(3), C(5)–Ir–C(2) 65.5(2), C(5)–Ir–C(3) 65.7(3), C(5)–Ir–Cl 128.03(18), C(11)–O(2)–Ir 117.7(4), N–Ir–C(1) 111.7(3), N–Ir–C(2) 144.5(3), N–Ir–C(3) 166.1(3), N–Ir–C(4) 127.0(3), N–Ir–C(5) 102.5(3), N–Ir–Cl 84.55(15), N–Ir–O(2) 77.0(2), O(1)–C(1)–O(2) 125.2(7), O(2)–Ir–C(1) 107.9(3), O(2)–Ir–C(5) 146.9(2), O(2)–Ir–C(3) 116.9(2), O(2)–Ir–C(4) 156.0(2), O(2)–Ir–C(5) 146.9(2), O(2)–Ir–Cl 85.02(14). at $\delta = 84.9$ ppm and those of the methyl groups at $\delta = 8.3$ ppm. The corresponding resonances of compound **3** are observed at $\delta = 92.9$ ppm (d, $J_{C,P} = 3$ Hz) and $\delta = 8.2$ ppm (d, $J_{C,P} = 1$ Hz). The ³¹P{¹H} NMR spectrum of **3** shows a resonance at $\delta = 30.4$ ppm, which is strongly shifted downfield ($\Delta \delta = 43.5$ ppm) in comparison to the free phosphane ($\delta = -13.1$ ppm).^[9]. This is in agreement with the coordination shift typical for the ³¹P NMR resonances of five-membered rings.^[10]

The bands at $\tilde{v} = 253$ and 267 cm⁻¹ in the IR spectra of **2** and **3** can be assigned to the absorptions of the Ir–Cl stretching modes.

Single crystals suitable for X-ray diffraction analysis were obtained by slow diffusion of diethyl ether into a saturated solution of **2** in dichloromethane. Compound **2** crystallizes in the orthorhombic space group *Pbca*. Figure 1 shows the molecular structure of $[Ir(\eta^5-C_5Me_5)(\eta^2-C_5H_4N-2-CO_2)Cl]$ (**2**) together with selected bond lengths and angles. The Ir–Cl [239.97(15) pm] and Ir–N [208.8(7) pm] bonds are shorter than in the L-prolinato complex $[Ir(\eta^5-C_5Me_5)(L-ProO)Cl]$ [Ir(1)–Cl(1) = 241.7(2), Ir(2)–Cl(2) = 240.6(3), Ir(1)–N(1) = 212.8(7), and Ir(2)–N(2) = 213.1(7) pm],^[2] which is probably due to the π -acceptor properties of the pyridine ring in **2**. The coordination of the η^2 -bound pyridine-2-carboxylate leads to an N–Ir–O(2) bond angle of 77.0(2)°, which is similar to that of 77.7(1)° in the corre-

Figure 2. Molecular structure of $[Ir(\eta^{5}-C_{5}Me_{5})(\eta^{2}-2-Ph_{2}PC_{6}H_{4}S)$ Cl] (3) with 50% probability ellipsoids and the labelling scheme; selected bond lengths [pm] and angles [°]: Ir–Cl 241.93(18), Ir–P 227.32(18), Ir–S 238.0(2); C(1)–Ir–C(3) 63.7(3), C(1)–Ir–C(4) 64.0(3), C(1)–Ir–Cl 126.9(2), C(1)–Ir–P 103.2(2), C(1)–Ir–S 143.0(2), C(2)–Ir–Cl 137.6(3), C(2)–Ir–C(3) 38.2(3), C(2)–Ir–C(4) 63.0(3), C(2)–Ir–Cl 95.1(2), C(2)–Ir–C(3) 38.2(3), C(2)–Ir–C(4) 63.0(3), C(2)–Ir–Cl 95.1(2), C(2)–Ir–P 127.0(2), C(2)–Ir–S 150.3(2), C(3)–Ir–Cl 94.5(2), C(3)–Ir–P 165.1(2), C(3)–Ir–S 112.3(2), C(4)–Ir–C(3) 37.1(3), C(4)–Ir–P 165.1(2), C(3)–Ir–S 112.3(2), C(4)–Ir–S 90.67(18), C(5)–Ir–C(1) 38.9(3), C(5)–Ir–C(2) 64.3(3), C(5)–Ir–C (3) 64.5(3), C(5)–Ir–C(4) 39.2(3), C(5)–Ir–Cl 157.9(2), C(5)–Ir–P 110.4(2), C(5)–Ir–S 104.5(2), P–Ir–Cl 88.02(6), P–Ir–S 82.42(7), S–Ir–Cl 89.45(8).

sponding rhodium(III) complex [Rh(η^5 -C₅Me₅)(η^2 -C₅H₄N-2-CO₂)Cl].^[11]

Slow cooling of a hot solution of **3** in toluene gave single crystals suitable for X-ray diffraction analysis. Compound 3 crystallizes in the orthorhombic space group $Pna2_1$. Figure 2 shows the molecular structure of $[Ir(\eta^5-C_5Me_5)(\eta^2-2-$ Ph₂PC₆H₄S)Cl] (3) together with selected bond lengths and angles. In comparison with $[Ir(Cl)_2(\eta^2-2 Ph_2PC_6H_4S)(PMePh_2)_2$ [Ir-P(1) = 236.1(1), Ir-S = 240.1(1), Ir-Cl(1) = 238.42(9), Ir-Cl(2) = 237.36(9) pm; P- $Ir-S = 81.06(3)^{\circ}[7]$ the Ir-P [227.32(18) pm] and Ir-S [238.0(2) pm] bonds are shorter and the Ir-Cl bond [241.93(18) pm] is longer. The deviation from 90°, with a P-Ir-S bond angle of 82.42(7)°, is of the same order of magnitude and is not as clear as that in 2. The geometry in both 2 and 3 can be described as pseudo-octahedral coordination of the iridium atom in which the η^5 -C₅Me₅ group occupies three fac coordination sides. The metal coordination sphere is completed by an η^2 -coordinated ligand and a chlorine atom (the bond angles at the iridium atom are listed in the captions of Figures 1 and 2). In each case, the iridium atom is chiral and both enantiomers are present in the unit cell.

Substitution Reactions

Substitution of the chloro ligand by a hydride ion or a methyl group was achieved successfully only for **3**. Thus, the reaction of $[Ir(\eta^5-C_5Me_5)(\eta^2-2-Ph_2PC_6H_4S)CI]$ (**3**) with LiAlH₄ or MeLi in tetrahydrofuran results, after removal of the solvent and subsequent extraction with hexane, in the corresponding hydrido complex hydrido(η^5 -pentamethylcyclopentadienyl)[η^2 -2-(diphenylphosphanyl)thiophenolato]iridium(III) [Ir(η^5 -C₅Me_5)(η^2 -2-Ph₂PC₆H₄S)H] (**4**) in 91% yield and the methyl compound methyl(η^5 -pentamethylcyclopentadienyl)[η^2 -2-(diphenylphosphanyl)-thiophenolato]iridium(III) [Ir(η^5 -C₅Me_5)(η^2 -2-Ph₂PC₆H₄S)H] (**4**) in 91% yield, respectively (Scheme 2).

The resonances of the protons of the η^{5} -C₅Me₅ groups in the ¹H NMR spectrum of **4** appear, due to the coupling to the iridium-bound hydrido ligand, as a doublet of doublets ($\delta = 1.62$ ppm, ${}^{4}J_{\rm H,P} = 2.0$, ${}^{4}J_{\rm H,H} = 0.8$ Hz, 15 H) and those of **5** as a doublet ($\delta = 1.57$ ppm, ${}^{4}J_{\rm H,P} = 1.9$ Hz, 15 H). The resonances of the hydrido ligand in **4** and of the methyl group in **5** are observed as doublets at high field at $\delta = -15.37$ (d, ${}^{2}J_{\rm H,P} = 36.0$ Hz, 1 H) and -0.22 ppm (d, ${}^{3}J_{\rm H,P}$ = 6.1 Hz, 3 H), respectively. In the ¹³C NMR spectrum of **4**, the resonance of the η^{5} -C₅Me₅ ring carbon atoms is found at $\delta = 93.2$ ppm (d, $J_{\rm C,P} = 3.1$ Hz) and that of the methyl groups at $\delta = 9.1$ ppm (d, $J_{C,P} = 0.8$ Hz). The corresponding resonances of compound **5** appear at $\delta = 92.8$ (d, $J_{C,P} = 3.3$ Hz) and 8.20 ppm (d, $J_{C,P} = 1.0$ Hz). The resonance of the methyl group bound to the iridium atom is observed at $\delta = -17.4$ ppm (d, $J_{C,P} = 8.4$ Hz). The ³¹P{¹H} NMR spectrum of **4** shows a resonance at $\delta = 33.9$ ppm whereas that of **5** appears at $\delta = 35.8$ ppm. In comparison to the free ligand ($\delta = -13.1$ ppm),^[9] this strong downfield shift is good evidence that the 2-(diphenylphosphanyl)thiophenolato ligand still remains η^2 -coordinated.

In the IR spectrum of 4, the band at $\tilde{v} = 2102 \text{ cm}^{-1}$ is characteristic of absorptions of the Ir–H stretching modes.^[12]

Conclusions

The cleavage of the chloro bridges in $[Ir_2(\eta^5-C_5Me_5)_2(\mu Cl_2Cl_2$ (1) by η^2 -A,B ligands affords stable monomeric chelate complexes. Thus, the reactions of 1 with pyridine-2carboxylate and 2-(diphenylphosphanyl)thiophenolate yield $[Ir(\eta^5-C_5Me_5)(\eta^2-C_5H_4N-2-CO_2)Cl]$ (2) and $[Ir(\eta^{5} C_5Me_5$)(η^2 -2-Ph₂PC₆H₄S)Cl] (3), respectively. The X-ray diffraction analyses show that the geometry of both complexes can be described as pseudo-octahedral coordination of the iridium atom in which the η^5 -C₅Me₅ group occupies three fac coordination sides. In each case the complex is chiral at the iridium atom and both enantiomers are present in the unit cell. The complexes $[Ir(\eta^5-C_5Me_5)(\eta^2-2 Ph_2PC_6H_4SH$] (4) and $[Ir(\eta^5-C_5Me_5)(\eta^2-2-Ph_2PC_6H_4S)Me]$ (5) are easily accessible by substitution of the chloro ligand in 3. According to the ³¹P NMR spectra, the 2-(diphenylphosphanyl)thiophenolato ligand remains n2-coordinated in both compounds. The hydrido complex 4 and the methyl compound 5 are useful derivatives for further investigations.

Experimental Section

General Remarks: Solvents were dried and distilled under nitrogen prior to use. All reactions were carried out under dry nitrogen, using standard Schlenk techniques. NMR spectra were recorded using a Bruker Avance 200, a Bruker MSL 400, or a Bruker Avance 500 spectrometer and referenced to the resonances of the residual protons in [D₆]DMSO, CDCl₃, or C₆D₆. ¹H NMR: external standard TMS. ¹³C NMR: external standard TMS. ³¹P NMR: external standard 85% H₃PO₄. Infrared spectra were recorded with a BIO-RAD Digilab FTS 7 spectrometer. [Ir₂(η^5 -C₅Me₅)₂(μ -Cl)₂Cl₂] (1) ^[13] and 2-Ph₂PC₆H₄SH^[9] were prepared by literature methods. All other materials used in the syntheses were reagent grade chemicals and used without further purification.

[Ir(\eta^5-C₅Me₅)(\eta^2-C₅H₄N-2-CO₂)Cl] (2): A mixture of 1 (0.80 g, 1.00 mmol), C₅H₄N-2-CO₂H (0.26 g, 2.12 mmol), and NaOEt (0.12 g, 2.22 mmol) in methanol (70 mL) was heated under reflux for 3 h and finally filtered hot through Celite. The solution was concentrated under reduced pressure to 20 mL. The resulting orange crystalline solid was filtered off, washed with diethyl ether (2×10 mL), and dried in vacuo (0.85 g, 89%). M.p. 270 °C (decomp.). C₁₆H₁₉ClIrNO₂ (485.00): calcd. C 39.62, H 3.95, Cl 7.31, N 2.89; found C 39.59, H 4.01, Cl 7.39, N 2.96. IR (CsI): \tilde{v} = 253

(Ir–Cl) cm^{-1.} ¹H NMR (500.13 MHz, [D₆]DMSO): $\delta = 8.77$ (d, J = 6.0 Hz, 1 H, $C_5H_4NCO_2$), 8.12 (t, J = 5.0 Hz, 1 H, $C_5H_4NCO_2$), 7.90 (d, J = 8.0 Hz, 1 H, $C_5H_4NCO_2$), 7.75 (t, J = 7.0 Hz, 1 H, $C_5H_4NCO_2$), 1.63 (s, 15 H, C_5Me_5) ppm. ¹³C NMR (125.77 MHz, [D₆]DMSO): $\delta = 171.7$ ($C_5H_4NCO_2$), 150.5 ($C_5H_4NCO_2$), 150.3 ($C_5H_4NCO_2$), 139.6 ($C_5H_4NCO_2$), 129.1 ($C_5H_4NCO_2$), 126.2 ($C_5H_4NCO_2$), 84.9 (C_5Me_5), 8.3 (C_5Me_5) ppm. EIMS (70 eV): m/z (%) = 485 (40) [M], 449 (60) [M – H – CI], 362 (100) [M – $C_5H_4N-2-CO_2 - H$].

 $[Ir(\eta^5-C_5Me_5)(\eta^2-2-Ph_2PC_6H_4S)CI]$ (3): A solution of 2-Ph₂PC₆H₄SH (0.59 g, 2.00 mmol) in THF (30 mL) together with surplus sodium (approx. 200 mg) was stirred at room temperature until the evolution of hydrogen ceased. After filtration, the filtrate was added dropwise to a solution of 1 (0.80 g, 1.00 mmol) in THF (30 mL). The reaction mixture was stirred for an additional 3 h and, subsequently, the solvent was removed under reduced pressure. The residue was crystallized from dichloromethane/diethyl ether (1:4). The reddish crystals obtained accordingly were filtered off and dried in vacuo (0.95 g, 72%). M.p. 325 °C. C₂₈H₂₉ClIrPS (656.24): calcd. C 51.25, H 4.45, P 4.72; found C 50.64, H 4.47, P 4.31.^[14] IR (CsI): $\tilde{v} = 267$ (Ir–Cl) cm⁻¹. ¹H NMR (500.13 MHz, CDCl₃): δ = 7.97 (m, 2 H, Ph₂PC₆H₄S), 7.62 (dd, ¹J = 7.9, ²J = 3.4 Hz, 1 H, Ph₂PC₆H₄S), 7.49 (m, 3 H, Ph₂PC₆H₄S), 7.28 (m, 5 H, $Ph_2PC_6H_4S$), 7.13 (t, ${}^{1}J$ = 8.2 Hz, 1 H, $Ph_2PC_6H_4S$), 6.99 (t, ${}^{1}J$ $= 7.4 \text{ Hz}, 1 \text{ H}, \text{Ph}_2\text{PC}_6\text{H}_4\text{S}), 6.72 \text{ (t, } {}^1J = 7.4 \text{ Hz}, 1 \text{ H}, \text{Ph}_2\text{PC}_6\text{H}_4\text{S}),$ 1.56 (d, ${}^{4}J_{H,P}$ = 2.2 Hz, 15 H, C₅Me₅) ppm. ${}^{13}C$ NMR $(125.77 \text{ MHz}, \text{ CDCl}_3): \delta = 155.5 \text{ (d}, J_{C,P} = 23.4 \text{ Hz}, \text{Ph}_2\text{PC}_6\text{H}_4\text{S}),$ 136.2 (d, $J_{C,P} = 52.9 \text{ Hz}$, $Ph_2PC_6H_4S$), 135.8 (d, $J_{C,P} = 10.6 \text{ Hz}$, $Ph_2PC_6H_4S$), 134.8 (d, $J_{C,P}$ = 70.6 Hz, $Ph_2PC_6H_4S$), 132.0 (d, $J_{C,P}$ = 3.7 Hz, $Ph_2PC_6H_4S$), 131.7 (d, $J_{C,P}$ = 9.5 Hz, $Ph_2PC_6H_4S$), 131.2 (d, $J_{C,P} = 2.7 \text{ Hz}$, $Ph_2PC_6H_4S$), 130.7 (d, $J_{C,P} = 2.6 \text{ Hz}$, $Ph_2PC_6H_4S$), 130.0 (d, $J_{C,P}$ = 2.6 Hz, $Ph_2PC_6H_4S$), 128.8 (d, $J_{C,P}$ = 10.4 Hz, $Ph_2PC_6H_4S$), 128.1 (d, $J_{C,P}$ = 10.9 Hz, $Ph_2PC_6H_4S$), 128.0 (d, $J_{C,P} = 10.2 \text{ Hz}$, $Ph_2PC_6H_4S$), 126.1 (d, $J_{C,P} = 58.5 \text{ Hz}$, $Ph_2PC_6H_4S$), 122.1 (d, $J_{C,P}$ = 7.6 Hz, $Ph_2PC_6H_4S$), 92.9 (d, ${}^2J_{C,P}$ = 3 Hz, C_5 Me₅), 8.2 (d, ${}^{3}J_{C,P}$ = 1.0 Hz, C_5Me_5) ppm. ${}^{31}P$ NMR (202.46 MHz, CDCl₃): δ = 30.4 (s, IrP) ppm. EIMS (70 eV): m/z (%) = 656 (8) [M], 621 (100) [M - Cl].

 $[Ir(\eta^5-C_5Me_5)(\eta^2-2-Ph_2PC_6H_4S)H]$ (4): A solution of 3 (0.66 g, 1.01 mmol) in THF (20 mL) was treated with LiAlH₄ (0.04 g, 1.05 mmol), stirred at room temperature for 12 h, and subsequently filtered through Celite. The solvent was removed from the filtrate under reduced pressure and the resulting residue was extracted with hexane $(2 \times 60 \text{ mL})$. The removal of the solvent from the combined extracts in vacuo afforded the title compound as a yellow powder (0.57 g, 91%). M.p. 240 °C (decomp.). C₂₈H₃₀IrPS (621.79): calcd. C 54.09, H 4.86; found C 53.71, H 4.80. IR (CsI): v = 2102 (Ir-H) cm⁻¹. ¹H NMR (500.13 MHz, C₆D₆): δ = 7.99 (dd, ¹J = 11.5, ¹J = 8.1 Hz, 2 H, $Ph_2PC_6H_4S$), 7.91 (dd, ${}^{1}J = 8.1$, ${}^{2}J = 3.5$ Hz, 1 H, Ph₂PC₆H₄S), 7.21 (m, 3 H, Ph₂PC₆H₄S), 7.11 (m, 3 H, $Ph_2PC_6H_4S$), 6.93 (m, 3 H, $Ph_2PC_6H_4S$), 6.76 (t, 1J = 7.0 Hz, 1 H, $Ph_2PC_6H_4S$), 6.57 (t, ${}^{1}J$ = 7.0 Hz, 1 H, $Ph_2PC_6H_4S$), 1.62 (dd, ${}^{4}J_{H,P}$ = 2.0, ${}^{4}J_{H,H}$ = 0.8 Hz, 15 H, C₅Me₅), -15.37 (d, ${}^{2}J_{H,P}$ = 36.0 Hz, 1 H, Ir*H*) ppm. ¹³C NMR (125.77 MHz, C₆D₆): δ = 160.8 (d, $J_{C,P}$ = 26.9 Hz, $Ph_2PC_6H_4S$), 138.0 (d, $J_{C,P}$ = 46.9 Hz, $Ph_2PC_6H_4S$), 135.4 (d, $J_{C,P} = 62.7 \text{ Hz}$, $Ph_2PC_6H_4S$), 135.3 (d, $J_{C,P} = 69.5 \text{ Hz}$, $Ph_2PC_6H_4S$), 134.6 (d, $J_{C,P}$ = 11.2 Hz, $Ph_2PC_6H_4S$), 132.2 (d, $J_{C,P}$ = 3.7 Hz, $Ph_2PC_6H_4S$), 131.6 (d, $J_{C,P}$ = 10.5 Hz, $Ph_2PC_6H_4S$), 129.9 (d, $J_{C,P}$ = 2.5 Hz, $Ph_2PC_6H_4S$), 129.3 (d, $J_{C,P}$ = 2.4 Hz, $Ph_2PC_6H_4S$), 128.7 (d, $J_{C,P} = 2.4 Hz$, $Ph_2PC_6H_4S$), (127.8, 127.7, 127.5 overlaps from C₆D₆), 120.4 (d, $J_{C,P} = 7.2 \text{ Hz}$, Ph₂PC₆H₄S), 93.2 (d, ${}^{2}J_{C,P}$ = 3.1 Hz, $C_{5}Me_{5}$), 9.1 (d, ${}^{3}J_{C,P}$ = 0.8 Hz, $C_{5}Me_{5}$) ppm. ³¹P NMR (202.46 MHz, C_6D_6): $\delta = 33.9$ (s, Ir*P*) ppm. EIMS (70 eV): m/z (%) = 622 (100) [M], 607 (50) [M - H - CH₂].

 $[Ir(\eta^{5}-C_{5}Me_{5})(\eta^{2}-2-Ph_{2}PC_{6}H_{4}S)Me]$ (5): A solution of 3 (0.26 g, 0.40 mmol) in THF (10 mL) was treated with MeLi (0.30 mL, 0.48 mmol, 1.6 M in hexane), stirred at room temperature for 12 h, and subsequently filtered through Celite. The solvent was removed from the filtrate under reduced pressure and the resulting residue was extracted with hexane $(2 \times 40 \text{ mL})$. The removal of the solvent from the combined extracts in vacuo resulted in the title compound as a yellow powder (0.22 g, 87%). M.p. 240 °C (decomp.). C₂₉H₃₂IrPS (635.82): calcd. C 54.78, H 5.07; found C 54.71, H 5.02. ¹H NMR (200.13 MHz, CDCl₃): δ = 7.64 (m, 1 H, Ph₂PC₆H₄S), 7.46 (m, 5 H, Ph₂PC₆H₄S), 7.24 (m, 5 H, Ph₂PC₆H₄S), 6.95 (m, 2 H, Ph₂PC₆H₄S), 6.70 (m, 1 H, $Ph_2PC_6H_4S$), 1.57 (d, ${}^4J_{H,P}$ = 1.9 Hz, 15 H, C_5Me_5), -0.22 (d, ${}^3J_{H,P}$ = 6.1 Hz, 3 H, Ir*Me*) ppm. ¹³C NMR (125.77 MHz, CDCl₃): δ = 157.6 (d, $J_{C,P}$ = 26.2 Hz, Ph₂PC₆H₄S), 137.7 (d, $J_{C,P}$ = 50.1 Hz, $Ph_2PC_6H_4S$), 133.9 (d, $J_{C,P} = 3.2 Hz$, $Ph_2PC_6H_4S$), 133.0 (d, $J_{C,P}$ = 9.7 Hz, $Ph_2PC_6H_4S$), 131.8 (d, $J_{C,P}$ = 10.7 Hz, $Ph_2PC_6H_4S$), 128.3 (d, $J_{C,P} = 10.7 \text{ Hz}$, $Ph_2PC_6H_4S$), 120.7 (d, $J_{C,P} = 6.9 \text{ Hz}$, $Ph_2PC_6H_4S$), 92.8 (d, ${}^2J_{C,P}$ = 3.3 Hz, C_5Me_5), 8.2 (d, ${}^3J_{C,P}$ = 1.0 Hz, C_5Me_5), -17.4 (d, $J_{C,P} = 8.4$ Hz, IrMe) ppm. ³¹P NMR (202.46 MHz, CDCl₃): δ = 35.8 (s, IrP) ppm. EIMS (70 eV): m/z $(\%) = 636 (10) [M], 621 (100) [M - CH_3], 607 (5) [M - CH_3 - CH_2].$

X-ray Crystallographic Study: The single crystals were mounted on a glass fiber in a frozen drop of paraffin. Diffraction data were collected with a STOE AED2 four-circle diffractometer with graphite-monochromated Mo- K_a radiation ($\lambda = 71.073$ pm). The crystal structures were solved by direct methods using SHELXS-97^[15] and refined with SHELXL-97^[16] against F^2 on all data by full-matrix least squares. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at fixed positions (Table 1). CCDC-272324 (**2**) and -272325 (**3**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Crystallographic data for 2 and 3.

	2	3
Empirical formula	C ₁₆ H ₁₉ ClIrNO ₂	C ₂₈ H ₂₉ ClIrPS
Formula mass [gmol ⁻¹]	484.97	656.19
Temperature [K]	203(2)	133(2)
Wavelength λ [pm]	71.073	71.073
Crystal system	orthorhombic	orthorhombic
Space group	Pbca	$Pna2_1$
a [pm]	1429.4(3)	1655.0(3)
b [pm]	1457.9(4)	1019.6(2)
c [pm]	1468.1(5)	1456.3(3)
Volume [nm ³]	3.0595(14)	2.4574(8)
Z	8	4
Absorption coefficient	8.906	5.707
$[mm^{-1}]$		
F(000)	1856	1288
Reflections collected	5382	31373
Independent reflections	2691 ($R_{int} =$	7149 ($R_{int} =$
	0.1867)	0.1654)
Data/restraints/parameters	2691/339/189	5681/1/296
Goodness-of-fit on F^2	1.065	1.081
Final <i>R</i> indices $[I > 2\sigma(I)]$	0.0462, 0.1169	0.0399, 0.0924
Largest diff. peak/hole	2.130/-3.595	7.323/-1.967
[e Å ⁻³]		

FULL PAPER

Acknowledgments

This work was supported by the Degussa-Hüls AG, the Fonds der Chemischen Industrie, and the Göttinger Akademie der Wissenschaften.

- [1] J. K. O'Connor, Sci. Synth. 2002, 1, 617-744.
- [2] R. Krämer, K. Polborn, H. Wanjek, I. Zahn, W. Beck, Chem. Ber. 1990, 123, 767–778.
- [3] K. Severin, R. Bergs, W. Beck, Angew. Chem. 1998, 110, 1722– 1743; Angew. Chem. Int. Ed. 1998, 37, 1634–1654.
- [4] H. Brunner, A. Köllnberger, T. Burgmeister, M. Zabel, Polyhedron 2000, 19, 1519–1526.
- [5] T. Poth, H. Paulus, H. Elias, C. Dücker-Benfer, R. van Eldik, *Eur. J. Inorg. Chem.* 2001, 1361–1369.
- [6] M. T. Pinillos, A. Elduque, L. A. Oro, *Inorg. Chim. Acta* 1990, 178, 179–183.
- [7] J. R. Dilworth, C. Lu, J. R. Miller, Y. Zheng, J. Chem. Soc., Dalton Trans. 1995, 1957–1964.

- [8] L. Dahlenburg, K. Herbst, M. Kühnlein, Z. Anorg. Allg. Chem. 1997, 623, 250–258.
- [9] E. Block, G. Ofori-Okai, J. Zubieta, J. Am. Chem. Soc. 1989, 111, 2327–2329.
- [10] P. E. Garrou, Chem. Rev. 1981, 81, 229-266.
- [11] A. P. Abbott, G. Capper, D. L. Davies, J. Fawcett, D. R. Russell, J. Chem. Soc., Dalton Trans. 1995, 3709–3713.
- [12] C. B. Cooper, D. F. Shriver, S. Onaka, Adv. Chem. Ser. 1978, 167, 232–247.
- [13] J. W. Kang, K. Moseley, P. M. Maitlis, J. Am. Chem. Soc. 1969, 91, 5970–5977.
- [14] The slight deviations from the calculated values are attributable to traces of the used solvents, which were found in the ¹H NMR spectrum.
- [15] G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467-473.
- [16] G. M. Sheldrick, SHELX-97, Program for Crystal Structure Analysis, Institut f
 ür Anorganische Chemie der Universit
 ät Göttingen, 1998.

Received: June 14, 2005 Published Online: October 18, 2005