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Abstract: Aza-analogues of podophyllotoxin were synthesized in
two steps from N-substituted tetronamides. The acid-mediated
benzhydrylation of N-substituted tetronamides with a suitably func-
tionalized benzhydrol quantitatively afforded the cyclization pre-
cursors. The target pentacyclic 4-aza-2,3-didehydropodo-
phyllotoxins were next obtained via an intramolecular copper-me-
diated Ullmann-type N-arylation.
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Podophyllotoxin (Figure 1), the parent member of arylte-
tralin lignan lactone family,2 was first isolated in 1880
from podophyllin,3 a resinous powder obtained by precip-
itating an alcoholic tincture of American Mayapple rhi-
zome (Podophyllum peltatum). Although the medicinal
properties of podophyllotoxin have been known for thou-
sands of years, particular attention toward this molecule
arose since the discovery of its antimitotic activity,4 due to
its high affinity for tubulin.5 Indeed, podophyllotoxin,
while altering cellular division during mitosis, triggers
cellular death.6 However, the use of this molecule as anti-
cancer agent is hampered due to its high toxicity associat-
ed with numerous secondary effects such as nausea,
diarrhea, vomiting and injury of healthy tissues.7 As a
consequence, several hemisynthetic derivatives, such as
etoposide8 or teniposide9 have been developed and suc-
cessfully used for the clinical treatment of several cancers,
including small cell lung carcinoma, testicular cancer, or
Kaposi’s sarcoma.10 Interestingly and in contrast to podo-
phyllotoxin, these analogues do not target tubulin, but in-
hibit topoisomerase II, a nuclear enzyme involved in
transitional breaks of DNA double-strand and compulsory
for transcription.11 More recently, it was reported that pi-
cropodophyllin and various aza-analogues of podophyllo-
toxin (Figure 1) are potent selective inhibitors of the
insulin-like growth factor 1 receptor (IGF-1R).12 These
compounds blocking tyrosine phosphorylation, can be
considered as interesting drugs for the treatment of IGF-
1R dependent diseases, such as cancer, psoriasis, arterio-
sclerosis and others endocrine or metabolic disorders. In-
deed, the IGF-1R plays a central role in the

transformation, growth and survival of malignant cells.13

As a consequence, the development of new aza-analogues
of the podophyllotoxin family is a crucial area of re-
search.14 The synthesis15 and biological evaluation of 4-
aza-2,3-didehydropodophyllotoxins by Takeya et al.16

and the development of an efficient multicomponent one-
step procedure toward similar structures by Husson et al.17

represent two relevant examples in this field.

In 2002, we described the acid-mediated reaction between
active methylenes such as ethyl acetoacetate, acetylace-
tone and N,N-dibenzylmalonamic acid methyl ester with
benzhydrols or their derivatives, to afford the correspond-
ing alkylated products in quantitative yields (Scheme 1).18

This new reaction could later be exploited for the prepara-
tion of an advanced intermediate of podophyllotoxin19

and of an aza-analogue of it.20

From these results and following our ongoing interest in
the synthesis of aza-analogues of podophyllotoxin, we
next envisaged to exploit N-substituted tetronamides,21

vinylogous carbamates easily available from tetronic acid,

Figure 1 Structures of podophyllotoxin and related aryltetralin li-
gnan lactones
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as ambident nucleophilic building blocks to generate the
D-ring of 4-aza-2,3-didehydropodophyllotoxins. We de-
scribe herein the synthesis of such analogues following
the retrosynthetic strategy depicted in Scheme 2.

The targeted 4-aza-2,3-didehydropodophyllotoxins A
would result from the intramolecular N-arylation of benz-
hydryltetronamides B. The latter intermediates could in
turn arise from alkylation of N-substituted tetronamides D
with the functionalized benzhydrol C, according to our
acid-catalyzed methodology.18

The feasibility of this type of benzhydrylation was first
studied in the direct reaction of tetronic acid (1) with
benzhydrol (2; Scheme 3). In this event, treatment of an

equimolar mixture of 1 and 2 with BF3⋅OEt2 (1.5 equiv) in
CH2Cl2 at room temperature gave the desired alkylated
tetronic acid 3 in quantitative yield. Encouraged by this
result, N-benzyl tetronamide (4a), easily obtained from
tetronic acid and benzylamine,22 was then engaged in the
same procedure. Again, the expected corresponding ad-
duct 5 was quantitatively obtained.

Properly functionalized benzhydrylic alcohol 6, required
for the synthesis of aza-analogues of podophyllotoxin,
was obtained from piperonal and 1-bromo-3,4,5-tri-
methoxybenzene, according to the two-step procedure de-
scribed by Jung et al.23 Then, its reaction with tetronic
acid (1) and three other N-alkyl tetronamides 4a–c was
studied (Scheme 4).

Tetronic acid (1) reacted with benzhydrol 6 to afford the
corresponding adduct 7 in 70% yield. In this case, and not
unexpectedly, the use of an excess of Lewis acid (3 equiv)
was required for satisfactory kinetics. Indeed, the several
Lewis basic sites present in the benzhydrylic substrate 6
are likely to interact with the Lewis acid, thereby inhibit-
ing the ionization process, necessary for the alkylation to
take place. Reaction between N-benzyl tetronamide (4a)
or N-phenyl tetronamide (4b)22 and 6, using the above op-
timized reaction conditions, gave rise to the correspond-
ing alkylated products 8a and 8b in 80% or 95% yields,
respectively.24 Disappointingly enough, tetronamide 4c,
derived from p-methoxybenzylamine, afforded the de-
sired product 8c in a moderate 35% yield.

Scheme 5 Reagents and conditions: (a) CuI (1.2 equiv), Cs2CO3

(2.5 equiv), DMF, 90 °C, 16 h.

Scheme 1 Acid-mediated benzhydrylation of active methylenes
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With the desired intermediates 8a–c in hand, we next
studied the intramolecular C–N bond-forming reaction.
Buchwald–Hartwig palladium-catalyzed N-arylation25

was first tested using precursor 8a as the model substrate.
Unfortunately, the use of Pd2dba3 or Pd(OAc)2 as palladi-
um sources, 2,2¢-bis(diphenylphosphino)-1,1¢-binaphthyl
(BINAP), P(o-Tol)3 or P(t-Bu)3 as ligands, and t-BuONa
as base at reflux of toluene did not afford the desired pen-
tacyclic product, the starting material being totally recov-
ered. A copper-mediated Ullmann-type N-arylation was
thus envisioned as an alternative.26 Much to our satisfac-
tion, treatment of the benzhydrylated N-benzyl tetrona-
mide 8a with CuI (1.2 equiv) and Cs2CO3 (2.5 equiv) in
DMF gave, after 16 hours at 90 °C, according to Fukuya-
ma’s protocol,27 the expected 4-aza-2,3-didehydropodo-
phyllotoxin 9a in quantitative yield (Scheme 5).
Analogously, starting from the N-substituted tetronamide
precursors 8b and 8c, the corresponding aza-analogues 9b
and 9c were obtained in 82% and 84% yields, respective-
ly.28,29

In summary, three aza-analogues of podophyllotoxin have
been synthesized in two steps using N-alkyl tetronamides
as suitable ambident D-ring generating building blocks.
The cyclization precursors were formed through the
Lewis acid mediated benzhydrylation of N-alkyl tetrona-
mides with a suitably functionalized benzhydrol. The de-
sired pentacyclic structure of the 4-aza-2,3-
didehydropodophyllotoxins was next obtained via an in-
tramolecular copper-mediated Ullmann-type N-arylation.
The elaboration of the cyclization precursors by a multi-
component reaction and the development of a copper-cat-
alyzed N-arylation of these enamines are currently under
investigation.
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