



Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry

ISSN: 0094-5714 (Print) 1532-2440 (Online) Journal homepage: http://www.tandfonline.com/loi/lsrt19

# Preparation and Spectroscopic Investigation of Chelates of Divalent Transition Metal lons with 8-(Arylazo)-Chromones

A. L. El-Ansary , O. E. Sherif & M. M. El-Ajily

To cite this article: A. L. El-Ansary, O. E. Sherif & M. M. El-Ajily (1999) Preparation and Spectroscopic Investigation of Chelates of Divalent Transition Metal Ions with 8-(Arylazo)-Chromones, Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 29:9, 1501-1523, DOI: 10.1080/00945719909351715

To link to this article: http://dx.doi.org/10.1080/00945719909351715



Published online: 23 Apr 2008.

| ك |
|---|

Submit your article to this journal 🖸

Article views: 18



View related articles

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsrt20

# PREPARATION AND SPECTROSCOPIC INVESTIGATION OF CHELATES OF DIVALENT TRANSITION METAL IONS WITH 8-(ARYLAZO)-CHROMONES

#### A. L. EL-Ansary\*, O. E. Sherif, and M. M. EL-Ajily

Chemistry Department, Faculty of science, Cairo University, Giza, Egypt

#### ABSTRACT

Metal chelates of the divalent transition metal ions Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) with 8-(arylażo)chromones have been prepared and characterized by elemental analyses, IR and electronic spectra, thermogravimetric analyses, magnetic and conductance measurements. The obtained data suggest the formation of 1:1 and 2:1 (M:Ligand) chelates with the general formula  $[MH_{k-1}LX_{10}(H_2O)_n].yH_2O$  or  $[M_2H_{k-2}LX_{10}(H_2O)_n].yH_2O$  where X = OH or Cl, m = 1 or 2, n = 1-3 or 6, y = 1-3 or 5, k = 2-4. M is a divalent transition metal ion and H<sub>k</sub>L represents the 8-(arylazo)-chromones. The study revealed that the ligands behave as monobasic bidentates in the case of 1:1 (M:Ligand) chelates. Electronic spectra and magnetic measurements indicate that the metal chelates have square-planar, tetrahedral or octahedral geometries. The TG analyses indicate the presence of hydrated and coordinated water molecules. A nonelectrolytic nature was assigned based on molar conductance measurements.

#### **INTRODUCTION**

Hydroxychromones are used as analytical reagents for the microdetermination of metal ions<sup>1</sup>, as they are capable of forming metal chelates with transition metal ions.

Copyright © 1999 by Marcel Dekker, Inc.

The composition and stability constants of 3-hydroxychromone iron(III) chelates were studied spectrophotometrically<sup>2</sup>. The preparation and characterization of new metal chelates derived from chromone-3-carboxaldehyde-4-phenylthiosemicarbazone were reported<sup>3</sup>. Divalent metal ion chelates of 6-formyl-7-hydroxy-5-methoxy-2-methyl-chromone, 5,7-dihydroxy-6-formyl-2-methylchromone and 5,7-dihydroxy-2,6-dimethyl- chromone have been prepared and studied<sup>4</sup>. The chelates of chromone Schiff bases derived from *o*-substituted anilines with divalent Co, Ni and Cu ions have been investigated by Abd El-Gaber *et al*<sup>5</sup>. Recently, 8-(arylazo)chromones were synthesized<sup>6</sup>, yet their metal chelates have not been prepared or studied.

The aim of the present investigation is to prepare and elucidate the geometrical structures of the metal chelates formed between the divalent transition metal ions Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) with 8-(arylazo)chromones. The structures of the 8-(arylazo)chromones are represented in Fig.1.

#### **EXPERIMENTAL**

#### Materials

All chemicals used were of pure grade (BDH or Aldrich). All organic solvents used in this work were either purified by the recommended methods<sup>7</sup> or obtained as spectroscopic grade solvents from BDH. Double-distilled water from glass equipment was used in all experiments. The preparation of 5,7-dihydroxy-2,6-dimethylchromone and 5,7-dihydroxy-6-formyl-2-methylchromone followed the procedure described earlier<sup>8</sup>.

#### Preparation of Chromone Azo Dyes

8-(Arylazo) derivatives of 5,7-dihydroxy-2,6-dimethylchromones  $[H_k L^{1-4}]$  and 5,7-dihydroxy-6-formyl-2-methylchromones  $[H_k L^{5-8}]$  were prepared by a literature procedure<sup>6</sup>.

#### Synthesis of Metal Chelates

The metal chelates of 8-(arylazo)chromones were synthesized by mixing 20 mL of hot ethanolic solutions of the dye (0.01 mol) and 20 mL of an ethanol solution of

37



| л                    | 1   |              | Λ                    | Ĩ   |                  |
|----------------------|-----|--------------|----------------------|-----|------------------|
| Н                    | CH3 | $H_2L^1$     | Н                    | СНО | $H_2L^5$         |
| OH                   | CH3 | $H_{3}L^{2}$ | OH                   | СНО | H3L6             |
| COOH                 | СН3 | $H_3L^3$     | COOH                 | СНО | $H_{3}L^{7}$     |
| AsO(OH) <sub>2</sub> | CH3 | $H_4L^4$     | AsO(OH) <sub>2</sub> | CHO | H₄L <sup>8</sup> |

37

• •

Fig. 1. Structure of the 8-(Arylazo)chromones

the metal salt (0.01 mol) [MnCl<sub>2</sub>.4H<sub>2</sub>O, FeSO<sub>4</sub>.7H<sub>2</sub>O, CoCl<sub>2</sub>.6H<sub>2</sub>O, NiCl<sub>2</sub>.6H<sub>2</sub>O, CuCl<sub>2</sub>.2H<sub>2</sub>O, Zn(CH<sub>3</sub>COO)<sub>2</sub>.2H<sub>2</sub>O and PdCl<sub>2</sub>]. The mixtures were left to stand on a steam bath for 30 min. In some cases, the metal chelates did not separate on standing and a few drops of ammonia solution were added slowly with stirring to adjust the pH to 6-8 which resulted in precipitation. The formed metal chelates were then filtered and washed several times with distilled water and hot ethanol until the filtrate became colourless. Then the chelates were dried over anhydrous CaCl<sub>2</sub>.

#### Physical Measurements

v

Elemental analyses were performed in the Microanalytical Center of Cairo University. The metal contents of these chelates were determined after wet decomposition of the chelates as previously described<sup>9</sup>, followed by EDTA titration<sup>10</sup>.

The infrared spectra of the chelates were obtained by applying the KBr disc technique using a Perkin-Elmer 1430 infrared spectrometer. The visible spectra of the 8-(arylazo)chromones and their chelates were measured by applying the Nujol mull technique using a Perkin Elmer Lambda 4B spectrophotometer. with 1 cm matched silica cells. Thermogravimetric analyses (of some chelates which contain water molecules) were achieved using a Shimadzu thermal analyzer (Japan). The weight loss was measured from ambient temperature up to 1000° C ramped at 10° C/min. The conductivity measurements were carried out in DMF solution using a conductivity bridge model CM-1K-TOA company (Japan). The magnetic moments were measured using a Johnson-Mathey susceptometer devised by F. Evans (USA).

#### RESULTS AND DISCUSSION

The analytical data for the metal chelates with 8-(arylazo) derivatives of 5,7dihydroxy-2,6-dimethylchromones, and 5,7-dihydroxy-6-formyl-2-methylchromones,  $(H_k L^{1-8})$  are listed in Table I. The obtained data showed that the stoichiometries of the 1:1 and 2:1 (M:Ligand). The chelates are suggested formulas are  $[MH_{k-1}LX_m(H_2O)_m]$ ,  $yH_2O$  or  $[M_2H_{k-2}LX_m(H_2O)_m]$ ,  $yH_2O$ , where X = OH or Cl, m = 1 or 2, n = 1-3 or 6, y = 1-3 or 5, M represents Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) ions; and H<sub>2</sub>L represents the 8-(arylazo)chromones, the complex formation may be represented by the following equations:

For the 1:1 chelates:

 $M^{2+} + H_kL + mX + (n+y)H_2O \rightarrow [MH_{k-1}LX_m(H_2O)_n].yH_2O + H^+$ 

For the 2:1 chelates:

 $2M^{2+} + H_kL + mX + (n+y)H_2O \rightarrow [M_2H_{k-2}LX_m(H_2O)_n].yH_2O + 2H^+$ 

It is observed from Tables I and II that the analytical data are in good agreement with the calculated values according to the proposed structural formulas of the chelates. The molar conductivities of the chelates of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) with the azo dyes ( $H_kL^{1-8}$ ) at 25° C in DMF solvent are in the 3.80-33.00 ohm<sup>-1</sup> cm<sup>2</sup> mole<sup>-1</sup> range indicating a non-electrolytic nature for all the chelates<sup>11</sup>.

#### Infrared Spectra

The infrared spectra of the metal chelates, in comparison with those of the free ligands, display certain changes which give an idea about the types of bonds and their structures. IR band assignments are given in Table II.

In the 1:1 (M:H<sub>k</sub>L) chelates of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) with 8-(arylazo) chromone, the band due to the chromone carbonyl in position

Downloaded by [Orta Dogu Teknik Universitesi] at 11:57 02 March 2016

43.0 (42.50)4.4 (4.38)5.4 (5.83) [13.01 (13.23) 7.2 (7.40) 27.3 (27.79)4.2 (3.72(4.5 (3.72) 27.85 (28.31) 8.8 (9.44)  $\overline{O}$ 51.2 (51.12)4.5 (4.01)6.5 (7.02) 13.70 (13.78) 50.7 (50.65)4.2 (3.97)7.4 (6.95) 14.75 (14.57) [50.0 (49.83)]4.5 (3.91)[6.7 (6.48) ]15.70 (15.97) 64.7 (64.69)4.3 (4.12)7.0 (6.41) 13.40 (13.50) 44.6 (44.93) 5.3 (4.85) 5.2 (6.16) 12.56 (12.33) 47.3 (47.11)4.4 (4.15)7.1 (6.46) 12.83 (12.70) 48.7 (47.95)4.8 (3.76)5.7 (6.58) 15.50 (15.37) (3.05)5.5 (4.74) 35.96 (36.03) **48.5 (48.72)4.2 (3.82)5.9 (6.69) 14.22 (14.02)** 46.6 (46.20)|4.2 (4.07)|7.3 (6.34) |14.42 (14.38) Σ z Η F.W. |Yield|Found (Calcd) % 34.6 (34.55)2.9  $\circ$ 75 65 80 75 80 75 65 80 65 75 2 % 65 454.16 480.30 591.13 399.21 433.23 441.83 403.01 437.23 419.01 424.61 734.09 409.61 Empirical Formula C<sub>17</sub>H<sub>26</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>12</sub>Pd<sub>2</sub> C<sub>1</sub>,H<sub>21</sub>CICuN<sub>2</sub>O<sub>8</sub> C<sub>1</sub>,H<sub>16</sub>MnN<sub>2</sub>O<sub>6</sub> C<sub>17</sub>H<sub>18</sub>N<sub>2</sub>O<sub>8</sub>Pd<sub>2</sub>  $Mn(H_{J}L^{2})(OH)(H_{2}O)].H_{2}O|C_{17}H_{18}MnN_{2}O_{8}$ Co(H<sub>2</sub>L<sup>2</sup>)(OH)(H<sub>2</sub>O)].H<sub>2</sub>O C<sub>17</sub>H<sub>18</sub>CoN<sub>2</sub>O<sub>8</sub>  $Fe(HL^{1})(OH)(H_{2}O)_{3}].H_{2}O[C_{17}H_{22}FeN_{2}O_{6}]$ C<sub>17</sub>H<sub>16</sub>NiN<sub>2</sub>O<sub>6</sub> C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>O<sub>6</sub>Zn Cu(H<sub>2</sub>L<sup>2</sup>)(OH)(H<sub>2</sub>O)].H<sub>2</sub>O C<sub>17</sub>H<sub>18</sub>CuN<sub>2</sub>O<sub>8</sub> C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>O<sub>7</sub>Zn C<sub>17</sub>H<sub>16</sub>NiN<sub>2</sub>O<sub>7</sub> [Pd<sub>2</sub>(HL<sup>2</sup>)Cl<sub>2</sub>(H<sub>2</sub>O)].6H<sub>2</sub>O Cu(HL<sup>1</sup>)Cl(H<sub>2</sub>O)].3H<sub>2</sub>O Mn(HL<sup>1</sup>)(OH)(H,O)]  $Zn(H_2L^2)(OH)(H_2O)]$ Pd<sub>2</sub>(L<sup>1</sup>)(OH)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]  $Ni(H_2L^2)(OH)(H_2O)]$ Ni(HL<sup>1</sup>)(OH)(H,O)] [(0,H)(H)(H)(H,0)] Chelate L<sup>1</sup> Derivatives H<sub>1</sub>L<sup>2</sup> Derivatives

Table I. Elemental Analyses of Metal Chelates of 8-(Arylazo)-5,7-dihydroxy-2,6-dimethylchromone Derivatives (H,L<sup>1-8</sup>)

(continued)

#### CHELATES WITH 8-(ARYLAZO)CHROMONES

Downloaded by [Orta Dogu Teknik Universitesi] at 11:57 02 March 2016

Table I continued

| H <sub>3</sub> L <sup>3</sup> Derivatives                                                                            |                                                                                                  |        |    |                 |            |           |               |              |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------|----|-----------------|------------|-----------|---------------|--------------|
| $[Mn_2(HL^3)(OH)_2(H_2O)_2]$                                                                                         | $C_{18}H_{18}Mn_2N_2O_{10}$                                                                      | 532.14 | 80 | 40.8 (40.60)3.  | 5 (3.38)6. | 1 (5.26)  | 20.45 (20.67) |              |
| [Co(H <sub>2</sub> L <sup>3</sup> )Cl(H <sub>2</sub> O) <sub>3</sub> ].H <sub>2</sub> O                              | C <sub>18</sub> H <sub>21</sub> CICoN <sub>2</sub> O <sub>10</sub>                               | 519.71 | 75 | 42.1 (41.57)4.  | 4 (4.04)6. | 1 (5.39)  | 11.20 (11.36) | 6.5 (6.83)   |
| $[Ni(H_2L^3)(OH)(H_2O)]$ . 3H <sub>2</sub> O                                                                         | C <sub>18</sub> H <sub>22</sub> O <sub>11</sub> NiN <sub>2</sub>                                 | 501.07 | 65 | 34.4 (34.14)4.  | 8 (4.39)6. | 3 (5.59)  | 11.90 (11.72) |              |
| $[Cu(H_2L^3)Cl(H_2O)].5H_2O$                                                                                         | C <sub>18</sub> H <sub>25</sub> ClCuN <sub>2</sub> O <sub>12</sub>                               | 560.34 | 70 | 38.9 (38.57)4.  | 5 (4.46)5. | 6 (5.00)  | 11.45 (11.34) | 5.8 (6.34)   |
| [Zn(H <sub>2</sub> L <sup>3</sup> )(OH)(H <sub>2</sub> O)]                                                           | C <sub>18</sub> H <sub>16</sub> N <sub>2</sub> O <sub>8</sub> Zn                                 | 453.62 | 75 | 47.8 (47.64)4.  | 1 (3.53)5. | 3 (6.18)  | 14.70 (14.42) |              |
| $[\mathrm{Pd}_2(\mathrm{HL}^3)\mathrm{Cl}_2(\mathrm{H}_2\mathrm{O})_2]$                                              | $C_{18}H_{16}Cl_2N_2O_8Pd_2$                                                                     | 672.02 | 80 | 31.9 (32.14)2.  | 5 (2.38)3. | 95 (4.17) | 31.4 (31.67)  | 10.5 (10.56) |
| H <sub>4</sub> L <sup>4</sup> Derivatives                                                                            |                                                                                                  |        |    |                 |            |           |               |              |
| [Mn <sub>2</sub> (H <sub>2</sub> L <sup>4</sup> )Cl <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ].H <sub>2</sub> O  | $C_{17}H_{10}AsCl_2Mn_2N_2O_{10}$                                                                | 666.94 | 65 | 30.8 (30.59)3.0 | 0 (2.85)3. | 5 (4.20)  | 16.30 (16.50) | 10.8 (10.65) |
| $[Co_2(H_2L^4)Cl_2(H_2O)_2].H_2O$                                                                                    | C <sub>17</sub> H <sub>19</sub> AsCl <sub>2</sub> Co <sub>2</sub> N <sub>2</sub> O <sub>10</sub> | 674.94 | 70 | 30.3 (30.23)3.  | 7 (2.82)3. | 6 (4.15)  | 17.41 (17.48) | 10.7 (10.52) |
| [Ni <sub>2</sub> (H <sub>2</sub> L <sup>4</sup> )Cl <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ] 3H <sub>2</sub> O | C <sub>17</sub> H <sub>23</sub> AsCl <sub>2</sub> Ni <sub>2</sub> N <sub>2</sub> O <sub>12</sub> | 710.57 | 80 | 28.2 (28.72)4.: | 3 (3.34)3. | 5 (3.94)  | 16.40 (16.53) | 10.6 (9.99)  |
| $[Cu_2(H_2L^4)Cl_2(H_2O)_2].5H_2O$                                                                                   | $C_{17}H_{27}AsCl_2Cu_2N_2O_{14}$                                                                | 756.20 | 75 | 26.4 (26.98)4.  | 1 (3.57)4. | 2 (3.70)  | 16.65 (16.80) | 8.8 (9.39)   |
| $[Zn_2(H_2L^4)(OH)_2(H_2O)_2]$                                                                                       | C <sub>17</sub> H <sub>19</sub> AsN <sub>2</sub> O <sub>11</sub> Zn <sub>2</sub>                 | 632.84 | 75 | 33.2 (32.24)3.  | 7 (3.00)3. | 8 (4.43)  | 20.35 (20.67) |              |
| $[Pd_{2}(H_{2}L^{4})(OH)_{2}(H_{2}O)_{2}]$                                                                           | C <sub>17</sub> H <sub>19</sub> AsN <sub>2</sub> O <sub>11</sub> Pd <sub>2</sub>                 | 715.04 | 70 | 28.7 (28.53)3.  | 3 (2.66)3. | 4 (3.94)  | 30.05 (29.79) |              |
| H <sub>2</sub> L <sup>5</sup> Derivatives                                                                            |                                                                                                  |        |    |                 |            |           |               |              |
| [Mn(HL <sup>5</sup> )(OH)(H <sub>2</sub> O)]                                                                         | C <sub>17</sub> H <sub>14</sub> MnN <sub>2</sub> O <sub>7</sub>                                  | 413.29 | 75 | 49.2 (49.39)3.9 | 9 (3.39)7. | 3 (6.78)  | 13.60 (13.32) |              |
|                                                                                                                      |                                                                                                  |        |    |                 |            |           |               |              |

| 9      |
|--------|
| Ξ      |
| 2      |
| 5      |
| Ċ.     |
| ar     |
| $\geq$ |
| 2      |
| 0      |
| $\sim$ |
| ŝ      |
| -      |
| Ξ.     |
| ai     |
| Ξ      |
| es     |
| ÷      |
| SI     |
| ke     |
| -È     |
| 5      |
| 5      |
| Ē      |
| R      |
| e.     |
| Ę      |
| ಹ      |
| õ      |
| Ц      |
| ta     |
| H      |
| $\leq$ |
| Ņ      |
| -0     |
| ed     |
| ğ      |
| Оа     |
| Ĭ      |
| N      |
| 6      |
| Ω      |

| [Co <sub>2</sub> (L <sup>5</sup> )Cl <sub>2</sub> .(H <sub>2</sub> O) <sub>2</sub> ].H <sub>2</sub> O    | $C_{17}H_{16}Cl_2Co_2O_8N_2$                                                   | 565.16 | 65 | 36.2 (36.10) | 3.1 ()         | 2.83)  | .2 (4.96)  | 20.75 (20.88) | 11.8 (12.56) |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------|----|--------------|----------------|--------|------------|---------------|--------------|
| [(0 <sup>2</sup> H)(HO)( <sub>2</sub> TH)!N]                                                             | C <sub>17</sub> H <sub>14</sub> O <sub>7</sub> NiN <sub>2</sub>                | 416.99 | 80 | 48.2 (48.95) | 4.3 ()         | 3.36)  | 1.0 (6.72) | 13.80 (14.08) |              |
| $[Cu_{2}(L^{5})(OH)_{2}(H_{2}O)_{2}]$                                                                    | $C_{17}H_{16}Cu_2N_2O_9$                                                       | 519.30 | 65 | 40.0 (39.31) | 4.2 (;         | 3.80)4 | .6 (5.39)  | 24.75 (24.47) |              |
| [(O <sup>7</sup> H)(HO)( <sub>7</sub> )]                                                                 | C <sub>17</sub> H <sub>14</sub> N <sub>2</sub> O <sub>7</sub> Zn               | 423.59 | 75 | 48.7 (48.18) | 3.0 (          | 3.31)7 | .4 (6.61)  | 15.60 (15.44) |              |
| [Pd(HL <sup>5</sup> )(OH)(H <sub>2</sub> O)]                                                             | C <sub>1</sub> ,H <sub>14</sub> N <sub>2</sub> O,Pd                            | 464.69 | 70 | 43.8 (43.92) | 3.4 (;         | 3.01)  | 6.03) 0.0  | 22.50 (22.92) |              |
| H <sub>3</sub> L <sup>6</sup> Derivatives                                                                |                                                                                |        |    |              |                |        |            |               |              |
| [Mn(H <sub>2</sub> L <sup>6</sup> )(OH)(H <sub>2</sub> O)]                                               | C <sub>17</sub> H <sub>14</sub> MnN <sub>2</sub> O <sub>8</sub>                | 429.19 | 80 | 48.0 (47,55) | 17             | 3.26)4 | .0 (6.53)  | 12.65 (12.82) |              |
| [Fe <sub>2</sub> (HL <sup>6</sup> )(OH) <sub>2</sub> (H <sub>1</sub> O) <sub>6</sub> ].3H <sub>2</sub> O | $C_{17}H_{30}Fe_2N_2O_{17}$                                                    | 646.02 | 75 | 31.4 (31.57) | 4.3 (4         | 4.33)4 | .2 (4.33)  | 17.56 (17.33) |              |
| [Co <sub>2</sub> (HL <sup>6</sup> )(OH) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ]                   | C <sub>17</sub> H <sub>16</sub> Co <sub>2</sub> N <sub>2</sub> O <sub>10</sub> | 526.11 | 75 | 39.1 (38.78) | 3.4 ()         | 3.04)6 | .1 (5.32)  | 22.8 (22.43)  |              |
| $[(0_{1}H_{2}H)(HO)(_{2}H)(H_{2}O)]$                                                                     | C <sub>17</sub> H <sub>14</sub> O <sub>8</sub> NiN <sub>2</sub>                | 432.99 | 80 | 47.3 (47.15) | 3.6 (          | 3.24)6 | .6 (6.47)  | 13.80 (13.56) |              |
| $[Cu_2(HL^6)(OH)_2(H_2O)_2]$                                                                             | C <sub>17</sub> H <sub>16</sub> Cu <sub>2</sub> N <sub>2</sub> O <sub>19</sub> | 535.31 | 65 | 38.2 (38.13) | 3.2 (3         | 5(66.3 | .2 (5.23)  | 23.40 (23.74) |              |
| $[Zn(H_2L^6)(OH)(H_2O)]$ .H <sub>2</sub> O                                                               | C <sub>17</sub> H <sub>16</sub> N <sub>2</sub> O <sub>9</sub> Zn               | 457.69 | 65 | 45.1 (44.60) | 3.3 (3         | 3.50)5 | .8 (6.12)  | 14.45 (14.29) |              |
| [Pd(H <sub>2</sub> L <sup>6</sup> )(OH)(H <sub>2</sub> O)]                                               | C <sub>17</sub> H <sub>14</sub> N <sub>2</sub> O <sub>8</sub> Pd               | 480.69 | 70 | 42.2 (42.46) | 3.2 (3         | 5(16.2 | .4 (5.83)  | 22.33 (22.15) |              |
| H <sub>3</sub> L <sup>7</sup> Derivatives                                                                |                                                                                |        |    |              |                |        |            |               |              |
| $[Mn_2(HL^7)(OH)_2(H_2O)_2]$                                                                             | C <sub>18</sub> H <sub>16</sub> O <sub>11</sub> Mn <sub>2</sub> N <sub>2</sub> | 546.12 | 65 | 39.3 (39.56) | 3.4 (5         | 2.93)6 | .0 (5.13)  | 20.35 (20.14) |              |
| $[Fe(H_2L^7)(OH)(H_2O)_3]H_2O$                                                                           | C <sub>18</sub> H <sub>20</sub> FeN <sub>2</sub> O <sub>12</sub>               | 512.15 | 70 | 42.8 (42.18) | <b>1</b> .2 (3 | 3.91)5 | .6 (5.47)  | 11.10 (11.33) |              |

CHELATES WITH 8-(ARYLAZO)CHROMONES

| [Co <sub>2</sub> (HL <sup>7</sup> )(OH) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ]H <sub>2</sub> O               | C <sub>18</sub> H <sub>18</sub> Co <sub>2</sub> N <sub>2</sub> O <sub>12</sub>                   | 572.19 | 70 | 38.4 (37.76) | 3.6 (3 | 3.15)        | .5 (4.90)  | 20.30 (20.63) |              |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------|----|--------------|--------|--------------|------------|---------------|--------------|
| $[Ni_2(HL^7)(OH)_2(H_2O)_2]$                                                                                         | C <sub>18</sub> H <sub>16</sub> O <sub>12</sub> Ni <sub>2</sub> N <sub>2</sub>                   | 553.72 | 65 | 40.0 (39.03) | 3.0 (2 | 2.89)6       | 6.0 (5.06) | 20.90 (21.20) |              |
| [Cn(H <sup>2</sup> L <sup>1</sup> )(OH)(H <sup>2</sup> O)].H <sub>2</sub> O                                          | C <sub>18</sub> H <sub>16</sub> CuN <sub>2</sub> O <sub>10</sub>                                 | 483.82 | 75 | 44.3 (44.67) | 3.5 (3 | 3.31)        | ;.7 (5.80) | 13.35 (13.13) |              |
| [Zn(H <sub>2</sub> L <sup>7</sup> )(OH)(H <sub>2</sub> O)].H <sub>2</sub> O                                          | C <sub>18</sub> H <sub>16</sub> N <sub>2</sub> O <sub>10</sub> Zn                                | 485.72 | 75 | 44.5 (44.50) | 3,4 (2 | 3.30)        | 6.0 (5.76) | 13.4 (13.47)  |              |
| $[Pd(H_2L^7)(OH)(H_2O)]$ .H <sub>2</sub> O                                                                           | C <sub>18</sub> H <sub>16</sub> N <sub>2</sub> O <sub>10</sub> Pd                                | 526.72 | 80 | 41.0 (41.03) | 3.5 (3 | 3.04)4       | 1.7 (5.32) | 20.06 (20.22) |              |
| H <sub>4</sub> L <sup>8</sup> Derivatives                                                                            |                                                                                                  |        |    |              |        |              |            |               |              |
| [(Mn(H <sub>3</sub> L <sup>8</sup> )(OH)(H <sub>2</sub> O)]                                                          | $C_{17}H_{15}AsMnN_2O_{10}$                                                                      | 537.14 | 80 | 38.6 (37.99) | 3.7 (2 | <u>, 79)</u> | 6.0 (5.21) | 10.20 (10.24) |              |
| [Co <sub>2</sub> (H <sub>2</sub> L <sup>8</sup> )Cl <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ].2H <sub>2</sub> O | $C_{17}H_{19}AsCl_2Co_2N_2O_{12}$                                                                | 706.64 | 65 | 28.6 (28.86) | 3.5 (2 | 2.69)4       | 1.5 (3.69) | 16.90 (16.69) | 9.2 (10.00)  |
| $[Ni_2(H_2L^8)Cl_2(H_2O)_2] 5H_2O$                                                                                   | C <sub>17</sub> H <sub>25</sub> AsCl <sub>2</sub> Ni <sub>2</sub> N <sub>2</sub> O <sub>15</sub> | 760.58 | 70 | 26.0 (26.86) | 4.7 (3 | 3.29)4       | 1.2 (3.68) | 15.4 (15.46)  | 9.2 (9.35)   |
| [Cn <sup>2</sup> (H <sup>2</sup> T <sub>8</sub> )Cl <sup>2</sup> (H <sup>2</sup> O) <sup>2</sup> ]                   | C <sub>17</sub> H <sub>15</sub> AsCl <sub>2</sub> Cu <sub>2</sub> N <sub>2</sub> O <sub>10</sub> | 680.10 | 75 | 30.2(30.00)  | 3.1 (2 | 2.50 4       | t.0 (4.18) | 18.75 (18.68) | 10.2 (10.44) |
| [Zn(H <sub>3</sub> L <sup>8</sup> )(OH)(H <sub>2</sub> O)]                                                           | $C_{17}H_{15}AsN_2O_{10}Zn$                                                                      | 547.50 | 75 | 37.0 (37.27) | 3.4 (2 | 2.74)        | 5.2 (5.11) | 12.20 (11.59) |              |
| $[Pd_2(H_2L^8)Cl_2(H_2O)_2] 3H_2O$                                                                                   | $C_{17}H_{21}AsCl_2N_2O_{13}Pd_2$                                                                | 819.95 | 70 | 25.7 (24.88) | 3.1 (2 | 2.37)        | 3.5 (3.49) | 26.40 (26.55) | 8.4 (8.83)   |

Table I continued

Downloaded by [Orta Dogu Teknik Universitesi] at 11:57 02 March 2016

# CHELATES WITH 8-(ARYLAZO)CHROMONES

| Free    | Mn <sup>2+</sup> | Fe <sup>2+</sup> | Co <sup>2+</sup>                 | Ni <sup>2+</sup>      | Cu <sup>2+</sup>         | Zn <sup>2+</sup> | Pd <sup>2+</sup> | Band assignment                       |
|---------|------------------|------------------|----------------------------------|-----------------------|--------------------------|------------------|------------------|---------------------------------------|
| ligand  |                  |                  |                                  |                       |                          |                  |                  |                                       |
| 8-(Phen | ylazo)ch         | romone           | (H <sub>2</sub> L <sup>1</sup> ) | derivativ             | /es                      | L                | L                |                                       |
| 3421    | 3440             | 3420             | -                                | 3414                  | 3450                     | 3440             | 3450             | ν(OH) b                               |
| 1120    | 1111             | 1110             | -                                | 1129                  | 1120                     | 1120             | 1115             | δ(OH) m                               |
| 1658    | 6300             | 1642             | -                                | 1654                  | 1640                     | 1640             | 1648             | v(C=O) (chromone) s                   |
| 1419    | 1440             | 1420             | -                                | 1442                  | 1440                     | 1450             | 1390             | ν(N=N) w                              |
| -       | 475              | 510              | -                                | 443                   | 490                      | 430              | 550              | v(M-O) w                              |
| -       | -                | -                | -                                | -                     | -                        | -                | 385              | v(M-N) w                              |
| 847     | 762              | 830              | -                                | 763                   | 840                      | 755              | 765              | γ(OH) m                               |
| -       | -                | -                | -                                | -                     | 350                      | -                | -                | v(M-Cl) m                             |
| 8-(2-Hy | droxyph          | enylazo          | )chromo                          | one (H <sub>3</sub> I | $\frac{1}{2}$ derivative | atives           | 1                | <u> </u>                              |
| 3418    | 3420             | -                | 3410                             | 3410                  | 3420                     | 3460             | 3330             | v(OH) b                               |
| 1141    | 1145             | -                | 1140                             | 1140                  | 1140                     | 1130             | 1120             | δ(OH) m                               |
| 1657    | 1648             | -                | 1640                             | 1645                  | 1638                     | 1645             | 1645             | v(C=O) (chromone) s                   |
| 1426    | 1440             | -                | 1430                             | 1410                  | 1430                     | 1435             | 1390             | v(N=N) w                              |
| -       | 570              | -                | 470                              | 470                   | 485                      | 500              | 490              | v(M-O) w                              |
| -       | -                | -                | -                                | -                     | -                        | -                | 385              | v(M-N) w                              |
| 849     | 755              | -                | 810                              | 750                   | 840                      | 845              | 820              | γ(OH) m                               |
| -       | -                | -                | -                                | -                     | -                        | -                | 350              | v(M-Cl) m                             |
| 8-(2-Ca | rboxyph          | enylazo          | )chromo                          | one (H <sub>3</sub> L | $\frac{1}{2}$ ) deriva   | atives           |                  | • • • • • • • • • • • • • • • • • • • |
| 3431    | 3410             | -                | 3411                             | 3385                  | 3428                     | 3460             | 3460             | ν(OH) b                               |
| 1157    | 1115             | -                | 1157                             | 1096                  | 1155                     | 1150             | 1110             | δ(OH) w                               |
| 1651    | 1640             | -                | 1642                             | 1645                  | 1641                     | 1645             | 1645             | v(C=O) (chromone) s                   |
| 1700    | -                | -                | 1730                             | 1740                  | 1762                     | 1730             | -                | v(C=O) (COOH) s                       |
| 1409    | 1395             | -                | 1449                             | 1448                  | 1447                     | 1430             | 1390             | v(N=N) w                              |

Table II. IR Bands<sup>a</sup> of 8-(Arylazo)chromones (H<sub>k</sub>L<sup>1-8</sup>) Chelates.

(continued)

| -       | 495                                                                | -      | 464     | 564     | 460                    | 450    | ) 42  | 0      | v(M-O) w            |  |  |
|---------|--------------------------------------------------------------------|--------|---------|---------|------------------------|--------|-------|--------|---------------------|--|--|
| -       | 370                                                                | -      | -       | -       | -                      | -      | 38    | 0 \    | v(M-N) w            |  |  |
| 800     | 785                                                                | -      | 765     | 763     | 766                    | 785    | 5 76  | 5 γ    | (OH) m              |  |  |
| -       | -                                                                  | -      | 343     | -       | 344                    | -      | 34    | 0 \    | v(M-Cl) m           |  |  |
| 8-(2-Ar | sonoph                                                             | enylaz | o)chron | none (H | L <sup>4</sup> ) deriv | atives |       |        |                     |  |  |
| 3400    | 3420                                                               | -      | 342     | 0 336   | n 338                  | 0 334  | 10 34 | 10     | v(OH) b             |  |  |
| 1118    | 1120                                                               | -      | 112     | 0 109   | 0 109                  | 0 109  | 95 11 | 40 E   | 5(OH) w             |  |  |
| 1658    | 1640                                                               | -      | 164     | 8 164   | 2 163                  | 8 164  | 10 16 | 45 v   | v(C=O) (chromone) s |  |  |
| 1415    | 1390                                                               | -      | 140     | 139     | 0 140                  | 140    | )5 13 | 98 \   | v(N=N) m            |  |  |
| -       | 465                                                                | -      | 475     | 500     | ) 495                  | 470    | ) 43  | 0      | v(M-O) w            |  |  |
| -       | 375                                                                | -      | 380     | 370     | ) 375                  | 395    | 5 38  | 0      | v(M-N) w            |  |  |
| 840     | 835                                                                | -      | 820     | 755     | 835                    | 810    | ) 76  | 5 γ    | y(OH) m             |  |  |
| -       | 350                                                                |        | 340     | 340     | ) 350                  | ) -    | -     | ,<br>, | v(M-Cl) m           |  |  |
| 8-(Pher | 8-(Phenylazo)chromone (H <sub>2</sub> L <sup>5</sup> ) derivatives |        |         |         |                        |        |       |        |                     |  |  |
| 357     | 7 3                                                                | 410    |         | 3423    | 3414                   | 3446   | 3440  | 346    | 50 ν(OH) b          |  |  |
| 1114    | 4 1                                                                | 085    |         | 1119    | 1118                   | 1112   | 1118  | 111    | 5 δ(OH) w           |  |  |
| 164     | 7 1                                                                | 650    |         | 1619    | 1653                   | 1630   | 1651  | 165    | 50 ν(C=O) (CHO) s   |  |  |
| 1662    | 2                                                                  |        |         |         |                        |        |       |        | (C=O) (chromone)    |  |  |
| 1432    | 2 1                                                                | 420    |         | 1491    | 1450                   | 1447   | 1449  | 144    | 10 v(N=N) s         |  |  |
|         |                                                                    | 465    |         | 519     | 451                    | 427    | 463   | 51     | 1 ν(M-O) w          |  |  |
| 841     |                                                                    | 765    |         | 760     | 761                    | 764    | 761   | 820    | 0 γ(OH) m           |  |  |
|         |                                                                    |        |         |         |                        | 350    |       |        | v(M-C)I w           |  |  |

# Table II continued

| 8-(2-Hydrox | yphenyl | azo) chr | omone (  | H₃L <sup>6</sup> ) de | erivative | s    |      |                     |
|-------------|---------|----------|----------|-----------------------|-----------|------|------|---------------------|
| 3577        | 3385    | 3413     | 3389     | 3411                  | 3236      | 3424 | 3437 | <b>v</b> (OH) b     |
| 1114        | 1121    | 1084     | 1119     | 1117                  | 1083      | 1078 | 1120 | δ(OH) w             |
| 1636        | 1643    | 1631     | 1630     | 1651                  | 1630      | 1647 | 1650 | v(C=O) (CHO) s      |
| 1662        |         |          |          |                       |           |      |      | (C=O) (chromone) s  |
| 1432        | 1464    | 1424     | 1465     | 1467                  | 1389      | 1461 | 1430 | v(N=N) s            |
|             | 515     | 465      | 507      | 454                   | 425       | 459  | 545  | v(M-O) w            |
| 853         | 780     | 765      | 755      | 761                   | 755       | 757  | 757  | γ(OH) m             |
|             |         |          | 345      | 350                   | 340       |      | 350  | v(M-Cl) w           |
| 8-(2-Carbox | yphenyl | azo)chro | omone (l | $H_3L^7$ ) de         | rivatives | 3    |      |                     |
| 3577        | 3380    | 3389     | 3415     | 3414                  | 3420      | 3410 | 3420 | <b>v(OH)</b> b      |
| 1115        | 1120    | 1113     | 1122     | 1117                  | 1115      | 1112 | 1110 | δ(OH) w             |
| 1647        | 1646    | 1650     | 1646     | 1634                  | 1645      | 1655 | 1650 | v(C=O) (CHO) s      |
| 1662        |         |          |          |                       |           |      |      | v(C=O) (chromone) s |
| 1700        |         | 1731     |          | 1719                  | 1740      | 1730 | 1700 | v( C=O) (COOH) s    |
| 1436        | 1400    | 1401     | 1400     | 1444                  | 1456      | 1430 | 1450 | ν(N=N) s            |
|             | 428     | 454      | 518      | 458                   | 470       | 508  | 486  | v(M-O) w            |
|             | 380     |          | 390      |                       |           |      |      | v(M-N) w            |

## Table II continued

(continued)

| 848         | 780     | 762      | 766     | 764                    | 830     | 870  | 835  | γ(OH) m            |
|-------------|---------|----------|---------|------------------------|---------|------|------|--------------------|
|             |         |          | 340     |                        | 344     |      | 340  | v(M-Cl) w          |
| 8-(2-Arsono | phenyla | zo)chror | none (H | ₄L <sup>8</sup> ) deri | vatives |      |      |                    |
| 3500        | 3420    |          | 3480    | 3450                   | 3380    | 3380 | 3290 | v(OH) b            |
| 1115        | 1100    |          | 1120    | 1110                   | 1120    | 1110 | 1110 | δ(OH) w            |
| 1650        | 1650    |          | 1640    | 1642                   | 1640    | 1650 | 1645 | v(C=O) (CHO) s     |
| 1680        |         |          |         |                        |         |      |      | (C=O) (chromone) s |
| 1440        | 1410    |          | 1430    | 1430                   | 1430    | 1430 | 1420 | v(N=N) s           |
|             | 485     | -        | 515     | 455                    | 420     | 479  | 460  | v(M-O) w           |
| 855         | 755     |          | 785     | 845                    | 755     | 755  | 825  | γ(OH) w            |
|             | 350     |          | 340     | 340                    | 350     |      |      | v(M-Cl) w          |

#### Table II continued

<sup>a</sup>b = broad, s = strong, m = medium, w = weak

four (Fig. 1) (1662-1680 cm<sup>-1</sup>) has disappeared. This suggests the involvement of this group in chelation.

The existence of water of hydration or coordination in all chelates renders it difficult to draw conclusions from the v(OH) band of the hydroxyl group of the free ligands which would overlap with those of water molecules. The participation of the hydroxyl group in the chelation is confirmed by the appearance of new bands related to the v(M-O) vibration.

The 1409-1440 cm<sup>-1</sup> band due to the N=N vibration and the 1700 cm<sup>-1</sup> band of the carboxylic carbonyl of the free ligands are not affected on chelation in case of the 1:1 chelates of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) ions with

8-(arylazo)chromones. Whereas, the carboxylic carbonyl stretching vibration (1700 cm<sup>-1</sup>) disappeared upon chelation of the 2:1 (M:L<sup>5-8</sup>) complexes of Mn(II) and Co(II) with the ligand  $H_3L^7$ , this same vibration merely shifted to lower frequency upon chelation of the Mn(II) and Pd(II) complexes with the ligand  $H_3L^3$ . This suggests involvement of this group in chelation.

The stretching vibration at 1636-1650 cm<sup>-1</sup> due to the formyl carbonyl in position six for 8-(arylazo)-5,7-dihydroxy-6-formyl-2-methylchromone derivatives  $(H_kL^{5-8})$  is shifted to lower frequency in the 2:1 chelates of Fe(II), Ni(II), Cu(II) and Pd(II) ions suggesting the participation of this group in coordination. On the other hand, this band is not affected by chelation in case of the 2:1 Mn(II) and Co(II) chelates with  $H_3L^7$ . Meanwhile, the bands due to the stretching frequency of the carboxylic carbonyl as well as the azo group disappeared in the 2:1 (M:L) chelates of Mn(II) and Co(II) with ligand  $H_3L^7$ . These same bands disappeared in the Mn(II) and Pd(II) chelates with ligand  $H_3L^3$ , indicating the involvement of these groups in chelation with the metal ion.

The appearance of a new band at 417-570 cm<sup>-1</sup> in the IR spectra of the chelates indicates the presence of M-O vibrations<sup>12</sup>. The IR spectra of the 2:1 Mn(II) and Co(II) chelates with  $H_3L^7$ , the Mn<sub>2</sub>-IIL<sup>3</sup>, Mn<sub>2</sub>-II<sub>2</sub>L<sup>4</sup>, Co<sub>2</sub>-H<sub>2</sub>L<sup>4</sup>, Ni<sub>2</sub>-H<sub>2</sub>L<sup>4</sup>, Cu<sub>2</sub>-H<sub>2</sub>L<sup>4</sup>, Zn<sub>2</sub>-H<sub>2</sub>L<sup>4</sup> and Pd<sub>2</sub>-H<sub>k-2</sub>L<sup>1-4</sup> chelates display a band at 370-395 cm<sup>-1</sup>, corresponding to the M-N vibration<sup>13</sup>. The band at 340-350 cm<sup>-1</sup> in the IR spectra of the 1:1 Cu(II)-HL<sup>1</sup>, Co(II)-H<sub>2</sub>L<sup>3</sup> and 2:1 Mn(II), Co(II), Ni(II), and Cu(II) chelates with H<sub>4</sub>L<sup>4</sup> is attributed to the M-Cl vibration<sup>14</sup>.

#### **Electronic Spectra and Magnetic Measurements**

The magnetic moment values and the absorption bands for the Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) chelates with the ligands ( $H_kL^{1-8}$ ) are given in Tables III and IV. The magnetic moments are comparable to those expected for tetrahedral, square-planar or octahedral geometries, respectively.

The electronic absorption spectra of the free ligands display a shoulder at 320-330 nm (31250-30303 cm<sup>-1</sup>) for ( $H_{\rm k}L^{5-8}$ ) and 300-314 nm (33333-31847 cm<sup>-1</sup>) for ( $H_{\rm k}L^{1-4}$ ) which is attributed to the electronic transition within the chromone ring. On

|    | $H_2L^1$      | μ eff.   | H <sub>3</sub> L <sup>2</sup> | μ eff.   | H <sub>3</sub> L <sup>3</sup> | μ eff.   | H <sub>4</sub> L <sup>4</sup> | μ eff.   |
|----|---------------|----------|-------------------------------|----------|-------------------------------|----------|-------------------------------|----------|
|    | $v (cm^{-1})$ | B.M.     | $v(cm^{-1})$                  | B.M.     | $v (cm^{-1})$                 | B.M.     | v(cm <sup>-1</sup> )          | B.M.     |
|    | 32786,        |          | 33333,                        |          | 32258                         |          | 31847                         |          |
|    | 26315         |          | 28368                         |          | 28392                         |          | 22222                         |          |
| Mn | 22296         | 5.93 tet | 18611                         | 5.84 tet | 22222                         | 5.4 tet  | 23809                         | 5.15 tet |
| Fe | 24582         | 0.00 oct | -                             | -        | 24509                         | 0.00 oct | -                             | -        |
| Co | -             | -        | 20898                         | 2.45 sq  | 22691                         | 2.60 sq  | 14900                         | 3.60 tet |
| Ni | 22815         | 0.00 sq  | 21113                         | 0.00 sq  | 21739                         | 0.00 sq  | 21796                         | 0.00 sq  |
| Cu | 22784         | 1.81 sq  | 19459                         | 1.86 sq  | 22893                         | 1.87 sq  | 22614                         | 1.46 sq  |
| Zn | 24015         | 0.00 tet | 19257                         | 0.00 tet | 22431                         | 0.00 tet | 21326                         | 0.00 tet |
| Pd | 22614         | 0.00 sq  | 19853                         | 0.00 sq  | 22002                         | 0.00 sq  | 22614                         | 0.00 sq  |

Table III. Electronic Bands and Magnetic Moments of the Metal Chelates of 8-

Table IV. Electronic Bands and Magnetic Moments of the Metal Chelates of 8-(Arylazo)-5,7-dihydroxy-6-formyl-2-methylchromones (H<sub>k</sub>L<sup>5-8</sup>).

|    |                               |          |                               | -        |                       |          |                       |          |
|----|-------------------------------|----------|-------------------------------|----------|-----------------------|----------|-----------------------|----------|
|    | H <sub>2</sub> L <sup>5</sup> | μeff.    | H <sub>3</sub> L <sup>6</sup> | μeff.    | $H_3L^7$              | μ eff.   | $H_4L^8$              | μ eff.   |
|    | v (cm <sup>-1</sup> )         | B.M.     | v (cm <sup>-1</sup> )         | B.M.     | v (cm <sup>-1</sup> ) | B.M.     | v (cm <sup>-1</sup> ) | B.M.     |
| Mn | 22075                         | 5.88 tet | 18832                         | 5.85 tet | 22431                 | 5.22 tet | 22568                 | 5.79 tet |
| Fe | -                             | -        | 22356                         | 0.00 oct | 22386                 | 0.00 oct | -                     | -        |
| Co | -                             | -        | 21326                         | 2.27 sq  | 22675                 | 2.45 sq  | -                     | -        |
| Ni | 22537                         | 0.00 sq  | -                             | -        | 22075                 | 0.00 sq  | 22614                 | 0.00 sq  |
| Cu | 22371                         | 1.52sq   | 19379                         | 1.43 sq  | 22492                 | 1.80 sq  | 22583                 | 1.49 sq  |
| Zn | -                             | -        | 19689                         | 0.00 tet | -                     | -        | 22462                 | 0.00 tet |
| Pd | 21987                         | 0.00sq   | 19948                         | 0.00 sq  | 22076                 | 0.00 sq  | 21958                 | 0.00 sq  |

the other hand, the bands at 352-450 nm (28392-22222 cm<sup>-1</sup>) may be due to the  $\pi - \pi^*$  transition of the azo moiety influenced by intramolecular charge transfer within the ligand molecules.

The electronic spectra of the chelates  $Co(II)-H_{k-1}L^{1.3.6.7}$ , Ni(II) with the ligands  $H_kL^{1-8}$  and Pd(II) with the ligands  $H_kL^{1-8}$  show bands in the 19948-22691 cm<sup>-1</sup> range

which can be assigned to the  ${}^{1}A_{1g} \rightarrow {}^{1}B_{1g}$  transition and the Cu(II) chelates with ligands  $H_{k}L^{1-8}$  exhibit bands in the 19379-22893 cm<sup>-1</sup> range corresponding to the  ${}^{2}B_{1g} \rightarrow {}^{2}E_{g}$  transition. The intensity of the bands and the magnetic moment values support square- planar geometry for these chelates<sup>14, 15</sup>.

The Mn(II) chelates with the ligands  $H_k L^{1-8}$  and Zn(II) chelates with the ligands  $H_k L^{1-4}$ . <sup>6,8</sup> exhibit bands in the 18611-23809 cm<sup>-1</sup> range corresponding to the  ${}^2A_1 \rightarrow {}^2T_1$  transition and the Co(II) chelate with ligand  $H_4 L^4$  display a band at 14900 cm<sup>-1</sup> which is assigned to the  ${}^4A_2$  (F)  $\rightarrow {}^4T_1$ (P) transition, therefore, a tetrahedral structure is suggested for these chelates<sup>16, 17</sup>.

The electronic spectra of the Fe(II) chelates with the ligands  $H_k L^{1.6.7}$  display bands in the 22356-24582 cm<sup>-1</sup> range, this can be attributed to the  ${}^{5}T_2g \rightarrow {}^{5}Eg$ transition. The high intensity of the bands and the diamagnetic nature support octahedral geometry for these chelates<sup>18</sup>.

#### **Thermogravimetric Analysis**

TG analyses were carried out for the chelates of  $[Fe_2(HL^6)(OH)_2(H_2O)_6]$ .3H<sub>2</sub>O,  $[Co_2(L^5)Cl_2(H_2O)_2]$ .H<sub>2</sub>O,  $[Cu(H_2L^7)(OH)(H_2O)]$ .H<sub>2</sub>O,  $[Zn(H_2L^7)(OH)(H_2O)]$ .H<sub>2</sub>O,  $[Mn(HL^1)(OH)(H_2O)]$  and  $[Cu_2(H_2L^4)Cl_2(H_2O)_2]$ .5H<sub>2</sub>O  $[Fe_2(HL^6)(OH)_2(H_2O)_6]$ .3H<sub>2</sub>O. From the TG curves, the weight losses were calculated for the different steps and compared with those theoretically calculated for the suggested formulae based on the results of the elemental analyses in Table I. The first weight loss at a temperature up to 160° C is attributed to the loss of hydrated water molecules. Whereas, the second weight loss within the 160-250° C temperature range may be assigned to coordinated water molecules in the metal chelates.

For the 1:1 (M:Ligand) chelates of Cu(II) and Zn(II) with the ligand  $H_3L^7$  and the 2:1 (M:Ligand)  $[Co_2(L^5)Cl_2(H_2O)_2].H_2O$  chelate, the weight losses are about 4.40, 3.20 and 3.60%, respectively, and this can be attributed to the loss of one water molecule that is eliminated at a temperature up to 160 C. The weight losses of 9.20 and 11.60% for the 2:1 (M:Ligand)  $[Fe_2(HL^6)(OH_2(H_2O)_6].3H_2O$  and  $[Cu_2(H_2L^4)Cl_2(H_2O)_2].5H_2O$  chelates represent the removal of three and five water molecules, respectively, within the 140-160° C temperature range. On the other hand, the weight losses for the  $[Cu(H_2L^7)(OH)(H_2O)].H_2O$ ,  $[Zn(H_2L^7)(OH)(H_2O)].H_2O$ , and  $[Mn(HL^1)(OH)(H_2O)]$ 

chelates amounting to 4.00, 3.50, and 5.00%, respectively, may be assigned to the removal of one coordinated water molecule within the 150-250° C temperature range. Moreover, the weight losses in case of the  $[Co_2(L^5)Cl_2(H_2O)_2]$ . H<sub>2</sub>O and  $[Cu_{2}(H_{2}L^{4})Cl_{2}(H_{2}O)_{2}].5H_{2}O$  chelates are 6.80 and 4.50%, respectively, due to two coordinated water molecules within the 150-250 C temperature range. The weight loss of the [Fe<sub>2</sub>(HL<sup>6</sup>)(OH)<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>].3H<sub>2</sub>O chelate is 16.20%, corresponding to six coordinated water molecules in the temperature range 140-250° C. From TG curves, one can suggest the formation of the metal oxide as the end product at a temperature ranging from 500-1000° C. Also, the percentages of the metal oxide found experimentaly for  $[Cu(H_{1}L^{7})(OH)(H_{2}O)]$ , H<sub>2</sub>O,  $[Zn(H_{1}L^{7})(OH)(H_{2}O)]$ , H<sub>2</sub>O and  $[Mn(HL^{1})(OH)(H_{2}O)]$ amounted to 18.00, 18.10 and 20.80%, respectively, and the corresponding calculated values are 17.39, 17.41 and 21.80%, respectively. The metal oxide percentages of the  $[Co_2(L^5)Cl_2(H_2O)_2]$ . H<sub>2</sub>O,  $[Fe_2(HL^6)(OH)_2(H_2O)_6]$ . 3H<sub>2</sub>O and  $[Cu_2(H_2L^8)Cl_2(H_2O)_2]$ chelates were found to be 26.00, 24.00 and 34.80%, respectively, which are in good agreement with the calculated ones for the suggested formulas in Table V. The TG curve of the  $[Cu_2(H_2L^4)Cl_2(H_2O)_2]$ .5H<sub>2</sub>O chelate shows that the residue is a mixture of As<sub>2</sub>O<sub>3</sub> and metal oxide. The following equations may be suggested for the thermal decomposition of the 1:1 chelates with Mn, Cu and Zn (L = Ligand)

 $\begin{bmatrix} MH_{k-1}L(OH)(H_2O) \end{bmatrix} H_2O \xrightarrow{up \text{ to } 160^\circ \text{ C}} \begin{bmatrix} MH_{k-1}L(OH)H_2O \end{bmatrix} + H_2O$   $\begin{bmatrix} MH_{k-1}L(OH)H_2O \end{bmatrix} \xrightarrow{160-250^\circ \text{ C}} \begin{bmatrix} MH_{k-1}L(OH) \end{bmatrix} + H_2O$   $\begin{bmatrix} MH_{k-1}L(OH) \end{bmatrix} \xrightarrow{250-400^\circ \text{ C}} \text{ Unstable intermediate}$   $\xrightarrow{>400^\circ \text{ C}} \text{ Metal oxide (MnO_2, CuO and ZnO)}$ 

Whereas, for the 2:1 (M:Ligand) Fe, Co and Cu chelates, the following equations may be suggested:

$$[M_{2}H_{k-2}LX_{2}(H_{2}O)_{n}].yH_{2}O \xrightarrow{up to 160^{\circ}C} [M_{2}H_{k-2}LX_{2}(H_{2}O)_{n}] + yH_{2}O$$

$$[M_{2}H_{k-2}LX_{2}(H_{2}O)_{n}]. \xrightarrow{160-250^{\circ}C} [M_{2}H_{k-2}LX_{2}] + nH_{2}O$$

$$[M_{2}H_{k-2}LX_{2}] \xrightarrow{250-400^{\circ}C} Unstable intermediate$$
intermediate
$$\xrightarrow{>400^{\circ}C} Metal \text{ oxide } (Fe_{2}O_{3}, CoO \text{ and } CuO)$$

$$(X = OH, \text{ or } CI, n = 2 \text{ or } 6 \text{ and } y = 1, 3 \text{ or } 5)$$

| Table V. Thermogravimetric An                                                                        | alysis | Results of | f Metal Cl | ielates with {          | 8-(Aryla | izo)chrom | ones    |                         |         |            |           |
|------------------------------------------------------------------------------------------------------|--------|------------|------------|-------------------------|----------|-----------|---------|-------------------------|---------|------------|-----------|
| Chelate                                                                                              | M:L    | Water of I | hydration  | No. of H <sub>2</sub> O | Temp     | Wat       | er of   | No. of H <sub>2</sub> O | Temp    | Metal oxic | le residu |
|                                                                                                      |        | weigh      | it loss    | molecules               | dn (C)   | coordi    | ination | molecules               | (°C)    | %)         | (9        |
|                                                                                                      |        | ~~~~       |            |                         | to       | wcigl     | ht loss |                         | up to   |            |           |
|                                                                                                      |        |            |            |                         |          | 0`        | ~       |                         |         |            |           |
|                                                                                                      |        | Found      | (Calcd)    |                         |          | Found     | (Calcd) |                         |         | Found      | (Calcd)   |
| [Co <sub>2</sub> (L <sup>5</sup> )Cl <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ].H <sub>2</sub> O | 2:1    | 3.60       | (3.18)     |                         | 150      | 6.80      | (6.37)  | 2                       | 150-250 | 26.00      | (26.54)   |
| $[Fe_2(HL^6)(OH)_2(H_2O)_6].3H_2O$                                                                   | 2:1    | 9.20       | (8.36)     | m<br>m                  | 140      | 16.20     | (16.72) | 9                       | 140-250 | 24.00      | (24.76)   |
| [Cu(H <sub>2</sub> L <sup>7</sup> )(OH)(H <sub>2</sub> O)].H <sub>2</sub> O                          | 1:1    | 4.40       | (3.72)     | -                       | 150      | 4.00      | (3.72)  | 1                       | 150-210 | 18.00      | (17.39)   |
| $[Zn(H_2L^7)(OH)(H_2O)].H_2O$                                                                        | 1:1    | 3.20       | (3.71)     |                         | 150      | 3.50      | (3.71)  | 1                       | 150-250 | 18.10      | (17.49)   |
| [Mn(HL <sup>1</sup> )(OH)(H <sub>2</sub> O)]                                                         | 1:1    | 1          |            | 1                       | 1        | 5.00      | (4.51)  | 1                       | 150-250 | 20.80      | (21.80)   |
| $[Cu_2(H_2L^4)Cl_2(H_2O)_2].5H_2O$                                                                   | 2:1    | 11.60      | (11.90)    | s.                      | 160      | 4.50      | (4.76)  | 2                       | 160-250 | 34.80      | (34.12)   |

do/onohe V / 0 dtie tol Chalate f NA. 1 ρ . Ē 11 -Ĥ

<sup>a</sup> L = ligand



Fig. 2. Suggested Structure of the 1:1 Complexes of Fe(II) lons with the ligands  $H_2L^1$ and  $H_3L^7$  (X = H, Y = CH<sub>3</sub>) and (X = COOH, Y = CHO), respectively.



Fig. 3. Suggested Structures of the Chelates of the Metal Ions Co(II), Ni(II), Cu(II) and Pd(II) with the ligands H<sub>4</sub>L<sup>1-3, 5-8</sup>.



M = Mn or Zn, X = H, OH or AsO(OH)<sub>2</sub>, Y = CHO M = Mn or Zn, X = H, OH or COOH, Y = CH<sub>3</sub>

Fig. 4. Suggested Structures of the Mn(II) and Zn (II) Chelates with  $H_{t}L^{1-3, 5, 6, 8}$ 



Fig. 5. Suggested Structural Formula of the Binuclear Complex of Fe<sub>2</sub>-HL<sup>6</sup>.

#### **Geometrical Structures of the Metal Chelates**

It is suggested, based on the elemental analysis data, thermogravimetric analysis, spectral data and magnetic moment measurements of the metal chelates of 8-(arylazo)chromones ( $H_k L^{1-8}$ ) that the geometrical structures of these chelates are as illustrated below.



- Z = OH or Cl
- $M = Ni, X = COOH \text{ or } AsO(OH)_2$
- M = Co, X = H or OH
- $M = Cu, X = H, OH \text{ or } AsO(OH)_2$

Z = OH or Cl  $M = Ni \text{ and } Cu, X = AsO(OH)_2$  $M = Pd, X = H \text{ or } AsO(OH)_2$ 



Z = OH or CI, M = Co or Pd

Fig. 6. Suggested Structural Formula of the  $Co_2-H_{k,2}L^{5, 6}$ ,  $Ni_2-H_{k,2}L^{7, 8}$ ,  $Cu_2-H_{k,2}L^{5, 6, 8}$ ,  $Co_2-HL^3$ ,  $Ni_2-H_2L^4$ ,  $Cu_2-H_2L^4$  and  $Pd_2-H_{k,2}L^{1, 3, 4}$  Chelates.



 $Y = CH_3$  or CHO; M = Mn, Co and Zn,  $X = AsO(OH)_2$ ; Z = OH or Cl Fig. 7. Suggested Structure of the Mn(II), Co(II) and Zn(II) Chelates with  $H_kL^{3.4.7}$ .

The electronic spectral data and magnetic moment values of the 1:1 (M:Ligand) Fe(II) chelates with  $H_3L^7$  and  $H_2L^1$  show an octahedral geometry e.g., Fig. 2.

The stereochemistry, electronic spectral and magnetic data of the Co(II), Ni(II), Cu(II), and Pd(II) with the ligands  $H_k L^{1-3, 5-8}$  are in good agreement with a square planar structure e.g., Fig. 3

A tetrahedral configuration structure [see Fig. 4] was suggested for Mn(II) and Zn(II) chelates with  $H_{\nu}L^{1-3, 5, 6, 8}$  based on their electronic spectra.

The electronic spectrum of the binuclear chelate of  $Fe_2$ -HL<sup>6</sup> shows an octahedral geometry, Fig. 5.

The electronic spectral data of the  $\text{Co}_2\text{-H}_{k-2}\text{L}^{5.6}$ ,  $\text{Ni}_2\text{-H}_{k-2}\text{L}^{7.8}$ ,  $\text{Cu}_2\text{-H}_{k-2}\text{L}^{5.6.8}$ ,  $\text{Co}_2\text{-HL}^3$ ,  $\text{Ni}_2\text{-HL}^4$ ,  $\text{Cu}_2\text{-H}_2\text{L}^4$  and  $\text{Pd}_2\text{-H}_{k-2}\text{L}^{1.3.4}$  chelates show the squarc-planar configuration e.g. Fig. 6.

The electronic spectral data of the divalent Mn, Co and Zn chelates with  $H_3L^7$  and  $H_kL^{3-4}$  exhibit tetrahedral structure e.g., Fig. 7.

The most important conclusions drawn from this investigation is that the monobasic bidentate ligands are coordinated to the metal ion through the chromone carbonyl at position 4 and the oxygen anion in position five in the 1:1 chelates of the 8-(arylazo)chromones ( $H_k L^{1-8}$ ). In the binuclear chelates, the ligands behave as dibasic tetradentates and chelate to the metal ions through the chromone carbonyl in position

four and oxygen anion in position five (see Figs.1-7). In addition, chelation may take place at the formyl carbon in position six and the oxygen anion in position seven or through the azo group and any acidic substituent positioned <u>ortho</u> to it in the arylazo moiety. Finally, chelation could also occur through the azo group and oxygen anion in position seven.

#### **REFERENCES**

- M. Nakamura and A. Murata, Bunseki Kagaku, <u>22</u>, 1474 (1973); Chem. Abstr., <u>80</u>, 70811a (1974).
- A. Murata and T. Ito, Bunseki Kagaku, <u>18</u>, 1131(1969); Chem. Abstr., <u>72</u>, 50591 (1970).
- 3. K. M. Ibrahim and M. M. Bekheit, Transition Met. Chem., 13, 230 (1988).
- A. M. EL-Roudi, Bull. Fac. Sci. Assiut Univ. (Egypt), <u>18</u>, 77 (1989); Chem. Abstr., <u>114</u>, 113962x (1991).
- A. M. Abd El-Gaber, S.M. Hassan, M. EL-Shabasy and A. M. El-Roudi, Synth. React. Inorg. Met -Org. Chem., 21, 1265 (1991).
- Y. M. Issa, A. L. EL-Ansary, O. E. Sherif and M. M. EL-Ajily, Asian J. Chem., <u>9</u>, 301 (1997).
- "Vogel's Textbook of Practical Organic Chemistry" 5th Ed., Longman, London, UK (1989).
- 8. A. Schonberg, N. Badran and A. Starowsky, J. Chem. Soc., 75, 4992 (1953).
- 9. A. M. G. Macdonald and P. Sirichanya, Microchem. J., 14, 199 (1969).
- F. J. Welcher, "The Analytical Uses of Ethylenediaminetetraacetic Acid" D. Van Nostrand, New York (1958)
- M. M. Shallaby, M. M. Mostafa and M. M. Bekheit, J. Inorg. Nucl. Chem., <u>41</u>, 267 (1978).
- J. R. Ferraro, "Low Frequency Vibrations of Inorganic and Coordination Compounds" Plenum Press, New York (1971).
- 13. J. R. Ferraro and W. R. Walker, Inorg. Chem., 4, 1382 (1985).
- J. A. Faniran, K. S. Patel and L. O. Nelson, J. Inorg. Nucl. Chem., <u>38</u>, 77 (1976).
- 15. M. Nicolini, C. Pecile and A. Turco, Coord. Chem. Rev., 1, 133 (1966).

- A. K. Banerjee, B. Mohapatra, N. Dhar and S. K. Roy, Indian. J.Chem. Soc., <u>73</u>, 189 (1996).
- 17. B. B. Mohapatra and S. K. Pujari, Indian. J. Chem., 22A, 525 (1983).
- 18. F. A. Cotton and D. M. L. Goodgame, J. Am. Chem. Soc., 83, 4690 (1961).
- W. L. Jolly, "Principles of Inorganic Chemistry", McGraw Hill, London, P. 272 (1976).

| Received: | 28 May 1997 |  |
|-----------|-------------|--|
| Accepted: | 27 May 1999 |  |

Referee I: J. W. Owens Referee II: P. R. Singh