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Abstract:  Asymmetric reduction of enones la-g using either a stoichiometric or catalytic 
amount of oxazaborolidine 3 proceeds to give the synthetically useful allylic cycloalkanols 
2a-g in 83-96% e.e. © 1997 Elsevier Science Ltd. All rights reserved. 

The asymmetric reduction of ketones represents an important method for the synthesis of enantio- 
merically pure alcohols.l While the versatility of this process has been enhanced by new additions to 
the battery of reagents currently available, it is important that the demands and constraints associated 
with different carbonyl components are also properly defined. 2 Enones 1, based on cycloalkanones, 
represent a class of prochiral ketones that have not been widely studied 3 as substrates for asymmetric 
reduction. This is in spite of the ready availability of the requisite enones and the obvious potential 
offered by the product allylic alcohols 2. In this paper we describe the asymmetric reduction of a 
structurally diverse series of enones based on general structure 1 with the Corey oxazaborolidine 34-6 
as the choice of asymmetric reductant. The reactivity of enones 1 towards 3 has been assessed and 
optimised (Scheme 1), and the use of 3 under catalytic conditions is also reported. 
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Scheme 1. 

The synthesis of enones l a - e  was carried out as described previously 7 and the aza variants I f  and 
lg  were prepared via an intramolecular aldol condensation. 8 Initial efforts focused on identifying 
optimal conditions for ketone reduction in terms of temperature ( -20°C vs. +20°C vs. +40°C) and 
the rate of addition of the enone substrate to the reaction mixture containing 3 (over 5 min vs. 35 
min vs. 60 min). Using enones l a  and lb,  reactions were carried out on a small scale (0.2 mmol 
of enone) with a stoichiometric amount of oxazaborolidine 3, and the resulting allylic alcohols, 2a 
and 2b respectively, were analysed to determine % enantiomeric excess. 9 Highest selectivities were 
observed when reduction was conducted via a slow (35 min) addition of enone to the reductant 3 at 
-20°C in CH2C12 .10 These optimised conditions were then applied the full range of enones available 
and the results obtained (using a stoichiometric amount of 3) are summarised in Table 1.1 l 

In general terms, good levels of  asymmetric induction were observed and, in the case of allylic 
alcohol 2b, the absolute stereochemical course of the reaction has been established. The enantiomer 
of alcohol 2b has been described in the literature and our assignment is based on correlation with the 
available data: 2b [a]D 22 +35.8 (c 1.2, CHCI3); e n t - 2 b  lit. 3b [¢X]D 20 -35 .2  (c 1.2, CHCI3). It should 

* Corresponding author. Emaii: T.Gailagher@Bristol.ac.uk 

673 



674 A. F. SIMPSON et  al. 

Table 1. 

Enone Allylic Alcohol Yield % e.e. 

o OH 

la 2a 

o OH 

lb 2b 

lc 2c 

o OH 

ld 2d 

o OH 

~ C T H I 5  ~ C T H t 5  

le  2e 

If  2f 

73% 94% 

76% 91% 

98% 87% 

65 % 88 % 

93 % 94 % 

50 % 88 % 

82 % >95 % 

other 
enantiomer 

(lg (2g not observed 

also be noted that formation of (R)-2b from lb  is also consistent with sense of asymmetric induction 
predicted by the Corey mechanistic model. 12 It should, however, be made clear that stereochemical 
assignments (R v s .  S) for the other allylic alcohols produced in this current study (as shown in Table 1) 
have not yet been made. 13 

The efficiency associated with reduction of this class of prochiral enones using a catalytic amount 
of oxazaborolidine 3 has been evaluated. Addition of the cyclopentyl-based enone la  (300 mg, 1.75 
mmol) in CH2C12 (6 mL) over 5 h to oxazaborolidine 3 (0.34 mmol, 20 tool%) in CH2C12 (0.6 mL) 
containing Me2S.BH3 (1.75 mmol) at -20°C gave, after workup, allylic alcohol 2a in 81% yield and 
96% e.e. (as judged by HPLC).Ii Under the same conditions the sterically more demanding enone le  
gave alcohol 2e in 90% yield but in a slightly reduced 83% e.e. 1| 

In summary, exocyclic enones 1 are reduced efficiently using the Corey oxazaborolidine 3 to give 
the corresponding allylic alcohols 2. There are, in particular, a number of stereochemical issues still 
outstanding in this area which will be addressed. However, the value of allylic alcohols 2 should 
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be appreciated given that a variety of useful transformations involving, for example, addition or 
rearrangement reactions associated with the alkenyl moiety, should be achievable with a high degree 
of stereochemical control. 
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