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Abstract: The reaction of alkynyl sulfoximines with in situ pre-
pared organic azides in water–dichloromethane under reflux affords
sulfoximidoyl-substituted triazoles by Huisgen 1,3-dipolar cycload-
dition.
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Sulfoximines have been used as chiral auxiliaries,1 build-
ing blocks of pseudopeptides,2 and chiral ligands.3 For
their synthesis various approaches have been described.4

Of particular interest are heterocyclic systems, since they
might eventually be applied as bioactive compounds with
appropriate solubility properties.5 Recently, we reported
on the synthesis of N-(1H)-tetrazole derivatives 1 starting
from N-cyano sulfoximines 2.6,7 Key step was a metal-
catalyzed 1,3-dipolar cycloaddition with sodium azide in
the presence of ZnBr2. Realizing the importance of 1,2,3-
triazoles as agrochemicals, corrosion inhibitors, dyes, op-
tical brighteners, and pharmaceuticals,8 we now focused
our attention on the synthesis of sulfoximine derivatives
3, which we envisaged to be accessible by Huisgen 1,3-di-
polar cycloaddition reaction between organoazides and
sulfoximidoyl alkynes 4 (Scheme 1). The latter com-
pounds have recently been applied as starting materials in
regio- and stereoselective copper-catalyzed carbozinca-
tion reactions.9

Scheme 1 Retrosynthetic approaches towards heterocycles bearing
sulfoximidoyl substituents based on 1,3-dipolar cycloadditions

Sulfoximidoyl alkynes 4 were prepared by copper-cata-
lyzed imination of the corresponding sulfoxides with
PhI=NTs.10,11 For the initial screening and optimization,
(N-tosyl)-tolylhexynyl sulfoximine (4a)12 was chosen as
starting material. Albeit in only low yield, the corre-
sponding triazole derivative 3a was obtained, when mix-
tures of 4a and benzyl azide (1.5 equiv) were heated to
100 °C for 3 hours in toluene, water, or a 3:1 mixture of
water and dichloromethane (Table 1, entries 1–3). The
molecular structure of the product was determined by
NMR analysis, and 1H-NOESY spectroscopy confirmed
the regioselectivity of the triazole formation.13 Gratifying-
ly, a few reaction modifications allowed to significantly
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Table 1 Optimization of the Reaction Conditions of the Triazole 
Synthesisa

Entry BnBr 
(equiv)

NaN3 
(equiv)

Solvent Time 
(h)

Yield of 3a
(%)b

1 BnN3 (1.5) Toluenec 3 7

2 BnN3 (1.5) H2O 3 31

3 BnN3 (1.5) H2O–CH2Cl2
d 3 19

4 2 1.5 H2O 3 35

5 2 1.5 H2O 20 63

6 3 3 H2O 3 48

7 6 6 H2O 3 58

8 15 12 H2O 3 59

9 18 18 H2O 3 56

10 6 6 H2O–CH2Cl2
d 3 61

11 15 12 H2O–CH2Cl2
d 3 68

12 18 18 H2O–CH2Cl2
d 3 68

13 15 12 H2O–CH2Cl2
d 8 57

14 24 24 H2O–CH2Cl2
d 3 67

a Reaction conditions: see ref. 14.
b Isolated by column chromatography.
c Performed at 100 °C.
d Ratio of H2O–CH2Cl2 = 3:1.
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increase the yield of 3a.14 Thus, finally, performing the re-
action in water–dichloromethane with benzyl azide
formed in situ from benzyl bromide and sodium azide led
to triazole 3a in 68% yield (Table 1, entry 11).

For achieving this result, the reagent amounts had to be in-
creased to 15 and 12 equivalents (for BnBr and NaN3, re-
spectively). Using a larger excess of reagents or extending
the reaction time had no impact or even reduced the yield
of 3a (entries 12 and 13, respectively). Without the organ-
ic cosolvent (in pure water) the maximal yield of 3a
reached 63% (Table 1, entry 5). Interestingly, this result
was achieved with a combination of only 2 equivalents of
BnBr and 1.5 equivalents of NaN3. Entries 4 and 5 in
Table 1 reveal that an extended reaction time (20 h) was
crucial for the high yield in this case. An increase in the
reagent quantity had also benefical effects on the product
yield (Table 1, entries 6–9).

For a successful cycloaddition reaction, it was essential to
heat the reaction mixture. The cycloaddition did not occur
at temperatures below 50 °C, and at 80 °C, the yield of 3a
was only 11% (under the reaction conditions as described
in Table 1, entry 11).

Next, the substrate scope of the cycloaddition reaction
was examined. As the data in Table 2 (entries 1–4) show,
various azides reacted with 4a analogously, providing the
corresponding triazoles (3b–e) in moderate yields (of up
to 52%). Noteworthy is the fact that also other azides than
benzyl azides were applicable. (2-Naphthyl)methyl bro-
mide could not be converted (entry 5).

In reactions between (in situ formed) benzyl azide and
various sulfoximines (Table 2, entries 6–9), a strong reac-

tivity dependance on the substitution pattern of the sulfur
reagent became apparent. Whereas (N-tosyl)-1-hexynyl-
methylsulfoximine (4b) and (N-tosyl)-3-methoxypropy-
nyl-phenylsulfoximine (4c) reacted well to give the corre-
sponding triazoles 3g and 3h in 73% and 51% yield,
respectively, (N-tosyl)-2-tert-butylethynyl-phenylsulfox-
imine (4d) and (N-tosyl)-2-phenylethynyl-phenylsulfox-
imine (4e) proved unreactive. Presumably, steric as well
as electronic factors hampered their conversion.

In summary, we have developed the synthesis of sulfox-
imidoyl-substituted triazoles by Huisgen 1,3-dipolar cy-
cloaddition reactions. Starting from alkynyl sulfoximines
and organoazides prepared in situ from organobromides
and sodium azide, the products can be obtained in yields
up to 73% after a short reaction time (3 h). Educts bearing
various substituents are tolerated leading to triazole deriv-
atives with potential bioactivities. Our current studies are
focused on an expansion of the substrate scope combined
with further process optimizations to achieve higher prod-
uct yields.
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Table 2 Substrate Scope of the Cycloaddition Reactiona

Entry R1 R2 Sulfoximine R3 Product Yield of 3 (%)

1 4-MeC6H4 Bu 4a 4-NO2Bn 3b 52

2 4-MeC6H4 Bu 4a 4-MeOBn 3c 41

3 4-MeC6H4 Bu 4a Ph(CH2)2 3d 51

4 4-MeC6H4 Bu 4a Ph(CH2)3 3e 39

5 4-MeC6H4 Bu 4a 2-Naphth-CH2 3f 0

6 Me Bu 4b Bn 3g 73

7 Ph CH2OMe 4c Bn 3h 51b

8 Ph t-Bu 4d Bn 3i 0

9 Ph Ph 4e Bn 3j 0

a Reaction conditions: sulfoximine 4 (1.0 equiv), NaN3 (12.0 equiv), RBr (15.0 equiv) in H2O–CH2Cl2 (3:1) at 100 °C for 3 h.
b Determined by NMR.
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Figure 1

(14) General Procedure for the Cycloaddition Reaction
Under vigorous stirring a mixture of NaN3 (12 equiv) and the 
corresponding bromide (15 equiv) was heated to reflux in 
H2O (0.7 M) for 1 h. Then, a solution of sulfoximine 4 (1 
equiv) in CH2Cl2 (0.08 M) was added dropwise. After 3 h at 
100 °C under reflux and stirring, the product was extracted 
with CH2Cl2 and purified by flash column chromatography. 
As representative example, the analytical data for 1-benzyl-
5-butyl-4-(N-tosyl)-(4-methylphenylsulfonimidoyl)-1H-
1,2,3-triazole (3a) obtained from the reaction of sulfoximine 
4a with benzyl azide are given. Colorless oil (68%); 
chromatography: EtOAc–pentane (1:3). 1H NMR (400 
MHz, CDCl3): d = 0.79 (t, J = 7.0 Hz, 3 H), 1.21–1.29 (m, 4 
H), 2.37 (s, 3 H), 2.41 (s, 3 H), 2.76–2.85 (m, 1 H), 2.93–3.02 
(m, 1 H), 5.44 (d, J = 15.5 Hz, 1 H), 5.49 (d, J = 15.5 Hz, 1 
H), 7.14–7.18 (m, 2 H), 7.20 (d, J = 8.0 Hz, 2 H), 7.31–7.35 
(m, 5 H), 7.80 (d, J = 8.3 Hz, 2 H), 7.98 (d, J = 8.5 Hz, 2 H). 
13C NMR (100 MHz, CDCl3): d = 13.6 (CH3), 21.5 (CH3), 
21.7 (CH3), 22.7 (CH2), 23.0 (CH2), 30.5 (CH2), 52.5 (CH2), 
126.5 (CH), 127.2 (CH), 128.2 (CH), 128.7 (CH), 129.0 
(2 × CH), 129.9 (CH), 133.5 (C), 135.2 (C), 140.4 (C), 141.4 
(C), 141.9 (C), 142.6 (C), 145.4 (C). IR (CHCl3): n = 2959 
(m), 1454 (m), 1318 (m), 1243 (m), 1096 (s), 1018 (m), 757 
(s), 540 (m). MS (CI): m/z (relative intensity) = 523 (6) [M 
+ H]+. Anal. Calcd for C27H30N4S2O3: C, 62.04; H, 5.79; N, 
10.72. Found: C, 62.06; H, 5.81; N, 11.14.
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