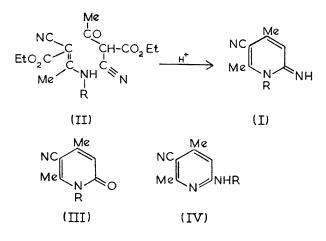
J. Chem. Soc. (C), 1969

Cyclic Amidines. Part XXII.¹ 1-Aryl-1,2-dihydro-2-iminopyridines

By R. J. Grout, B. M. Hynam, and M. W. Partridge,* The University, Nottingham

Interaction of ethyl 2-cyano-3-oxobutyrate and an arylamine salt yields a 1-aryl-5-cyano-1,2-dihydro-2-iminopyridine and an ethyl 3-arylamino-2-cyanocrotonate. The 1-aryl-2-iminopyridines are hydrolysed by water to 1-aryl-2-pyridones and with alkali undergo the Dimroth rearrangement to 2-arylaminopyridines. Ethyl 3-arylamino-2-cyanocrotonates are readily cyclised to 3-cyanoquinolines.


SYNTHESES of acyclic amidines have been extended to the production of 2-aminoquinolines.² The application of analogous reactions leading to the hitherto unknown 1-aryl-1,2-dihydro-2-iminopyridines is now reported.

Ethyl 2-cyano-3-oxobutyrate ³ and an arylammonium toluene-p-sulphonate at 160° gave a readily separable mixture of a 1-aryl-1,2-dihydro-2-iminopyridine (I;

¹ Part XXI, H. G. Dean, R. J. Grout, M. W. Partridge, and H. J. Vipond, *J. Chem. Soc.* (C), 1968, 142. R = Ph, p-MeC₆H₄, p-MeO·C₆H₄, or p-ClC₆H₄) and an ethyl 3-arylamino-2-cyanocrotonate (II; R = Ph, p-MeC₆H₄, p-MeO·C₆H₄, or p-ClC₆H₄); with p-nitroanilinium toluene-p-sulphonate only the aminocrotonate (II; R = p-O₂N·C₆H₄) was obtained. The structure assigned

² R. Hardman and M. W. Partridge, J. Chem. Soc., 1954, 3878; 1955, 510; 1958, 614.

^a I. Hori and H. Midorikawa, Sci. Papers Inst. Phys. Chem. Res., Tokyo, 1962, 56, 216 (Chem. Abs. 1963, 58, 3311). to the dihydropyridine (I; R = Ph) followed from its hydrolysis by boiling water to the corresponding pyridone (III; R = Ph) and from its spectroscopic properties; its n.m.r. spectrum showed two methyl peaks as singlets at τ 7.92 and 7.80 and further peaks at τ 4.30 (1H, s,

exchangeable), 3.72 (1H, s), and 2.6 (5H, m) and its i.r. spectrum showed v_{max} . 2170 (C=N), 3310 (NH), and 1640 (C=N) cm.⁻¹. Other 1,2-dihydro-2-iminopyridines were similarly hydrolysed to the pyridones (III; R = p-MeC₆H₄, p-MeO·C₆H₄, or p-ClC₆H₄); these showed i.r. spectral bands at 1680—1690 (CO) and 2180—2210 (CN) cm.⁻¹. As expected, the aminocrotonate (II; R = Ph) exhibited i.r. bands for NH and hydrogen-bonded carbonyl.

The aminocrotonate (II; R = Ph) and ethyl 2-cyano-3-oxobutyrate, with toluene-p-sulphonic acid, yielded the 1,2-dihydro-2-iminopyridine (I; R = Ph), but, in contrast to the cyclisation of β -aminocrotononitrile⁴ to 2-amino-5-cyano-4,6-dimethylpyridine, no 1,2-dihydro-2-iminopyridine was detectable when this aminocrotonate (II; R = Ph) was heated at 160°, alone or with toluene-p-sulphonic acid. Accordingly, it seems probable that, in the formation of the 1-aryl-1,2-dihydro-2iminopyridine (I) from an arylammonium toluene-psulphonate and ethyl 2-cyano-3-oxobutyrate, aminocrotonate (II) formation preceded the steps involving elimination of ethoxycarbonyl, condensation, and amidine formation. At 250-260°, the aminocrotonates (II; R = Ph, $p-MeC_6H_4$, $p-MeO \cdot C_6H_4$, $p-ClC_6H_4$, or $p-O_2N-$ C₆H₄) behaved similarly to 3-arylamino-2-ethoxycarbonylacrylates⁵ to give 3-cyanoquinolines in good yield.

Use of the potentially more reactive t-butyl 2-cyano-3-oxobutyrate ⁶ in the foregoing reaction did not increase the yield of 1,2-dihydro-2-iminopyridine (I; R = Ph). Replacement of the arylamine salt with ammonium toluene-*p*-sulphonate gave a low yield of the aminopyridine (IV; R = Ph), but with the n-butylammonium salt, no pyridine derivative was obtained. In the

⁴ E. Bullock and B. Gregory, Canad. J. Chem., 1965, 43, 332.
⁵ R. G. Gould, jun. and W. A. Jacobs, J. Amer. Chem. Soc., 1939, 61, 2890.

absence of toluene-*p*-sulphonic acid, ethyl 2-cyano-3-oxobutyrate acetylated aniline.

Failure of 5-cyano-1,2-dihydro-2-imino-1-methylpyridine to undergo a Dimroth rearrangement in alkali has been ascribed ⁷ to the electron-withdrawing effect of the cyano-group being insufficient to facilitate isomerisation. Evidently the augmentation of this effect by a 1-aryl substituent is adequate, since 1-aryl-5-cyano-1,2-dihydro-2-iminopyridines were readily isomerised by alkali to 2-arylaminopyridines (IV; R = Ph, $p-MeC_6H_4$, $p-MeO\cdotC_6H_4$, or $p-ClC_6H_4$). The n.m.r. spectrum of the p-chlorophenyl derivative was consistent with the structure (IV; $R = p-ClC_6H_4$), having two methyl peaks at τ 7.65 and 7.45, and signals for four aromatic protons at τ 2.7, an exchangeable proton at τ 3.10, and a pyridine proton at τ 3.55 (s).

EXPERIMENTAL

The n.m.r. spectra were obtained with a Perkin-Elmer R10 spectrometer operating at 60 Mc./sec. for solutions in deuteriochloroform with tetramethylsilane as internal standard.

Interaction of Anilinium Toluene-p-sulphonate and Ethyl 2-Cyano-3-oxobutyrate.—The melt obtained when anilinium toluene-p-sulphonate (53 g.) and ethyl 2-cyano-3-oxobutyrate (62 g.) were heated together at 160° for 90 min. was digested in boiling acetone (120 ml.) and gave 5-cyano-1,2-dihydro-2-imino-4,6-dimethyl-1-phenylpyridinium toluene-p-sulphonate (18.5 g., 24%) which gave needles, m.p. 257-260° (from n-butanol) (Found: C, 64.0; H, 5.5; N, 10.5. C₂₁H₂₁N₃O₃S requires C, 63.8; H, 5.4; N, 10.6%). The base separated from benzene-light petroleum (b.p. 100-120°) as prisms, m.p. 141-142° [Found: C, 74.9; H, 5.6; N, 19.0%; M (potentiometric titration), 224. $C_{14}H_{13}N_3$ requires C, 75.3; H, 5.9; N, 18.8%; M, 223]. Evaporation of the acetone mother liquor and crystallisation of the residue from aqueous ethanol afforded ethyl 3-anilino-2-cyanocrotonate (14.2 g., 36%) as prisms, m.p. 83-84°, $v_{max.}$ (CCl₄) 1660 (CO, hydrogen-bonded) and 2950-3200 (NH) cm.⁻¹, (Found: C, 67·3; H, 6·4; N, 11·8. C₁₃H₁₄N₂O₂ requires C, 67.8; H, 6.1; N, 12.2%).

A reaction time of 18 hr. gave 14% of the dihydropyridine and with t-butyl 2-cyano-3-oxobutyrate the yield of the dihydropyridine was 17%. When ethyl 3-anilino-2-cyanocrotonate (1 mol. of which 63% was recovered), ethyl 2-cyano-3-oxobutyrate (1 mol.), and toluene-*p*-sulphonic acid (1 mol.) were heated at 160° for 1 hr., the yield of dihydropyridine was 18%; at 210° , no recognisable product was obtained.

Dihydropyridines and ethyl arylaminocrotonates recorded in Tables 1 and 2 were similarly prepared.

3-Cyano-2,4-dimethyl-1-phenyl-6-pyridone.— 5-Cyano-1,2dihydro-2-imino-4,6-dimethyl-1-phenylpyridine (0.5 g.) was boiled in water until ammonia ceased to be evolved (6 hr.). The precipitated pyridone (0.3 g.) formed plates, m.p. 166—167° [from benzene-light petroleum (b.p. 100— 120°)] (Found: C, 75·1; H, 5·3; N, 12·1. $C_{14}H_{12}N_2O$ requires C, 75·0; H, 5·4; N, 12·5%).

The following 1-arylpyridones were prepared similarly:

7 D. J. Brown and J. S. Harper, J. Chem. Soc., 1965, 5542.

⁶ H. Dahn and H. Hauth, Helv. Chim. Acta, 1959, 42, 1214.

J. Chem. Soc. (C), 1969

3-cyano-2,4-dimethyl-1-p-tolyl-6-pyridone (70%), plates, m.p. 240—241° [from benzene-light petroleum (b.p. 100—120°)] (Found: C, 75·7; H, 5·6; N, 11·9. $C_{15}H_{14}N_2O$ requires C, 75·6; H, 5·9; N, 11·8%); 3-cyano-1-p-methoxyphenyl-2,4-dimethyl-6-pyridone (58%), prisms, m.p. 169—170° [from benzene-light petroleum (b.p. 100—120°)] (Found: C, 70·5; H, 5·6; N, 10·9. $C_{15}H_{14}N_2O_2$ requires C, 70·9; H, 5·6; N, 11·0%); and 1-p-chlorophenyl-3-cyano-2,4-dimethyl-6-pyridone, prisms, m.p. 243—244° [from benzenelight petroleum (b.p. 100—120°)] (Found: C, 64·9; H, 4·3; Aniline (1 mol.) and ethyl 2-cyano-3-oxobutyrate (1 mol.), heated together at $130-140^{\circ}$ for 4.5 hr., furnished acetanilide ($71_{\%}$), m.p. and mixed m.p. 114° . Equimolecular quantities of aniline and the ester in ethanol at room temperature for 5 days furnished acetanilide ($25_{\%}$).

3-Cyano-4-hydroxy-2-methylquinoline.—Ethyl 3-anilino-2cyanocrotonate (1 g.) was heated in boiling diphenyl ether (10 ml.) for 90 min.; the cooled solution deposited the quinoline (0.8 g.) which formed needles, m.p. $360-365^{\circ}$ (decomp.) (from dimethylformamide) (Found: C, 71.4; H,

TABLE 1	
1-Aryl-5-cyano-1,2-dihydro-2-iminopyridines	(I)

	Yield	Solve for		Found (0/)				Req	Required (%)		
R	(%)	M.p.	recryst.*	С	\mathbf{H}	N	Formula	С	\mathbf{H}	N	
$p-MeC_6H_4$		$196 - 197^{\circ}$	Α	75.6	$6 \cdot 3$	17.3	$C_{15}H_{15}N_{3}$	75.9	$6 \cdot 4$	17.7	
toluene-p-sulphonate	24	233 - 235	в	64.0	5.6	10.4	$C_{22}H_{23}N_3O_3S$	64.5	5.7	10.3	
$p-MeO \cdot C_6 H_4$		240 - 241	A	71.0	6.0	16.6	$C_{15}H_{15}N_{3}O$	71.1	6.0	16.6	
toluene- <i>p</i> -sulphonate	34	226 - 230	в	$62 \cdot 1$	5.5	9.9	$C_{22}H_{23}N_3O_4S$	$62 \cdot 2$	5.5	9.9	
$p-\text{ClC}_{6}\text{H}_{4}$		179 - 180	С	$65 \cdot 1$	$4 \cdot 3$	16.1	$C_{14}H_{12}CIN_3$	$65 \cdot 2$	4.7	16.3	
toluene-p-sulphonate	13	280 - 284	в	58.7	$4 \cdot 6$	10.2	$C_{21}H_{20}ClN_3O_3S$	58.7	4.7	9.8	
						~					

* A, benzene-light petroleum (b.p. 80-100°); B, water; C, aqueous ethanol.

TABLE 2

Ethyl 3-arylamino-2-cyanocrotonates (II)

Yield			Solvent for	Fo	ound (%	6)		Required (%)		
\mathbf{R}	(%)	M.p.	recryst.*	С	\mathbf{H}	N	Formula	С	\mathbf{H}	N
p-MeC ₆ H ₄	28	109—110°	Å	69.0	6.5	11.3	$C_{14}H_{16}N_2O_2$	68.8	6.6	11.5
φ-MeO•C ₆ H₄	36	115 - 117	в	$64 \cdot 2$	$6 \cdot 2$	F 0·7	$C_{14}H_{16}N_2O_3$	64.6	$6 \cdot 2$	10.8
p-ClC ₆ H ₄	39	147 - 148	в	$59 \cdot 2$	$4 \cdot 9$	10.6	$C_{13}H_{13}CIN_2O_2$	59.0	4 ·9	10.6
p-O ₂ N·C ₆ H ₄	50	$170 - 170 \cdot 5$	в	56.5	4.5	15.4	$C_{13}H_{13}N_3O_4$	56.7	$4 \cdot 8$	15.3

* A, aqueous acetone; B, aqueous ethanol.

TABLE 3

6-Arylamino-3-cyano-2,4-dimethylpyridines (IV)

Yield				und (%	6)		Req	uired (. (%)	
R	(%)	м.р.	С	\mathbf{H}	N	Formula	С	\mathbf{H}	N	
$p-MeC_{6}H_{4}$	57	$160 - 161^{\circ}$	75.8	$6 \cdot 5$	18.2	$C_{15}H_{15}N_3$	75.9	6.4	17.7	
acetyl		112 - 113	72.9	5.8	15.4	$C_{17}H_{17}N_{3}O$	$73 \cdot 1$	6.1	15.0	
p-MeO·C ₆ H ₄	45	140 - 141	71.5	$5 \cdot 8$	16.7	$C_{15}H_{15}N_{3}O$	71.1	6 ·0	16.6	
acetyl		9798	69.1	$5 \cdot 9$	14.3	$C_{17}H_{17}N_{3}O_{2}$	69.1	5.8	14.2	
p-CIC ₆ H ₄	63	179 - 180	65.1	$4 \cdot 5$	16.1	$C_{14}H_{12}ClN_3$	$65 \cdot 2$	4.7	16.3	
acetyl		96 - 97	$64 \cdot 2$	4.7	14.0	C ₁₆ H ₁₄ ClN ₃ O	64·1	4.7	14.0	

N, 10.8. $C_{14}H_{11}ClN_2O$ requires C, 65.0; H, 4.3; N, 10.8%). 6-Amino-3-cyano-2,4-dimethylpyridine.—Ammonium toluene p-sulphonate (3 g.) was recovered when this salt (3.8 g.) and ethyl 2-cyano-3-oxobutyrate (4.6 g.) were heated together at 160° for 5 hr. and digested with boiling chloroform (20 ml.). The chloroform solution was evaporated under reduced pressure and the residue, dissolved in water (charcoal) and basified with 2N-sodium hydroxide, gave the aminopyridine (0.2 g.), which separated from aqueous ethanol as needles, m.p. 225—226° (lit.,⁴ 227—228°) (Found: C, 65.0; H, 6.1; N, 28.3. Calc. for C₈H₉N₃: C, 65.3; H, 6.2; N, 28.6%). The picrate gave needles, m.p. 252—252.5° (from dimethylformamide) (Found: C, 44.8; H, 2.8; N, 22.8. $C_{14}H_{12}N_6O_7$ requires C, 44.7; H, 3.2; N, 22.3%).

Interaction of Aniline and Ethyl 2-Cyano-3-oxobutyrate.-

4.3; N, 15.1. $C_{11}H_8N_2O$ requires C, 71.7; H, 4.4; N, 15.2%).

The following quinoline derivatives were prepared in a similar manner from the appropriate ethyl 3-arylamino-2-cyanocrotonate: 3-cyano-4-hydroxy-2,6-dimethylquinoline (37%), plates, m.p. 345—360° (decomp.) (from dimethylformamide) (Found: C, 72.6; H, 4.8; N, 14.1. $C_{12}H_{10}N_2O$ requires C, 72.7; H, 5.1; N, 14.1%); 3-cyano-4-hydroxy-6-methoxy-2-methylquinoline (60%), prisms, m.p. 350—360° (decomp.) (from dimethylformamide) (Found: C, 66.9; H, 4.7; N, 13.3. $C_{12}H_{10}N_2O_2$ requires C, 67.3; H, 4.7; N, 13.1%); 6-chloro-3-cyano-4-hydroxy-2-methylquinoline (60%), prisms, m.p. 350—360° (decomp.) (from dimethylformamide) (Found: C, 66.9; H, 4.7; N, 13.1%); 6-chloro-3-cyano-4-hydroxy-2-methylquinoline (60%), prisms, m.p. 350—360° (decomp.) (from dimethylformamide) (Found: C, 60.7; H, 3.3; N, 13.1. $C_{11}H_7ClN_2O$ requires C, 60.4; H, 3.2; N, 12.8%); and 3-cyano-4-hydroxy-2-methyl-6-nitroquinoline (75%), yellow plates, m.p. 355—

360° (decomp.) (from dimethylformamide) (Found: C, 57.8; H, 3.2; N, 18.2. $C_{11}H_7N_3O_3$ requires C, 57.6; H, 3.1; N, 18.3%).

6-Anilino-3-cyano-2,4-dimethylpyridine was formed (1.3 g.) when 5-cyano-1,2-dihydro-2-imino-4,6-dimethyl-1-phenylpyridine (1.9 g.) was boiled under reflux in 2N-sodium hydroxide (50 ml.) for 2 hr. This base separated from aqueous ethanol as prisms, m.p. 134—135°, v_{max} . (KBr) 2250 (C=N) and 3370 (NH) cm.⁻¹ (Found: C, 75.4; H, 5.8; N, 18.9. C₁₄H₁₃N₃ requires C, 75.3; H, 5.9; N, 18.8%). The *picrate* crystallised from n-butanol as needles, m.p. 206—208° (Found: C, 53.0; H, 3.5; N, 18.6. C₂₀H₁₆N₆O₇ requires C, 53.1; H, 3.6; N, 18.6%). Its acetyl derivative, formed in boiling acetic anhydride [conc. sulphuric acid (1 drop)], separated from aqueous ethanol as plates, m.p. 105–106°, ν_{max} (KBr) 1695 (CO) and 2200 (C=N) cm.⁻¹ (Found: C, 72.5; H, 5.4; N, 16.0. C₁₆H₁₅N₃O requires C, 72.4; H, 5.7; N, 15.8%).

The *pyridines*, prepared similarly, are recorded in Table 3.

We thank Dr. H. Booth for the measurement of and discussions on the n.m.r. spectra, the S.R.C. for a studentship (to B. M. H.), and Smith, Kline and French (Philadelphia) for financial support.

[9/296 Received, February 19th, 1969]