Synthesis of Non-Phenolic Bisbenzocyclooctadiene Lignan Lactones and Aporphinic Alkaloids, by Oxidative Coupling with New Agents in Fluoro Acid Medium. IV.¹

Denis Planchenault, Robert Dhal and Jean-Pierre Robin*

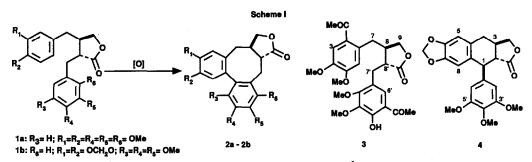
Département de Chimie, Institut Universitaire de Technologie, Université du Maine, Route de Laval, 72017 Le Mans Cedex, France.

(Received in Belgium 10 July 1992; accepted 17 February 1993)

Key-words : Bisbenzocyclooctadienes, Aporphines, Oxidative coupling, Biaryls.

Abstract: A systematic study of oxidants used in fluoro acid medium allowed us to increase notably the number of efficient reagents for the non-phenolic oxidative coupling of lignan and alkaloid precursors. If dibenzylbutanolide had no methylenedioxyle group, Re_2O_7 and $RuO_2.2H_2O$ were the most efficient. With a methylenedioxyle group, best results were obtained with Tl_2O_3 , $Mn(OAc)_3.2H_2O$ and $Ce(OH)_4$. Finally, aporphines were obtained with good yields with $Ce(OH)_4$, $RuO_2.2H_2O$ and $Fe(OH)(OAc)_2$.

Activity in our group concentrated, over the last few years, towards the development of a biomimetic approach for the synthesis of potential antitumor and antiviral drugs. We have been interested, among active alkaloids and lignans, in the wide class of naturally occuring compounds which possess a biaryl linkage.² These can be synthesized from open-chain precursors, using selective oxidative metallic reagents.^{3,4,5} Thus, Landais and Robin discovered that ruthenium (IV) dioxide dihydrate in fluoro acid medium was a powerful and efficient reagent for the oxidative non phenolic and phenolic coupling of lignans and alkaloids.^{1,6,7} Meanwhile, ruthenium (IV) dioxide dihydrate was found to be inefficient for the coupling of some precursors, especially compounds which possess a methylenedioxyle substituent on the aromatic ring. Therefore, we undertook a systematic study of the different redox couples⁸ (Table I) in order to prepare new selective and versatile reagents which could overcome these problems.


1. Experimental conditions

Metallic trifluoroacetates were prepared *in situ* by combination of commercial metallic salts (oxides, acetates, hydroxides) with trifluoroacetic acid (pka=0.3) and its anhydride, as previously reported.⁹ CH₂Cl₂ was used as the reaction solvent. Similar reactions using either CH₃CN, CCl₄ or CHCl₃ instead of CH₂Cl₂ were less successful.^{1,10} BF₃-Et₂O was used as an electrophilic assistance agent.^{9,11} Finally, ultra-sonic assistance allowed us to reduce notably reaction times and quantities of metallic salts.¹

Table I		
Redox couples	E' (V)	
Sb2O3 / Sp	0.15	
Ag ⁺ / Ag	0.79	
As ₂ O ₃ / As	0.23	
Bi ³⁺ / Bi	0.29	
Ce ^{IV} / Ce ^{III}	1.74	
Cr2072- / Cr3+	1.33	
Co ^{lli} / Co ²⁺	1.77	
Cu ²⁺ / Cu ⁺	0.17	
Sn ^{IV} / Sn ^{II}	0.14	
Fe ³⁺ / Fe ²⁺	0.77	
irO ₂ / ir	0.93	
Mn ^{¶ll} /Mn ^{ll}	1.49	
MoO22+ / MoO3+	0.48	
Ni ₂ O ₃ / NiO	0.42	
Pr ⁴⁺ / Pr ³⁺	2.86	
ReO ₄ / ReO ₃	0.77	
Rh ₂ O ₃ / Rh	0.87	
TeO, / Te	0.59	
V02 ⁺ / V0 ²⁺	0.99	
Π ³⁺ /Π ⁺	1.26	
RuO ₂ / Ru	0.79	

2. Applications to the synthesis of lactonic bisbenzocyclooctadiene lignans

The oxidative properties of the different metallic salts, listed above, in fluoro acid medium were studied in the oxidative coupling of dibenzylbutanolides **1a-b** to the corresponding bisbenzocyclooctadienes (BBCOD) lignan lactones **2a-b** (Scheme I).

Dibenzylbutanolides **1a-b** were prepared by known procedures.¹ The study of the different redox couples consisted firstly in carrying out reactions with the best appropriate model to oxidative biaryl coupling in order to eliminate metallic reagents which were not efficient for coupling (Table II). Precursor **1a** was choosen because of its easy synthesis¹, and also because aromatic rings are activated by methoxyles which favours the biaryl coupling (Table II). Difficulties encountered with some metallic oxides such as MoO_3 , Ni_2O_3 , SnO_2 , Sb_2O_3 , Bi_2O_3 , As_2O_3 , IrO_2 and $Rh_2O_3.5H_2O$ were probably attributable to a difficult attack by trifluoroacetic acid. Over five metals showed close performances with that of thallium (III) and eight metals were more efficient than TTFA. Moreover, we observed with $Cu(OAc)_2.H_2O$, the formation of an unexpected by-product **3** (Scheme I). Finally, six metallic oxides which gave no coupling reactions (MoO_3, Ni_2O_3, SnO_2, Sb_2O_3, Bi_2O_3, As_2O_3) were eliminated. These results could be explained by the poor redox potential of these reagents (Table I).

		CF3CO2H/(CF3CO)2O			C ₂ F ₅ CO ₂ H/(C ₂ F ₅ CO) ₂ O		
metal	oxidant	(eq.) ^d	time	yleid ^a (%)	(eq) ^g	time	yleid [®] (%)
Ru (IV)	RuO2.2H2O	(2)	18h	98	•	-	•
TT (III)	Π,Ο, -	(0.52)	30mn	73	(0.66)	2h	85
Mn (III)	Mn(OAc) ₃ .2H ₂ O	(1.9)	15mn	84	(2.45)	2h	90
Ce (IV)	Ce(OH)	(4.8)	3h	72	(4.8)	2h	83
V (V)	V ₂ O ₅	(4.8)	5d	87	(4.8)	11d	85
Re (VII)	Re ₂ O ₇	(1.9)	Зh	98	(1.9)	4h	100
Fe (III)	Fe(OH)(OAc) ₂	(3.8)	5h	62	(3.8)	42h	46 ^h
Co (III)	Co ₃ O4	(9.5)	3d ^b	78	(10)	5d ^b	0
Ag (l)	CF3COAg	(14)	1d	86	-	-	•
Cr (VI)	CrO ₃	(3.8)	6d	71	(4.8)	7d	74
Rh (111)	Rh ₂ O ₃ .5H ₂ O	(4.8)	14d	39°	(4.8)	2d ^b	0 ^j
Ir (IV)	IrO ₂	(4.8)	16d	77	(4.8)	2ď ^b	ol
Pr (IV)	Pr _e O ₁₁	(11.6) ¹	64h	74	(11.6) [†]	5d	94
Se (IV)	SeO,	(5)	8h	70	(5)	12h	72
Te (IV)	TeO	(10)	2ď ^b	80	(10)	35h ^b	90
Cu (II)	Cu(OAc) ₂ .H ₂ O	(3.8)	1d	22°	(3.8)	4d	34

Table II: Oxidative coupling of 1a to 2a using different oxidants in fluoro acid medium. Comparison with known reagents as TTFA⁵ and RuO₂.2H₂O¹.

^a yield of isolated product. ^b ultra-sound. ^c presence of compound 3 (29%). ^d eq. in suspension in CH₂Cl₂/ TFA/TFAA/BF₃-Et₂O/T=20°C. ^e presence of recovered starting material, corrected yield: 50%. ^f 11.6 eq. of PrO₂. ^g eq. in suspension in CH₂Cl₂/C₂F₈CO₂H/(C₂F₅CO)₂O/BF₃-ET₂O/T=20°C. ^h presence of 3 (16%). ⁱ presence of 3 (32%). ^j recovered starting material.

Next, we decided to improve the biaryl coupling of compounds which possess a methylenedioxyle group. We previously reported the failure of $RuO_2.2H_2O$ in the oxidation of yatein 1b to isostegane 2b. Degradation due to the opening of benzodioxole ring was generally observed.¹ Likewise, Cambie and co-workers¹² obtained the formation of an orthoquinone by oxidation of 2b with TTFA, showing clearly that overoxidation of isostegane 2b in the medium was responsible for the low yield in the oxidation of 1b. We solved these problems by using the procedure of Cambie and co-workers¹² who successfully carried out the oxidative coupling of 1b to 2b, using TTFA in neat TFA (Table III). In most cases (Re₂O₇, V₂O₅, Co₃O₄, CF₃CO₂Ag, CrO₃, Rh₂O₃.5H₂O, IrO₂, Pr₆O₁₁, SeO₂, TeO₂, Cu(OAc)₂.H₂O), degradation was observed. However, we obtained good yields with Ce(OH)₄ (68%) and Mn(OAc)₃.2H₂O (78%). An improved yield (85% vs 65%¹²) was obtained with TTFA, using a shorter reaction time (10s vs 15mn¹²).

Table III: Oxidative coupling of 1b to 2b using different oxidants in fluoro acid medium

CF ₃ CO ₂ H					C ₂ F ₅ CO ₂ H			
metal	oxidant	(eq.) ^b	time ^C	yleid ^a (%)	(eq.) ^d	time ^C	yield ^a (%)	
TI (III)	TI,O,	(0.55)	5-10s (0°C)	85	(0.6)	1mn(0'C)	75	
Mn (III)	Mn(OAc)3.2H2O	(2.5)	5-10s (0°C)	78	(3)	5mn(0'C)	68	
Ce (IV)	Ce(OH)	(5)	30mn (0°C)	68	(5)	3h	62	
Fø (III)	Fe(OH)(OAc)2	(10)	3h30	18	-	-	-	

^a yield of isolated product. ^b eq. In TFA/BF₃-Et₂O. ^c reactions at room temperature unless otherwise indicated. ^d eq. In C₂F₅CO₂H/BF₃-Et₂O.

3. Utilization of pentafluoropropionic medium

In order to test the mildest oxidative coupling conditions, we replaced trifluoroacetic acid and its anhydride by the less acidic pentafluoropropionic acid $(C_2F_5CO_2H)$ and its anhydride $((C_2F_5CO)_2O)$.

Pentafluoropropionic acid has never been used in this type of reaction. First, the study was carried out on the model 1a used previously (Table II). We generally noted better yields in pentafluoropropionic medium with longer reaction times than those obtained in trifluoroacetic medium. Meanwhile, we recovered unchanged starting material with Co_3O_4 , Rh_2O_3 and IrO_2 . These results were certainly due to a more difficult attack of these oxides by pentafluoropropionic acid than by trifluoroacetic acid. Secondly, we tested the pentafluoropropionic medium on model 1b which possesses a methylenedioxyle group. We observed lower yields in pentafluoropropionic medium (Table III).

4. Modification of regioselectivity in absence of BF3-Et2O

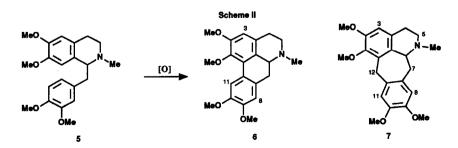

Cambie and co-workers¹² observed that oxidative coupling of **1b** by TTFA without BF_3 -Et₂O gave predominantly the aryltetraline 4 ¹³ (Scheme I). Rationalization of these results could be made by the influence of BF_3 -Et₂O on the methoxyle C-3' and C-5'. Lewis acids activate the para-position of the methoxyle group by association and favours oxidative coupling of **1b** to BBCOD. In the absence of BF_3 -Et₂O, the benzylic radical is more stabilized by uncomplexed methoxyles and led preferentially to the aryltetraline 4. So, we investigated this reaction by using the oxidants studied above (Table IV). We observed lower yields in pentafluoropropionic medium as shown above. Again, we found that Tl_2O_3 , $Mn(OAc)_3.2H_2O$ or Ce(OH)₄ were the most efficient reagents even in the absence of BF_3 -Et₂O (yield=0% for Cu(OAc)_2.H₂O, Fe(OH)(OAc)_2, V₂O₅, Rh₂O₃.5H₂O, IrO₂, Pr₆O₁₁ and CrO₃).

Table IV: Oxidative coupling of 1b in fluoro acid medium in absence of BF3-Et2O

	~ ~			
oxidant (eq.)	solvent	time#	product and 4	yield ^b (%) 2b
TI ₂ O ₃ (0.55)	TFA	20mn (0°C)	52	9
TI ₂ O ₃ (1)	C₂F₅CO₂H	1h30 (0°C)	48	6
Mn(OAc)3.2H2O (3)	TFA	20mn (0°C)	50	4
Mn(OAc) ₃ .2H ₂ O (4)	C ₂ F ₅ CO ₂ H	30mn	20	8
Ce(OH) ₄ (5)	TFA	45mn	18	10
Ce(OH), (5)	C ₂ F ₅ CO ₂ H	4h30	37	10
		s otherwise indicated. ^b	yield of isolated p	oduct.

5. Application to the synthesis of aporphines

The good results obtained with non-phenolic dibenzylbutanolides prompted us to extend our procedures to the synthesis of alkaloids which possess a biaryl linkage.² Within this large family, we limited our study to the synthesis of aporphins. The study was performed on a commercial product, the laudanosine 5, which was reported to give the glaucine 6^{14} by oxidative coupling (Scheme II).

By comparison with trifluoroacetic medium, pentafluoropropionic medium gave systematically lower yields (Table V). Three metallic salts gave good results (Ce(OH)₄, RuO₂.2H₂O and Fe(OH)(OAc)₂) and seven metals gave middling performances. It is worth mentionning the remarkable reaction using IrO₂ which gave predominantly the benzocycloheptisoquinoline 7 probably formed by a Friedel and Crafts reaction between laudanosine and CH₂Cl₂ in oxidative medium (Scheme II).

	trifluoroaceti	c medium [®]	pentafluoropropionic medium		
oxidant (eq.)	time ^C	yield ^d (%)	time ^C	yield ^d (%)	
TI ₂ O ₃ (0.8)	10mn (0°C)	66	30mn	36	
Mn(OAc) ₃ .2H ₂ O (3.5)	1h	40	-	09	
Re ₂ O ₇ (2.8)	8h30	60	2d	40	
Fe(OH)(OAc) ₂ (10)	3d	72	3d	10	
SeO ₂ (5)	60h	46	3d	44	
Ce(OH) ₄ (5)	6h	80			
V ₂ O ₅ (10)	5d ^e	60			
Pr ₈ O ₁₁ (12) ^f	5d ^e	50			
TeO ₂ (10)	5d ^e	44			
RuO ₂ 2H ₂ O (4)	1d	76			
CF ₃ CO ₂ Ag (20)	3d	0 ^h			
CrO ₃ (10)	-	0 ⁹			
Rh ₂ O ₃ .5H ₂ O (5)	2d ^e	o ^h			
Co ₃ O ₄ (10)	2d ^e	0 ^h			
IrO ₂ (10) CH ₂ CI ₂ /TFA/TFAA/BF ₁	2d ^e (30°C)	oʻ			

Table M. Orddative	accurition of 5 to 6 la	مسياله ومساهله ومودياهم
	COUDIING OT 3 10 5 I	n fluoro acid medium.

^a CH₂Cl₂/TFA/TFAA/BF₃-El₂O. ^b CH₂Cl₂/C₃F₅CO₂H/(C₂F₅CO)₂O/BF₃-El₂O. ^o reactions at room temperature unless otherwise indicated. ^d yield of isolated product. ^e ultra-sound. ^f 12 eq. of PrO₂.

^g degradation of starting material. ^h recovered starting material. ^l formation of 8 (72%).

Conclusion

We found new efficient reagents for the non phenolic oxidative coupling of bisbenzocyclooctadiene lignan and aporphinic alkaloid precursors. It is possible to establish a classification for each representative precursor. First, if dibenzylbutanolide has no fragile substituant (benzodioxole ring), the reaction is possible with 13 oxidants. Best results were obtained with Re₂O₇ and RuO₂.2H₂O. Oxidative couplings with Pr₆O₁₁, TeO₂, CF₃CO₂Ag and particularly Re₂O₇ have not been reported before. If dibenzylbutanolide possesses a methylenedioxyle group, only Tl₂O₃, Mn(OAc)₃.2H₂O and Ce(OH)₄ are efficient. Finally, non phenolic aporphines were obtained using eight different metals; best results were obtained with Ce(OH)₄, RuO₂.2H₂O and Fe(OH)(OAc)₂. We are currently using these different procedures to prepare natural phenolic compounds and analogs containing a biaryl bond.

Experimental section

Organic compounds 1a-b were prepared from known procedures.¹ Laudanosine 6 and metallic salts used in this study were commercially available in very high purity. Dichloromethane was dried through a column of alumina and stored over 4-Å molecular sieves. All glassware was dried thoroughly in a drying oven and cooled in a dessiccator containing P_2O_5 and silicagel. Ultra-sound experiments were accomplished

D. PLANCHENAULT et al.

in an ultra-sonic bath equipped with a thermostatic control ($T=20^{\circ}C$ +/- 2°C) and the reaction was monitored by TLC. Melting points determined on a Reichert microscope are reported in °C (uncorrected). Infrared spectra (IR) were recorded on a FT Nicolet 5DX spectrophotometer or on a Beckman (acculab 2) spectrophotometer. Nuclear magnetic resonance (NMR) spectra were recorded on a Varian EM 90, on a Brucker 300 or on a Brucker 500 spectrospin spectrometer using tetramethylsilane (Me₄Si) as an internal standard, and CDCl₃ as the solvent unless indicated otherwise. Mass spectra were obtained on a Varian Mat 311 spectrometer. Since the coupling reactions performed are all similar in many respects, typical reactions will be described as a general method. For more details about equivalents of used oxidants, see theoretical part. Numbering systems used to describe NMR spectra of BBCOD 2a-b, aryltetralin 4, glaucine 6 and isoquinoline 7 are explained in Scheme I and Scheme II.

General coupling procedure for the preparation of (+/-)-Neoisostegane 2a (method A). To a stirred suspension of Re₂O₇ (0.178 g; 0.37 mmol) in CH₂Cl₂ (10 ml), TFA (1 ml) [or C₂F₅CO₂H (0.7 ml)] and TFAA (0.7 ml) [or (C₂F₅CO₂O) (0.4 ml)], a solution of **1a** (0.08 g; 0.19 mmol) in CH₂Cl₂ (4 ml) was added at 0°C under nitrogen, followed immediately by BF₃-Et₂O (0.05 ml; 0.38 mmol). The mixture was stirred at room temperature (3h in TFA; 4h in C₂F₅CO₂H) and was treated with saturated NaHCO₃. The organic layer was decanted and the aqueous layer was extracted several times with CH₂Cl₂. The combined extracts were washed with brine and dried over MgSO₄. Evaporation of the solvent under vacuum gave an oil which was chromatographed on silica gel (C₆H₁₂-EtOAc 8:2). Crystallization from ether gave **2a** (TFA: 78 mg; 98%. C₂F₅CO₂H: 80 mg; 100%) as a white solid. Compound was found to be identical (mp, IR, ¹H NMR) to the material reported in the literature: mp 183-184°C [lit.¹ mp 183-185°C (CH₂Cl₂-Et₂O)]; IR (CHCl₃) 1770 (C=O), 1600 (C=C) cm⁻¹; ¹H NMR δ 1.7-3.25 (m, 6H, aliphatic protons), 3.75 (m, 1H, H-13), 3.8-4.04 (5s, 15H, 5 OCH₃), 4.38 (m, 1H, H-13), 6.50 (s, 1H, H-1), 6.70 (s, 1H, H-4), 6.72 (s, 1H, H-12).

Reaction of 1a with Cu(OAc)₂.**H**₂**O/TFA/TFAA/BF**₃-**Et**₂**O.** To a stirred suspension of 0.183 g (0.92 mmol) of Cu(OAc)₂.**H**₂O in CH₂Cl₂ (7 ml), TFA (1.8 ml), TFAA (0.3 ml), a solution of 0.1g (0.24 mmol) of **1a** in CH₂Cl₂ (2 ml) was added at 0°C under nitrogen, followed immediately by BF₃-Et₂O (0.06 ml; 0.48 mmol). The mixture was stirred at room temperature for 24 h. The work-up was carried out as before to give 22mg (22%) of 2a and 34mg (29%) of 3 as white needles which was recrystallized from ether: mp 146-148°C; IR (CHCl₃) 1763 (C=O), 1670 (C=O), 1600 (C=C) cm⁻¹; ¹H NMR & 2.47 (s, 3H, CH₃CO), 2.56 (s,3H, CH₃CO), 2.64 (m, 1H, H-8') (by irradiation of 7'a), 2.67 (m, 1H, H-8) (by irradiation of 9a), 2.79 (dd, 1H, J= 8.0 Hz, 13.8 Hz, H-7'b), 2.93 (m, 2H, H-7), 3.06 (dd, 1H, J= 5.0 Hz, 13.7 Hz, H-7'a), 3.88 (s, 3H, OCH₃), 3.91 (s, 6H, 2 OCH₃), 4.00 (dd, 1H, J= 7.0 Hz, 8.8 Hz, H-9b), 4.01 (s, 3H, OCH₃), 4.18 (dd, 1H, J= 7.1 Hz, 9.1 Hz, H-9a), 6.57 (s, 1H, H-6), 7.16 (s, 1H, H-3), 7.33 (s, 1H, H-6'), 12.63 (s, 1H, chelated OH); MS m/e 486.1889 (M⁺).

General coupling procedure for the preparation of (+/-)-Jsostegane 2b (method B). To a stirred suspension of Mn(OAc)₃.2H₂O (0.168 g; 0.62 mmol) in TFA (1.5 ml) [or C₂F₅CO₂H (1.5 ml)] and BF₃-Et₂O (0.06 ml; 0.5 mmol), a solution of 1b (0.1 g; 0.25 mmol) in TFA (1 ml) [or C₂F₅CO₂H (1 ml)] was added quickly at 0°C under nitrogen. The mixture was stirred at 0°C (5-10s in TFA, 5mn in C₂F₅CO₂H) and was then treated as described above in method A to give 2b (TFA: 78 mg; 78%. C₂F₅CO₂H: 68 mg; 68%) as a white solid which was recrystallized from ether: mp 168-170°C [lit.¹ mp 169-170°C (CH₂Cl₂-cyclohexane)]; IR (CHCl₃) 1720 (C=O), 1590 (C=C) cm⁻¹; ¹H NMR δ 2.1-3.33 (m, 6H, aliphatic protons), 3.57 (s, 3H, OCH₃), 3.75 (m, 1H, H-13), 3.93 (s, 6H, 2 OCH₃), 4.29 (m, 1H, H-13), 6.03 (s, 2H, OCH₂O), 6.65 (s, 2H, H-4, H-1), 6.77 (s, 1H, H-9).

General procedure for oxidation of yatein 1b in absence of BF_3 -Et₂O (method C). To a stirred suspension of Mn(OAc)₃.2H₂O (0.201 g; 0.75 mmol) in TFA (1.5 ml) [or C₂F₅CO₂H (1.5 ml)], a solution of

5829

1b (0.1 g; 0.25 mmol) in TFA (1 ml) [or $C_2F_5CO_2H$ (1 ml)] was added quickly at 0°C under nitrogen. The mixture was stirred (20mn (0°C) in TFA, 30mn (20°C) in $C_2F_5CO_2H$) and was treated as described above in method A, to give 2b (TFA: 4 mg; 4%. $C_2F_5CO_2H$: 8 mg; 8%) and isodesoxypodophyllotoxine 4 (TFA: 50 mg; 50%. $C_2F_5CO_2H$: 20 mg; 20%) as a white solid which was crystallized from CH₂Cl₂-Et₂O: mp 255-257°C [lit.¹³ mp 256-258°C]; IR (CHCl₃) 1775 (C=O), 1455 (OCH₂O) cm⁻¹; ¹H NMR 8 2.36-3.08 (m, 5H, aliphatic protons), 3.66 (s, 9H, 3 OCH₃), 4.25-4.62 (m, 2H, H-11), 5.87 (s, 2H, OCH₂O), 6.31 (s, 1H, H-8), 6.40 (s, 2H, H-2', H-6'), 6.58 (s, 1H, H-5).

General coupling procedure for the preparation of glaucine 6 (method A). Glaucine 6 was obtained from laudanosine 5 by using the procedure reported for preparation of neoisostegane 2a (method A). To a stirred suspension of Ce(OH)₄ (0.146 g; 0.7 mmol) in CH₂Cl₂ (5 ml), TFA (1.6 ml) and TFAA (0.2 ml), a solution of 6 (0.05 g; 0.14 mmol) in CH₂Cl₂ (1 ml) was added at 0°C under nitrogen, followed immediately by BF₃-Et₂O (0.07 ml; 0.28 mmol). The mixture was stirred at room temperature for 6h and was treated with saturated NaHCO₃. The work-up was carried out as in method A. After chromatography on silica gel (CH₂Cl₂-MeOH 99:1) and crystallization from CH₂Cl₂-Et₂O, glaucine 6 (40 mg; 80%) was obtained as white needles: mp 135-137°C [lit.¹⁴ mp 137-139°C (MeOH-Et₂O)]; IR (CHCl₃) 1235 (NCH₃), 1600 (C=C)cm⁻¹; ¹H NMR δ 2.60 (s, 3H, NCH₃), 2.5-3.44 (m, 10H, aliphatic protons), 3.67 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 6.58 (s, 1H, H-8), 6.78 (s, 1H, H-3), 8.09 (s, 1H, H-11).

Reaction of laudanosine 5 with $IrO_2/TFA/TFAA/BF_3-Et_2O$. To a stirred suspension of 0.314 g (1.4 mmol) of IrO_2 in CH_2Cl_2 (5 ml), TFA (5 ml), TFAA (0.5 ml), a solution of 0.05g (0.14 mmol) of laudanosine 5 in CH_2Cl_2 (1 ml)was added at 0°C under nitrogen, followed immediately by BF_3-Et_2O (0.035 ml; 0.28 mmol). The mixture was stirred <u>at 30°C with ultra-sound</u> for 2 days. The work-up was carried out as before to give 37 mg (72%) of quinoline 7 as an oil. Compound 7 was found to be identical (IR, ¹H NMR) with material prepared in the literature¹⁵: IR (CHCl₃) 1600 (C=C), 1235 (NCH₃) cm⁻¹; ¹H NMR δ 2.63 (s, 3H, NCH₃), 2.71 (dd, 1H, J= 4.5 Hz, 15.0 Hz, aliphatic proton), 2.75-3.00 (m, 2H, aliphatic protons), 2.98 (dd, 1H, J= 12.1 Hz, 16.3 Hz, aliphatic proton), 3.16 (m, 1H, aliphatic proton), 3.39 (dd, 1H, J= 3.7 Hz, 16.2 Hz, aliphatic proton), 3.75 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 4.00 (d, 1H, J=15.1 Hz, H-12), 4.10 (d, 1H, J= 15.1 Hz, H-12), 4.30 (dd, 1H, J= 4.0 Hz, 12.3 Hz, aliphatic proton), 6.53 (s, 1H, H-3), 6.56 (s, 1H, H-11), 6.73 (s, 1H, H-8); MS m/e 369.1932 (M⁺).

Acknowledgements. This research was supported by ANVAR (France) and AARCA (Le Mans, France). We gratefully thank Dr Y. Landais for his helpful suggestions and R. Henly for language corrections.

References and notes

- 1) Part I: Landais, Y.; Robin, J.-P.; Lebrun, A. *Tetrahedron*, **1991**, 47, 3787. Part II: Robin, J.-P.; Landais, Y. *Tetrahedron*, **1992**, 48, 819. Part III: Landais, Y.; Robin, J.-P. *Tetrahedron*, **1992**, 48, 7185.
- Including the following: (a) <u>Alkaloids</u>. Aporphines: Guinaudeau, H.; Leboeuf, M.; Cavé, A. J. Nat. Prod. 1988, 51, 389. Homoaporphines: Tojo, E. J. Nat. Prod. 1989, 52, 909. Dimeric aporphinoids: Guinaudeau, H.; Leboeuf, M.; Cavé, A. J. Nat. Prod. 1988, 51, 1025. (b) <u>Lignoids</u>. Dimethylbisbenzocyclooctadienes, Schizandrins: Takeya, T.; Okubo, T.; Nishida, S.; Tobinaga, S. Chem. Pharm. Bull. 1985, 33, 3599. Bisbenzocyclooctadiene lactones, Steganacin: Kupchan, S.M.; Britton, R.W.; Ziegler, M.F.; Gilmore, C.J.; Restivo, R.J.; Bryan, R.F. J. Am. Chem. Soc. 1973, 95, 335. Taafrout, M.; Rouessac, F.; Robin, J.P. Tetrahedron Lett. 1983, 24, 197.

- 3) For an exhaustive review, see: (a) Speight, J.G.; Kovacic, P.; Koch, F.W. J. Macromol. Sci., Rev. Macromol. Chem. 1971, 295, C5. (b) Sainsbury, M. Tetrahedron. 1980, 36, 3327. (c) Naarman, H.; Beaujean, B.; Merenuy, R.; Viehe, H.G. Polym. Bull (Berlin) 1980, 2, 683. (d) Kovacic, P.; Jones, M.B. Chem. Rev. 1987, 87, 357.
- 4) (a) Carrick, W.L.; Karapinka, G.L.; Kwiatkowski, G.T. J. Org. Chem. 1969, 34, 2388. (b) Kupchan, S.M.; Liepa, A.J. J. Am. Chem. Soc. 1973, 95, 4062.
- (a) McKillop, A.; Hunt, J.D.; Zelesko, M.J.; Fowler, J.S.; Taylor, E.C.; Mc.Gillivray, G.; Kienzle, F. J. Am. Chem. Soc. 1971, 93, 4841. (b) McKillop, A.; Turrel, A.G.; Young, D.W.; Taylor, E.C. J. Am. Chem. Soc. 1980, 102, 6504. (c) Sawyer, J.S.; McDonald, T.L. Tetrahedron Lett. 1988, 29, 4839. (d) Taylor, E.C.; Katz, A.H.; Alvarado, S.I.; McKillop, A. J. Organomet. Chem. 1985, 285, C9.
- 6) Landais, Y.; Lebrun, A.; Lenain, V.; Robin, J.-P. Tetrahedron Lett. 1987, 28, 5161.
- 7) Landais, Y.; Rambault, D.; Robin, J.-P. Tetrahedron Lett. 1987, 28, 543.
- Charlot, G.; Collumeau, A.; Marchon, J.C. "Selected constants Oxydo-reduction potentials of inorganic substances in aqueous solution" 1971, Butterworths.
- (a) Cambie, R.C.; Clark, G.R.; Craw, P.A.; Rutledge, P.S.; Woodgate, P.D. Aust. J. Chem. 1984, 37, 1775.
 (b) Buckleton, J.S.; Cambie, R.C.; Clark, G.R.; Craw, P.A.; Rickard, C.E.F.; Rutledge, P.S.; Woodgate, P.D. Aust. J. Chem. 1988, 41, 305.
- 10) Taylor, E.C.; Andrade, J.G.; Rall, G.J.H.; McKillop, A. J. Am. Chem. Soc. 1980, 102, 6513.
- 11) Kupchan, S.M.; Liepa, A.J.; Kameswaran, V.; Bryan, R.F. J. Am. Chem. Soc. 1973, 95, 6861.
- 12) Cambie, R.C.; Craw, P.A.; Rutledge, P.S.; Woodgate, P.D. Aust. J. Chem. 1988, 41, 897.
- 13) Kuhn, M.; Wartburg, A.V. Helv. Chim. Acta. 1967, 50, 1546.
- 14) Probst, J.M. Ann. 1839, 31, 241.
- 15) Kametani, T.; Takemura, M.; Takahashi, K.; Takeshita, M.; Ihara, M.; Fukumoto, K. J. Chem. Soc. Perkin I. 1975, 1012.