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Abstract : both enantiomers of 2,5-hexane diol and 2,6-heptane diol have been
prepared respectively By stereoselective reduction of optically active
diketodisulfoxides and ketosulfoxides.

Optically active 2,5-dimethylpyrrolidine has been employed frequently as a chiral auxiliary of Cy
symmetry in enantioselective reactions. (R,R) and (S,5)-2,5-hexane diols ! are the usual precursors of
2,5-dimethylpyrrolidine 2 Similarly, (R,R) and (S,S)-2,6-heptane diols can be considered as

precursors of optically active 2,6-dimethylpiperidine.
‘We report in this paper the enantioselective synthesis of both enantiomers of 2,5-hexane diol , 1

and 2,6-heptane diol , 2 based on the stereoselective reduction of f-ketosulfoxides 3,
The Cp symmetry of the diol 1 allows their synthesis by reduction of the corresponding
diketodisulfoxide 3 either with DIBAL or ZnBry/DIBAL *.

(R,R)-Diketodisulfoxide 3 was readily prepared from methyl succinate and (+)-(R) methyl p-
tolylsulfoxide 3 (scheme I). DIBAL reduction of 3 gave as expected only one diastercomer, S, as
shown by its NMR spectrum having only one set of signals, particularly for the AB protons o to the
sulfoxide groups . It must be pointed out that the diketodisulfoxide 3 must be added to the DIBAL
solution (reverse addition) 39,

The stereochemistry of the hydroxylic centers was expected to be (S,S) from our preceeding results >
and confirmed by desulfurization to the known (R,R) 2,5-hexane diol !> %

ZnBry/DIBAL reduction of 3 afforded similarly only the other diastereomer 4 as the unique product 7
which after desulfurization with Raney Nickel lead to the known (S,S) 2,5-hexane diol ** 2%
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The same methodology could not be used to prepare optically pure 2,6-heptane diol because it was
impossible to synthesize the corresponding diketodisulfoxide from methyl glutarate. The reaction of
this diester with 2 equivalents of (+)-(R) methyl p-tolylsulfoxide anion gave mainly cyclized products
in this strongly basic medium. Therefore the synthetic approach was modified to a multi step process :
introduction of a first ketosulfoxide functionality from glutaric anhydride, reduction of the carbonyl,
desulfurization and introduction of the second ketosulfoxide moiety.

The synthesis of the ketosulfoxide 6 was already reported for the enantioselective reduction of

zearalenone 3. Reduction of the ketosulfoxide 6 with DIBAL gave the B-hydroxysulfoxide 7 with an S
configuration at the hydroxylic center 3 (d.e > 95%, deduced from the NMR spectrum 9 ) (scheme II).

The (R) hydroxyester 8 was obtained by protecting the OH group with a TBS group followed by
desulfurization. (R)-8 was finally reacted with (+}XR) methyl p-tolylsulfoxide and the resulting

ketosulfoxide 9 reduced with DIBAL (d.e > 95%, determined by NMR 10 ), deprotected with TBAF
and desulfurized to give (R,R)-2,6-heptane diol 2.
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(S.S) 2,6-heptane diol 2 was obtained by a very similar route. The reduction with ZnBro/DIBAL of
the ketosulfoxide 6 and subsequent transformation to (+) methyl (5S)- [tert-butyldimethylsilyl) oxy]
hexanoate 11 (scheme III) was already described ¥ The ester 11 was then allowed to react with (+)-
(R) methyl p-tolyl sulfoxide anion to give the ketosulfoxide 12 in 94% yield, which was then reduced
with ZnCly/DIBAL to the hydroxysulfoxide 13 ( with the (R) configuration at the new hydroxylic
center > , d.e > 95%, determined by NMR '! ). Finally (S,S)-2,6-heptane diol 2 was obtained by
removing the protecting group followed by desulfurization.
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9) *H NMR of 7 (CDCl;, 200 MHz): 5: -.1.4-1.8 (m,4H, H-3, H), 2.3 (t, 2H, J= 7 Hz, H-2), 2.42 (s, 3H, Me), 2.82
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10) 'TH NMR of 10 (CDCl;, 200 MHz): 8: 0.01 and -0.008 (s, 6H, Me.Si), 0.84 ( s, 9H, tBuSi), 1.06 (d, 3H, J= 6 Hz, H-
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67 Hz , H-1), 3.69 (m, X of ABX, 1H, H-6), 4,05 (d, 1H, J= 3 Hz, OH), 4.13 (m, 1H, H-2), 7.32-7.5 (AA’BB’, J=
Hz, 4H, arom.). The >C NMR gave also only one set of signals corresponding to one diastereomer.

11) *H NMR of 13 (CDCls, 200 MHz): 5: 0.03 (s, 6H, Me;Si), 0.86 ( s, 9H, tBuSi), 1.10 (d, 3H, J= 6 Hz, H-7), 1.35-1.6
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arom.). The 2C NMR gave also only one set of signals corresponding to one diastereomer

(Received in UK 27 April 1994; accepted 20 May 1994)



