REACTION OF 4-OXOALKANE-1,1,2,2-TETRACARBONITRILES WITH 1,3,5-TRIARYL-2,4-DIAZA-1,4-PENTADIENES

Ya. S. Kayukov, O. E. Nasakin, Ya. G. Urman, V. N. Khrustalev, V. N. Nesterov, M. Yu. Antipin, A. N. Lyushchikov, and P. M. Lukin

2-Aryl-1, 2, 3, 4-tetrahydropyridine-3, 3, 4, 4-tetracarbonitriles and 1, 3, 5-triaryl-9-oxo-1, 2, 3, 4b, 5, 6, 8a, 9-octahydropyrido[3', 4':3, 4]pyrrolo[1, 2-a][1, 3, 5]triazine-4b, 8a-dicarbonitriles are formed by the reaction of 4oxoalkane-1, 1, 2, 2-tetracarbonitriles with 1, 3, 5-triaryl-2, 4-diaza-1, 4-pentadienes depending on the solvent used.

We have shown recently that 1,5-diarylpyrrolidine-3,3,4,4-tetracarbonitriles are formed by the reaction of ethane-1,1,2,2-tetracarbonitrile with 1,3,5-triaryl-2,4-diaza-1,4-pentadienes (II)-(VII) [1]. The study of the reaction of compounds (II)-(VII) with 4-oxoalkane-1,1,2,2-tetracarbonitriles (Ia-f) is a continuation of these investigations. Compounds (I) react with the diazadienes (II)-(VII) in a wide range of solvents. It was discovered that products of different structure were formed depending on the solvent used. In glacial acetic acid 2-aryl-1,2,3,4-tetrahydropyridine-3,3,4,4-tetracarbonitriles (XI)-(XVI) are formed from cyanides (I) and diazadienes (II)-(VII) and reaction is complete at a reactant ratio of 2:1. The crystal structure of the (XIa) molecule was established by x-ray structural analysis (Fig. 1). The constitution of compounds (XIb-f), (XIIa), (XIIIa-d), (XIVa), (XVa) and (XVIa) was determined by comparison of their IR spectra with the *IR* spectrum of compound (XIa) and their composition from the data of elemental analysis (Table 1).

The reaction of compounds (II)-(VII) with cyanides (I) in alcohols or acetonitrile gave 1,3,5-triaryl-9-oxo-1,2,3,4b,5,6,8a,9-octahydropyrido[3',4':3,4]pyrrolo[1,2-a][1,3,5]triazine-4b,8a-dicarbonitriles(XXIII)-(XXV). The structure of compound (XXIIIa) was determined by x-ray structural investigation of a monocrystal (Fig. 2). The structure of compounds (XXIIIb-e), (XXIVa), (XXIVb), and (XXVa) were established on the basis of IR and ¹³C NMR spectra (Table 10). The intermediate compounds were isolated in order to explain the difference in reaction of diazadienes (II)-(VII) with compounds (I). These were 2-aryl-6-hydroxypiperidine-3,3,4,4-tetracarbonitriles (VIII)-(X), 2-aryl-3,3,4-tricyano-2,3,4,5-tetrahydro-pyridine-4-carboxamides (XVII)-(XIX), and 3-amino-4-aryl-1-oxo-3a,4,5,7a-tetrahydro-1H-pyrrolo[3,4-c]pyridine-3a,7a-dicarbonitriles (XX)-(XXII). In each specific case the concentration of reactants and the solvent were selected by the experimental route.

Like compounds (XVII)-(XIX), compounds (VIII)-(X) in isopropyl alcohol or acetonitrile containing an insignificant amount of water were practically completely converted into compounds (XX)-(XXII), which in turn may be obtained directly from diazadienes (II)-(VII) and cyanides (I). The tricyclic compounds (XXIII)-(XXV) may be obtained by the reaction of compounds (XX)-(XXII) with diazadienes (II)-(VII).

The cited facts of the conversions of compounds (VIII)-(X), (XVII)-(XIX), and (XX)-(XXII) suggest that they are intermediates in the reaction of diazadienes (II)-(VII) with cyanides (I) in the formation of the tricycles (XXIII)-(XXV). Regrettably we were unsuccessful in obtaining amides (XVII)-(XIX) directly from compounds (VIII)-(X), but their stereochemistry from x-ray structural data suggest the conversion. The hydroxyl group in compound (VIIIa) (Fig. 3) is in a trans position relative to the aryl substituent and occupies an axial position which suggests a 1,3 interaction with the carbon of the cyano group. The carbamoyl group in compound (XVIIIa) is also found in the trans position (Fig. 4). These data suggest

Chuvash State University, Cheboksary 428015. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1395-1409, October, 1996. Original article submitted October 2, 1996.

Com. k^1 k^2 (decomp.), °C x1a (CH2)4 126128 x1b C11,3 CH3 113114 x1c H CH3 113114 x1d C11,3 CH3 113114 x1d C11,3 CH3 143144 x1d C11,2 CH3 113114 x1f $(CH2)4$ CH3 141142 x11a C11,3 CH3 141142 x11a C11,3 CH3 127130 x11a C11,2,4 CH3 127130 x11a C11,2,4 CH3 127130 x11a C11,2,4 127130 126127 x11a C11,2,4 CH3 127130 x11a C11,2,4 CH3 127130 x11a C11,2,4 CH3 127130 x11a C11,2,4 CH3 127130 x11a C11,2,4 127130 x11a CH3	-	Found, %		Empirical		Calculated, 9	2	10 FV-11
XIa $(CH_2)_4$ $(CH_2)_4$ $(126128)_{-114}$ XIb CII,3 CH,3 113114_{-113} XId CI,3 CH,3 13114_{-113} XId C,3H,7 CH,3 1314_{-113} XIf C,3H,7 CH,3 14314_{-1142} XII,a C,112,4 CH,3 141142_{-1142} XIII,a CI,12,4 CH,3 141142_{-1142} XIII,a CI,12,4 CH,3 141142_{-1142} XIII,a CI,12,4 CH,3 127130_{-1130} XIII,a CI,12,4 CH,3 127130_{-127} XIII,a CI,12,4 CH,3 126127_{-126} XIII,a	o.), °C c	Ŧ	z	formula	U	т	z	Y Ield, %
XIB CII, CH H H XIC H CII, CH 113114 XIC H CH H 113114 XIC CI CH 113114 XIE CJIT, CH 123124 XIF $CJIT,$ CH 123124 XII C(12), CH 123124 XII C(12), CH 123124 XIII CI12, CH 123124 XIII CI13, CH 123124 XIII CI12, CH 123124 XIII CI CH 123124 XIII CH CH 127130 XIII CH CH 127130 XIII CH CH 127130 XIII CH CH 126107 XIII CH CH 126127 XVIII CH CH 128130 XVIII <td>128 72.87</td> <td>4,85</td> <td>22,28</td> <td>C₁₉H₁₅N₅</td> <td>72,83</td> <td>4,88</td> <td>22,35</td> <td>92</td>	128 72.87	4,85	22,28	C ₁₉ H ₁₅ N ₅	72,83	4,88	22,35	92
XIC U CH3 CH3 H4 XIC H CH3 2140 XIE CJ17 CH3 2140 XIE CJ17 CH3 123124 XII C(H2) CH3 123124 XII C(H2) CH3 123124 XIII C(H2) CH3 123124 XIII C(H2) CH3 123124 XIII CH3 C(H2) 9195 XIIII CH3 C(H2) 9195 XIII CH3 CH3 9195 XIII CH3 CH3 127130 XIII CH3 CH3 127130 XIII CH3 CH3 126127 XIII CH3 CH3 126127 XIII CH3 128130 210 XIII CH3 128130 210 XVIII CH3 CH3 210 XXIII CH3	.114 71.12	4,62	24,26	C ₁₇ H ₁₃ N ₅	71,06	4,56	24,37	61
XI C(H2) C(H2) Y = 0 XI C(H2) C(H2) Y = 0 XI $(C(H2))$ C(H3) 123124 XII $(C(H2))$ C(H3) 123124 XIII $(C(H2))$ C(H3) 123124 XIII $(C(H2))$ C(H3) 123130 XIII C(H3) C(H3) 127130 XIII C(H3) C(H3) 127130 XIII C(H3) C(H3) 126127 XIII C(H3) C(H3) 126127 XVI C(H3) C(H3) 126127 XVIII C(H3) 126127 210 XXIII C(H3) Y 128130 XXIII C(H3) Y 128130	144 70,42	4,10	25,48	C ₁₆ H ₁₁ N ₅	70,31	4,06	25,63	64
Xie C ₃ I ₁ C ₁₁ C ₁₁ 123124 Xif $(C_{112})_{11}$ C ₁₁₃ C ₁₁₃ 123124 Xilla $(C_{112})_{11}$ C ₁₁₃ $(C_{112})_{11}$ 127130 Xilla Cl ₁₃ C(12)_{11} C ₁₁₃ 127130 Xilla Cl ₁₃ Cl ₁₃ C ₁₄₃ 127130 Xilla Cl ₁₃ Cl ₁₃ 128130 Xilla Cl ₁₃ 128130 2210 Xilla Cl ₁₃ Cl ₁₃ 128130 Xilla Cl ₁₃ 128130 210 Xilla Cl ₁₃ 128130 210 Xilla Cl ₁₃ 128130 210 <td>40 72,25</td> <td>4,40</td> <td>23,35</td> <td>C₁₈H₁₃N₅</td> <td>72,22</td> <td>4,38</td> <td>23,39</td> <td>67</td>	40 72,25	4,40	23,35	C ₁₈ H ₁₃ N ₅	72,22	4,38	23,39	67
XII $(-1)_1$ $(-1)_2$ <th< td=""><td>124 72.37</td><td>5,48</td><td>22,15</td><td>C₁₉H_{17N5}</td><td>72,36</td><td>5,43</td><td>22,20</td><td>57</td></th<>	124 72.37	5,48	22,15	C ₁₉ H _{17N5}	72,36	5,43	22,20	57
XIIIa CII214 9195 XIIIIa CII214 9195 XIIIIa CI13 127130 XIIIIa CI13 127130 XIIIA CI13 127130 XIIIA CI13 11 XIIIA CI13 127130 XIIIA CI13 130131 XIIIA CI13 128130 XIVA CCH214 128130 XVIA CCH214 128130 XVIA CCH214 128130 XVIA CCH214 128130 XVIIA CH314 128130 XVIIA CH314 128130 XXIIIA CH314 210 XXIIIA CH314 210 XXIIIA CH31 111172 XXIIIA CH31 111172 XXIIIA CH31 148150 XXIVA CH314 148150	.142 72,42	5,51	22,07	C ₁₉ H _{17N5}	72,36	5,43	22,20	52
XIIIa CII. CII. XIIIb CII. CII. XIIIb CII. CII. XIIIc II CII. XIIId CII. II. XIIId CII. CII. XIIId II. II. XIIId II. II. XIIId CH2.1 II. XIIId CH2.1 II. XVIa CH2.1 II. XVIIA CH3.1 210 XXIIIA CI1.1 II. XXIIIA CI1.1 II. XXIIIA CH3.1 2140 XXIIIA CH3.1 111172 XXIIIA CH3.1 148150	.95 67,25	4,31	23,17	C ₁₇ H ₁₃ N ₅ O	67,31	4,31	23,09	71
XIIIb CII, CH 106107 XIIIc II CH 106107 XIIId II CH 106107 XIIId II CH 130131 XIVa (CH) 128130 XIVa (CH) 128130 XVa (CH) 126127 XVa (CH) 126127 XVia (CH) 128130 XVII CII, CH 28130 XVIII CII, 128130 210 XXIII CII, CH 210 210 XXIII CII, CH 2140 2140 XXIII CH CH 214 215 XXIII CH CH 214 215 XXIII CH2 CH3 215 216 XXIII CH2 CH3 215 216 XXIII CH3 CH3 215 216	.130 69,92	4,99	20,31	C ₂₀ H ₁₇ N ₅ O	69,96	4,95	20,39	84
XIIIC I. C. I. CH3 I.30131 XIIId I. I. CH3 I.30131 I.30131 XIVa (CH2)3 (CH2)4 I.28130 I.28130 XVa (CH2)4 I.28130 I.26127 XVa (CH2)4 I.28130 I.28130 XVIIa (CH2)4 I.28130 >.128130 XXIIIa CI13 I.128130 >.140 XXIIId CH3 CH3 >.140 XXIIId CH3 CH3 >.140 XXIIId CH3 CH3 >.155 XXIIId CH3 CH3 >.155	107 68,15	4,81	22,01	C ₁₈ H ₁₅ N ₅ O	68,13	4,76	22,07	51
XIIId (CH2)3 (28130 XIVa (CH2)4 (28137 XVa (CH2)4 (26127 XVia (CH2)4 (28130 XVia (CH2)4 (28130 XVia (CH2)4 (28130 XVia (CH2)4 (28130 XVIIIb CI13 (21.3) XXIIIb CI13 (21.3)	131 67,36	4,33	23,04	C ₁₇ H ₁₃ N ₅ O	67,31	4,32	23,09	62
XIVa CH214 126127 XVa CH214 126127 XVa CH214 126127 XVia CH214 128130 XVIIa CH214 128130 XXIIIa CH314 >128130 XXIIIb CI13 CH314 >140 XXIIId CH31 CH3 >140 XXIIId CH3 CH3 >140 XXIIId CH3 CH3 >155 XXIVA CH314 CH3 >155	130 69,31	4,62	21,19	C ₁₉ H ₁₅ N ₅ O	69,29	4,59	21,26	58
XVa CH214 125126 XVia CH214 125126 XVia CH214 128130 XXIIIa CH314 >210 XXIIIb CH3 711172 XXIIId CH3 111 XXIIId CH3 111172 XXIIId CH33 111172 XXIIId CH33 155 XXIIIe CJ13 155	.127 69,88	5,01	20,16	C ₂₀ H ₁₇ N ₅ O	69,96	4,99	20,39	84
XVIa CH214 128130 XXIIIa CH214 >210 XXIIIb CH3 >140 XXIIIb CH3 >140 XXIIIc H CH3 >140 XXIIId CH3 CH3 >140 XXIIId H CH3 >140 XXIIId CH3 CH3 >140 XXIIId CH3 CH3 171172 XXIIId CH3 187188 >155 XXIVA CH3 CH3.150 >155	.126 63,71	3,99	23,35	C ₁₉ H ₁₄ N ₆ O ₂	63,68	3,94	23,45	70
XXIIIa CH314 XIIIa XII0 XXIIIb CI13 CH314 >140 XXIIIc I1 CH3 >140 XXIIIc I1 CH3 171172 XXIIId CH33 CH33 187188 XXIIIe CJ47 CH3 155 XXIVIE CJ43 CH34150 148150	130 58,21	3,63	17,81	C ₁₉ H ₁₄ BrN ₅	58,18	3,60	17.85	65
XXIIIB CII3 CH3 >140 XXIIIC I CH3 71172 XXIIId I CH3 171172 XXIIId CH33 187188 XXIIId CH33 187188 XXIIId CH43 148150 XXIV CH34 148150	10 75,51	5,36	16,05	C33H28N6O	75,55	5,37	16,02	38
XXIIIC I.1 C.1.3 C.1.3 171172 XXIIId I.1 C.1.3 I.171172 I.172188 XXIIId C.1.1.3 C.1.1.3 I.171172 XXIIId C.1.1.3 I.171172 XXIIId C.1.1.3 I.171172 XXIIId C.1.1.3 I.155 XXIVA C.1.1.3 I.481150	40 74,53	5,17	16,69	C ₃₁ H ₂₆ N ₆ O	74,68	5,26	16,87	34
XXIIIG (CH2)3 187188 XXIIIe C,147 187188 XXIIIe C,147 148150 XXIV (CH2)4 148150	.172 74,40	5,01	17,30	C30H24N6O	74,36	4,99	17,34	40
XXIIIe C ₃ H ₇ CH ₃ >155 XXIVa (CH ₂) ₄ (H ₃ 148150	.188 75,33	5,15	16,37	C ₃₂ H ₂₆ N ₆ O	75,28	5,13	16,46	47
XXIVa (CH2)4 148150	55 75,29	5,71	16,03	C33H30N6O	75,26	5,74	15,96	31
	150 65,60	4,52	17,02	C27H22N604	65,58	4,48	16,99	40
XXIVE CII, CII, 141142	142 64,12	4,32	17,82	C25H20N604	64,09	4,30	17,94	42
X X Va (CH3) 4 175176	176 70,42	5,41	13,80	C ₃₆ H ₃₃ N ₆ O ₄	70,46	5,42	13,69	41

-14

Fig. 1. Molecular structure of 5,6-tetramethylene-2-phenyl-1,2,3,4tetrahydropyridine-3,3,4,4-tetracarbonitrile (XIa).

Fig. 2. Molecular structure of 9-xx-1,3,5-triphenyl-1,2,3,4b,5,6,8a,9-octahydropyrido[3',4':3,4]pyrrolo[1,2-*a*][1,3,5]-triazine-4b,8a-dicarbonitrile (XXIIIa).

that the addition of the hydroxyl group to the cyano group, possibly through the formation of the bicyclic imidate (A), is the rate-determining step of the process. The observation that the conversion of compounds (VIII)-(X) into the bicycles (XX)-(XXII) is accelerated in the presence of basic compounds is in agreement with this.

It is possible that compounds (VIII)-(X) are also intermediates in the synthesis of the tetrahydropyridines (XI)-(XVI). This is indicated by the quantitative conversion of piperidines (VIII)-(X) into the tetrahydropyridines (XI)-(XVI) in glacial acetic acid. In this case the nucleophilicity of the hydroxyl group of compounds (VIII)-(X) is reduced due to the acid character of the solvent (most of all by protonation), consequently they are stabilized by elimination of water and the formation of the tetrahydropyridines (XI)-(XVI).

Fig. 3. Molecular structure of 6-hydroxy-5,6-tetramethylene-2phenylpiperidine-3,3,4,4-tetracarbonitrile (VIIIa).

II, VIII, XI, XVII, XX, XXIII Ar – Ph; III, IX, XII, XVIII, XXI, XXIV Ar – 2-Fu; IV, XIII, XIX, XXII, XXV Ar – p-MeOC₆H₄; V, XIV Ar – o-MeOC₆H₄; VI, XV Ar – m-O₂NC₆ VII, XVI Ar – p-BrC₆H₄

We were unsuccessful in isolating the intermediate precursors of compounds (VIII)-(X) but on the basis of some indirect data it was possible to judge the routes forming alcohols (VIII)-(X). It may be proposed that the first step in the reaction of 4-oxoalkane-1,1,2,2,-tetracarbonitriles (I) with 2,4-diazapenta-1,4-dienes (II)-(VII) is the addition of a strong CH acid at the C=N double bond with the formation of intermediate B. This is analogous to the hypothesis given by us previously in [1] regarding the reaction of ethane-1,1,2,2-tetracarbonitrile with the diazadienes (II)-(VII). Several routes are possible for the conversion of intermediate B. The first of these is an intramolecular nucleophilic addition at the C=O double bond with the formation of a compound with linear structure D. The problem of how the alcohols (VIII)-(X) are formed [rrom intermediates C by nucleophilic substitution or by addition of cyanide (I) to aldimine] remains open. On carrying out the reaction in an absolute aprotic solvent (such as acetonitrile) and a reactant ratio of cyanide (Ia) to

Fig. 4. Molecular structure of 5,6-tetramethylene-2-(2-furyl)-3,3,4-tricyano-2,3,4,5-tetrahydropyridine-4-carboxamide (XVIIIa).

diazadiene (II) of 2:1, compound (VIIIa) is formed in $\sim 50\%$ yield (calculated on cyanide taken), which indicates the possibility of forming a compound of linear structure D. An increase in the yield of compounds (VIII)-(X) to 60-70\% on carrying out the reaction in a protic solvent suggests that the addition of the protic solvent at the C==N bond of intermediate D may also lead to the preparation of compounds (VIII)-(X).

EXPERIMENTAL

The IR spectra were taken on a UR 20 instrument for samples in Nujol, the ¹H and ¹³C NMR spectra on a Gemini 300 (Varian) spectrometer at frequencies of 300 and 75 MHz respectively, hexamethyldisiloxane being the internal standard. The unit cell parameters and the intensities of reflections for the x-ray structural analysis were measured with a Siemens automatic four-circle diffractometer P3/PC (λ MoK α , graphite monochromator, $\theta/2\theta$ scanning). The structures of the compounds investigated were solved by the direct method and refined by the full-matrix least squares method in an anisotropic approach for the nonhydrogen atoms. The hydrogen atoms were located objectively with a Fourier difference synthesis and refined in an isotropic approach. All calculations were carried out on an IBM PC/AT-486 with the SHELXTLPLUS and SHELXL-93 programs. The coordinates of atoms, bond lengths, valence angles, and temperature parameters have been deposited with the Cambridge Center for Crystallographic Data. The purity of the synthesized compounds and the degree of completeness of reactions were established by TLC (Silufol UV 254).

Atom	x	y	2	U(eq)
O(1)	1521(2)	3597(1)	6669(2)	27(1)
N(1)	515(3)	4091(1)	4506(2)	22(1)
N(31)	4079(3)	3348(1)	1438(3)	54(1)
N(32)	2658(3)	4845(1)	2231 (2)	34(1)
N(41)	4613(3)	3023(1)	5731 (3)	40(1)
N(42)	6673(3)	4346(1)	4508(3)	39(1)
C(2)	1076(3)	3739(1)	3485(3)	22(1)
C(21)	-60(3)	3698(1)	2022(3)	23(1)
C(22)	-969(3)	4101(1)	1423(3)	28(1)
C(23)	-1994(3)	4059(1)	74(3)	34(1)
C(24)	-2125(3)	3613(1)	-689(3)	38(1)
C(25)	-1235(4)	3206(1)	-94(3)	40(1)
C(26)	-209(3)	3247(1)	1257(3)	31(1)
C(3)	2790(3)	3931(1)	3265(3)	22(1)
C(31)	3509(3)	3606(1)	2219(3)	31(1)
C(32)	2689(3)	4449(1)	2668(3)	25(1)
C(4)	3915(3)	3941(1)	4854(3)	21(1)
C(41)	4260(3)	3421(1)	5370(3)	25(1)
C(42)	5482(3)	4167(1)	4663(3)	25(1)
C(5)	3117(3)	4260(1)	5982(3)	21(1)
C(6)	4100(3)	4276(1)	7547(3)	. 26(1)
C(7)	3299(3)	4625(1)	8543(3)	32(1)
C(8)	1562(3)	4479(1)	8580(3)	31(1)
C(9)	593(3)	4445(1)	7003(3)	27(1)
C(10)	1388(3)	4087(1)	6023(3)	22(1)
N(15)	-1320(4)	3048(1)	5480(4)	67(1)
C(1S)	-1932(4)	2783(1)	4593(4)	46(1)
C(2S)	-2730(6)	2448(2)	3453(5)	63(1)

TABLE 2. Coordinates of Nonhydrogen Atoms ($\times 10^4$) and Coefficients of Equivalent Isotropic Displacement (Å² $\times 10^3$) for Compound (VIIIa)

TABLE 3. Bond Lengths and Valence Angles in the Compound (VIIIa) Molecule

Bond	λ. Α	Angle	ω, deg	Angle	ω, deg
$O_{(1)} - C_{(10)}$	1,431(3)	$C_{(2)} - N_{(1)} - C_{(10)}$	115,3(2)	$C_{(31)} - C_{(3)} - C_{(2)}$	111,1(2)
N(1)-C(10)	1,447(3)	$N_{(1)}-C_{(2)}-C_{(3)}$	105,2(2)	$C_{(31)} - C_{(3)} - C_{(4)}$	109,8(2)
$N_{(32)} - C_{(32)}$	1,130(3)	$C_{(22)} - C_{(21)} - C_{(26)}$	118,8(2)	$C_{(2)} - C_{(3)} - C_{(4)}$	108,8(2)
N(42)-C(42)	1,137(3)	$C_{(26)} - C_{(21)} - C_{(2)}$	119,7(2)	$N_{(32)} - C_{(32)} - C_{(3)}$	178,0(3)
$C_{(2)} - C_{(3)}$	1,570(3)	$C_{(24)} - C_{(23)} - C_{(22)}$	120,0(3)	$C_{(41)} - C_{(4)} - C_{(5)}$	113,2(2)
C(21)-C(26)	1,384(4)	$C_{(24)} - C_{(25)} - C_{(26)}$	120,4(3)	$C_{(41)} - C_{(4)} - C_{(3)}$	109,2(2)
C(23)-C(24)	1,374(4)	$C_{(31)} - C_{(3)} - C_{(32)}$	108,9(2)	$C_{(5)}-C_{(4)}-C_{(3)}$	109,9(2)
C(25)-C(26)	1,383(4)	$C_{(32)}-C_{(3)}-C_{(2)}$	110,4(2)	N(42)-C(42)-C(4)	179,1(3)
C(3)-C(32)	1,482(4)	$C_{(32)} - C_{(3)} - C_{(4)}$	107,8(2)	$C_{(6)} - C_{(5)} - C_{(4)}$	113,2(2)
C(4)-C(41)	1,480(4)	N(31)-C(31)-C(3)	178,4(3)	$C_{(7)} - C_{(6)} - C_{(5)}$	109,8(2)
C(4)-C(5)	1,555(3)	C(41)-C(4)-C(42)	106,6(2)	$C_{(7)} - C_{(8)} - C_{(9)}$	111,9(2)
C(5)-C(10)	1,530(3)	C(42)-C(4)-C(5)	109,3(2)	$O_{(1)}-C_{(10)}-N_{(1)}$	112,8(2)
C(7)-C(8)	1,516(4)	$C_{(42)} - C_{(4)} - C_{(3)}$	108,5(2)	$N_{(1)}-C_{(10)}-C_{(9)}$	109,8(2)
C(9)-C(10)	1,524(3)	N(41) - C(41) - C(4)	175,8(3)	N(1) - C(10) - C(5)	108,7(2)
N(1)-C(2)	1,444(3)	$C_{(0)} - C_{(5)} - C_{(10)}$	111,6(2)		
N(31)-C(31)	1,141(3)	$C_{(10)} - C_{(5)} - C_{(4)}$	110,8(2)		
$N_{(41)} - C_{(41)}$	1,140(3)	$C_{(8)} - C_{(7)} - C_{(6)}$	111,7(2)		
$C_{(2)} - C_{(21)}$	1,508(3)	$C_{(10)} - C_{(9)} - C_{(8)}$	111.0(2)		
C(21)-C(22)	1,382(3)	O(1) - C(10) - C(9)	110,7(2)		
C(22)-C(23)	1,382(4)	$O_{(1)} - C_{(10)} - C_{(5)}$	105,7(2)		
C(24)-C(25)	1,379(4)	$C_{(9)} - C_{(10)} - C_{(5)}$	109,0(2)		
$C_{(3)} - C_{(31)}$	1,478(4)	$N_{(1)}-C_{(2)}-C_{(21)}$	112,3(2)		
C(3)-C(4)	1,589(3)	$C_{(21)}-C_{(2)}-C_{(3)}$	112,6(2)		
C(4)-C(42)	1,482(4)	$C_{(22)}-C_{(21)}-C_{(2)}$	121,5(2)	l	
C(5)-C(6)	1,521(3)	$C_{(23)}-C_{(22)}-C_{(21)}$	120,9(3)		
C(6)-C(7)	1,520(4)	$C_{(23)}-C_{(24)}-C_{(25)}$	119,6(3)		
C(8)-C(9)	1,527(4)	$C_{(26)} - C_{(25)} - C_{(21)}$	120,2(3)		

-

Bond	λ. λ	Angle	ω. deg	Angle	ω. deg
O(22)-C(21)	1,355(2)	$C_{(21)} - O_{(22)} - C_{(23)}$	106,0(2)	$C_{(10)} - N_{(1)} - C_{(2)}$	121,5(2)
$O_{(41)} - C_{(41)}$	1,222(2)	$N_{(1)}-C_{(2)}-C_{(21)}$	110,7(2)	$N_{(1)} - C_{(2)} - C_{(3)}$	113,2(1)
$N_{(1)} - C_{(2)}$	1,453(2)	C(21)-C(2)-C(3)	109,0(1)	C(25)-C(21)-O(22)	110,6(2)
$N_{(32)} - C_{(32)}$	1,139(2)	C(25)-C(21)-C(2)	129,9(2)	$O_{(22)} - C_{(21)} - C_{(2)}$	119,3(2)
N(42)-C(42)	1,138(2)	$C_{(24)} - C_{(23)} - O_{(22)}$	110,0(2)	$C_{(23)} - C_{(24)} - C_{(25)}$	107,1(2)
$C_{(2)} - C_{(3)}$	1,581(2)	$C_{(21)} - C_{(25)} - C_{(24)}$	106,2(2)	$C_{(32)} - C_{(3)} - C_{(31)}$	109,3(2)
C(23)-C(24)	1,312(4)	$C_{(32)} - C_{(3)} - C_{(4)}$	110,4(1)	$C_{(31)} - C_{(3)} - C_{(4)}$	107,6(1)
$C_{(3)} - C_{(32)}$	1,473(3)	$C_{(32)} - C_{(3)} - C_{(2)}$	108,2(2)	$C_{(31)} - C_{(3)} - C_{(2)}$	109,3(1)
$C_{(3)} - C_{(4)}$	1,571(2)	$C_{(4)} - C_{(3)} - C_{(2)}$	112,0(1)	$N_{(31)}-C_{(31)}-C_{(3)}$	177,5(2)
$C_{(4)} - C_{(41)}$	1,554(2)	N(32) - C(32) - C(3)	177,8(2)	$C_{(42)} - C_{(4)} - C_{(41)}$	110,5(1)
$C_{(5)} - C_{(10)}$	1,521(2)	$C_{(42)} - C_{(4)} - C_{(5)}$	108,9(1)	$C_{(41)} - C_{(4)} - C_{(5)}$	111,0(1)
$C_{(6)} - C_{(7)}$	1,521(3)	$C_{(42)} - C_{(4)} - C_{(3)}$	107,1(1)	$C_{(41)} - C_{(4)} - C_{(3)}$	110,5(1)
C(8)-C(9)	1,526(3)	$C_{(5)} - C_{(4)} - C_{(3)}$	108,8(1)	$O_{(41)} - C_{(41)} - N_{(41)}$	124,8(2)
O(22)-O(23)	1,378(3)	$O_{(41)} - C_{(41)} - C_{(4)}$	117,8(2)	N(41)-C(41)-C(4)	117,3(2)
$N_{(1)} - C_{(10)}$	1,272(2)	N(42)-C(42)-C(4)	177,9(2)	$C_{(10)} - C_{(5)} - C_{(6)}$	112,2(1)
N(31)-C(31)	1,138(2)	$C_{(10)} - C_{(5)} - C_{(4)}$	113,9(2)	$C_{(6)} - C_{(5)} - C_{(4)}$	111,5(2)
$N_{(41)} - C_{(41)}$	1,317(2)	$C_{(7)} - C_{(6)} - C_{(5)}$	111,1(2)	$C_{(8)}-C_{(7)}-C_{(6)}$	110,0(2)
$C_{(2)} - C_{(21)}$	1,494(2)	$C_{(7)} - C_{(8)} - C_{(9)}$	110,2(2)	$C_{(10)} - C_{(9)} - C_{(8)}$	113,1(2)
$C_{(21)} - C_{(25)}$	1,326(3)	$N_{(1)}-C_{(10)}-C_{(9)}$	118,2(2)	$N_{(1)}-C_{(10)}-C_{(5)}$	127,9(2)
C(24)-C(25)	1,425(4)	$C_{(9)} - C_{(10)} - C_{(5)}$	113,8(2)		
$C_{(3)} - C_{(31)}$	1,477(2)				
C(4)-C(42)	1,479(2)				
C(4)-C(5)	1,557(2)				
$C_{(5)} - C_{(6)}$	1,536(2)				
C(7)-C(8)	1,514(3)				
C(9)-C(10)	1,505(3)				

TABLE 4. Bond Lengths and Valence Angles in the Molecule of Compound (XVIIa)

6-Hydroxy-5,6-tetramethylene-2-phenylpiperidine-3,3,4,4-tetracarbonitrile (VIIIa) $C_{19}H_{17}N_5O$. A. Ketone (Ia) (0.45 g: 2 mmole) and diene (II) (0.3 g: 1 mmole) were dissolved with stirring in acetonitrile (5 ml). After 15-20 min a precipitate began to form. At the end of the reaction (TLC) the solid was filtered off, washed with cold isopropyl alcohol, and dried in vacuum to constant weight. A colorless crystalline substance (0.3 g: 45%) of mp >150°C (decomp.) was obtained. IR spectrum (thin film): 2265 ($\nu C \equiv N$), 3345 ($\nu N - H$), 3535 cm⁻¹ ($\nu O - H$).

B. Ketone (Ia) (0.45 g: 2 mmole) and diene (II) (0.3 g: 1 mmole) were dissolved with stirring in isopropyl alcohol (5 ml) at 15° C. At the end of the reaction (TLC) the resulting solid was filtered off, washed with cold isopropyl alcohol, and dried in vacuum. The yield of compound (VIIIa) was 0.3 g (60%).

X-Ray Structural Investigation of Compound (VIIIa). Transparent colorless crystals of compound (VIIIa) were removed from the reaction mixture (method A). Principal crystallographic data: monoclinic crystals ($C_{19}H_{17}N_5O\cdot C_2H_3N$); at 153°K a = 8.399(3), b = 26.741(8), c = 9.005(2) Å, $\beta = 98.81(2)^\circ$, $\alpha = 90.00(2)^\circ$, $\gamma = 90.00(2)^\circ$, V = 1998.6(10) Å³, d = 1.238 g/cm³, space group P2₁/n, Z = 4, F(000) = 784. Total reflections measured 3786, $\theta_{max} = 25.05^\circ$. Final divergence factors were $R_1 = 0.0580$ for 3524 independent reflections with I > 2 σ (I) and wR₂ = 0.1392 at each of 3538 independent reflections.

2-(p-Bromophenyl-6-hydroxy-5,6-tetramethylenepiperidine-3,3,4,4-tetracarbonitrile (Xa) $C_{19}H_{16}BrN_5O$. Ketone (Ia) (0.45 g: 2 mmole) and diene (VIIc) (0.53 g: 1 mmole) were dissolved with stirring in acetonitrile (5 ml), the solid which precipitated after 20-30 min was filtered off, washed with cold isopropyl alcohol, and dried in the air. A white crystalline substance (0.36 g: 40%) of mp 65°C was obtained. Found, %: C 55.34; H 4.21; N 19.04. $C_{19}H_{16}BrN_5O \cdot C_2H_3N$. Calculated, %: C 55.81; H 4.24; N 18.62. IR spectrum: 2270 ($\nu C \equiv N$), 3330 ($\nu N - H$), 3340 cm⁻¹ ($\nu O - H$).

6-Hydroxy-5,6-tetramethylene-2-(2-furyl)piperidine-3,3,4,4-tetracarbonitrile (IXa) $C_{17}H_{15}N_5O_2$. Ketone (Ia) (0.45 g: 2 mmole) and diene (III) (0.27 g: 1 mmole) were suspended in isopropyl alcohol (5 ml) at 15°C. The new crystalline substance formed as the reactants dissolved. At the end of the reaction (TLC) the precipitate was filtered off, washed, and dried in vacuum to constant weight. A white crystalline substance (0.45 g: 70%) of mp 83°C (decomp.) was obtained. Found, %: C 63.41; H 4.78; N 21.22. $C_{17}H_{15}N_5O_2$. Calculated, %: C 63.54; H 4.71; N 21.79. IR spectrum: 2270 ($\nu C \equiv N$), 3330 (νN -H), 3500 cm⁻¹ (νO -H).

5,6-Tetramethylene-3,3,4-tricyano-2-phenyl-2,3,4,5-tetrahydropyridine-4-carboxamide (XVIIa) $C_{19}H_{17}N_5O$. Diene (II) (0.3 g: 1 mmole) was added to a suspension of ketone (Ia) (0.45 g: 2 mmole) in isopropyl alcohol (5 ml) at 25°C and the mixture stirred until a clear solution was formed, keeping the temperature of the reaction mixture at 25-30°C. After 10-15 min

Атом	x	у	:	U(eq)
O(22)	7498(2)	3235(1)	3539(1)	38(1)
O(41)	9623(2)	931(1)	902(1)	31(1)
N(1)	9997(2)	2478(1)	2928(1)	23(1)
N(31)	7735(2)	1233(1)	4755(2)	39(1)
N(32)	5685(2)	655(1)	1324(2)	42(1)
N(41)	9622(2)	-588(1)	1220(1)	26(1)
N(42)	8707(2)	-1007(1)	3671(1)	31(1)
C(2)	8520(2)	2171(1)	2353(2)	19(1)
C(21)	7352(2)	2830(1)	2532(2)	23(1)
C(23)	6226(3)	3751(2)	3471(2)	44(1)
C(24)	5344(3)	3664(2)	2479(3)	46(1)
C(25)	6068(3)	3064(2)	1857(2)	31(1)
C(3)	8120(2)	1182(1)	2718(1)	18(1)
C(31)	7876(2)	1221(1)	3861 (2)	23(1)
C(32)	6736(2)	881(1)	1948(2)	25(1)
C(4)	9412(2)	478(1)	2719(1)	18(1)
C(41)	9556(2)	277(1)	1509(1)	20(1)
C(42)	9036(2)	-368(1)	3254(1)	21(1)
C(5)	10895(2)	876(1)	3430(1)	19(1)
C(6)	12263(2)	390(1)	3177(2)	26(1)
C(7)	13704(2)	766(2)	3896(2)	· 32(1)
C(8)	13821(2)	1783(2)	3692(2)	33(1)
C(9)	12498(2)	2287(1)	3973(2)	32(1)
C(10)	11013(2)	1912(1)	3366(1)	22(1)

TABLE 5. Coordinates of Nonhydrogen Atoms ($\times 10^4$) and Coefficients of Equivalent Isotropic Displacement ($\dot{A}^2 \times 10^3$) for Compound (XVIIa)

the solid formed was filtered off, washed with cold isopropyl alcohol, and dried to constant weight in vacuum. The yield of compound (XVIIa) was 0.45 g (68%) of mp 125-130°C (decomp.). Found, %: C 68.52; H 5.29; N 21.06. $C_{19}H_{17}N_5O$. Calculated, %: C 68.74; H 5.24; N 21.19. IR spectrum: 1615, 1645 (ν C=N, δ NH₂); 1690 (ν C=O); 2260 (ν C = N); 3170, 3330 cm⁻¹ (ν_s NH₂, ν_{as} NH₂). ¹³C NMR spectrum (acetone-D₆): $C_{(2)} \delta$ 61.73; $C_{(3)}$ 44.97; $C_{(4)}$ 52.77; $C_{(5)}$ 41.28; $C_{(CN)}$ 117.42; 113.24; 112.03; $C_{(CONH_2)}$ 163.11; $C_{(CH_2)}$ 28.45; 25.10; 26.15; 38.73; $C_{(C_6H_5)}$ 129.01; 131.03; 114.41; 142.18; 161.16 ppm.

5,6-Tetramethylene-2-(p-methoxyphenyl)-3,3,4-tricyano-2,3,4,5-tetrahydropyridine-4-carboxamide (XIXa) $C_{20}H_{19}N_5O_2$ was obtained analogously to compound (XVIIa) using diene (IV) (0.39 g: 1 mmole) at a reaction temperature of 15-20°C. Yield was 0.43 g (60%) of mp 77-78°C (decomp.). Found, %: C 66.47; H 5.25; N 19.28. $C_{20}H_{19}N_5O_2$. Calculated, %: C 66.47; H 5.30; N 19.38. IR spectrum: 1660 (ν C=N, δ NH₂); 1700 (ν C=O); 2260 (ν C = N); 3130, 3220 cm⁻¹ (ν_s NH₂, ν_{as} NH₂).

5,6-Tetramethylene-2-(2-furyl)-3,3,4-tricyano-2,3,4,5-tetrahydropyridine-4-carboxamide (XVIIIa) $C_{17}H_{15}N_5O_2$. Ketone (Ia) (0.45 g: 2 mmole) and diene (III) (0.268 g: 1 mmole) were dissolved in acetonitrile (5 ml). The reaction mixture was maintained at room temperature for 2 h, the precipitate formed was filtered off, washed with cold isopropyl alcohol, and dried in vacuum to constant weight. A white crystalline substance (0.49 g: 75%) was obtained having mp > 130°C (decomp.). Found, %: C 63.51; H 4.70; N 21.85. $C_{17}H_{15}N_5O_2$. Calculated, %: C 63.54; H 4.71; N 21.79. IR spectrum: 1650 (ν C==N, ν NH₂); 1690 (ν C==O); 2260 (ν C = N); 3150, 3270 cm⁻¹ (ν_s NH₂, ν_{as} NH₂).

X-Ray Structural Investigation of Compound (XVIIIa). Clear colorless crystals were selected from the reaction mixture. Principal crystallographic data: the crystals of compound (XVIIIa) were monoclinic, at 153°K a = 9.193(2), b = 14.605(3), c = 12.323(2) Å, $\beta = 103.01(2)^\circ$, V = 1612.1(5) Å³, $d_{calc} = 1.324$ g/cm³, space group P2₁/c, Z = 4, F(000) = 672. Reflections measured were 5563, $\theta_{max} = 27^\circ$. Final divergence factors were R₁ = 0.058 for 5235 independent reflections with I > 2 σ (I) and wR₂ = 0.129 at each of 5271 independent reflections.

3-Amino-6,7-tetramethylene-1-oxo-4-phenyl-3a,4,5,7a-tetrahydro-1H-pyrrolo[3,4-c]pyridine-3a,7a-dicarbonitrile (XXa) $C_{19}H_{17}N_5O$. A. Compound (VIIIa) (0.33 g: 1 mmole) was dissolved with heating in isopropyl alcohol (3 ml), the solution was cooled, and the resulting solid was filtered off. The solid was washed with cold isopropyl alcohol, and dried in vacuum to constant weight. A colorless crystalline substance (0.31 g: 94%) of mp 208-210°C (decomp.) was obtained. Found, %: C 68.31; H 5.15; N 21.10. $C_{19}H_{17}N_5O$. Calculated, %: C 68.87; H 5.15; N 21.13. IR spectrum: 1566, 1650 (νC ==N, νNH_2); 1730 (νC ==O); 2265 (νC = N); 3325 cm⁻¹ (νN -H). ¹³C NMR spectrum (DMSO-D₆): $C_{(1)} \delta$ 179.37; $C_{(3)}$ 178.14;

Bond	λ. λ	Angle	ω, deg	Angle	ω. deg
$\begin{array}{c} N_{(1)}-C_{(8A)} \\ N_{(31)}-C_{(31)} \\ N_{(41)}-C_{(41)} \\ C_{(2)}-C_{(21)} \\ C_{(21)}-C_{(26)} \\ C_{(22)}-C_{(23)} \\ C_{(24)}-C_{(25)} \end{array}$	A. A 1,386(1) 1,143(1) 1,140(1) 1,509(1) 1,392(1) 1,386(1) 1,385(2)	Angle $C_{(8A)} - N_{(1)} - C_{(2)}$ $N_{(1)} - C_{(2)} - C_{(3)}$ $C_{(26)} - C_{(21)} - C_{(22)}$ $C_{(22)} - C_{(21)} - C_{(2)}$ $C_{(22)} - C_{(23)} - C_{(24)}$ $C_{(24)} - C_{(25)} - C_{(26)}$ $C_{(31)} - C_{(3)} - C_{(32)}$	ω. deg 118,04(7) 105,79(7) 119,45(9) 118,58(8) 120,0(1) 119,9(1) 109,34(7)	Angle $N_{(1)}-C_{(2)}-C_{(21)}$ $C_{(21)}-C_{(2)}-C_{(3)}$ $C_{(26)}-C_{(21)}-C_{(2)}$ $C_{(23)}-C_{(22)}-C_{(21)}$ $C_{(25)}-C_{(24)}-C_{(23)}$ $C_{(25)}-C_{(26)}-C_{(21)}$ $C_{(31)}-C_{(3)}-C_{(2)}$	\$\mathcal{D}\$ deg 112,76(7) 113,10(7) 121,96(8) 120,23(9) 120,17(9) 120,22(9) 110,29(7) 10,29(7)
$\begin{array}{c} C_{(25)}-C_{(26)}\\ C_{(3)}-C_{(31)}\\ C_{(3)}-C_{(32)}\\ C_{(3)}-C_{(4)}\\ C_{(4)}-C_{(4)}\\ C_{(4)}-C_{(42)}\\ C_{(4)}-C_{(42)}\\ C_{(4)}-C_{(43)}\\ C_{(43)}-C_{(5)}\\ C_{(5)}-C_{(6)}\\ C_{(5)}-C_{(7)}\\ C_{(7)}-C_{(8)}\\ \end{array}$	1,392(1) 1,477(1) 1,480(1) 1,583(1) 1,487(1) 1,488(1) 1,523(1) 1,346(1) 1,509(1) 1,525(1) 1,524(1) 1,525(1)	$\begin{array}{c} C_{(32)}-C_{(3)}-C_{(2)}\\ C_{(32)}-C_{(3)}-C_{(4)}\\ N_{(31)}-C_{(31)}-C_{(3)}\\ C_{(41)}-C_{(4)}-C_{(42)}\\ C_{(42)}-C_{(4)}-C_{(4)}\\ C_{(42)}-C_{(4)}-C_{(3)}\\ N_{(41)}-C_{(41)}-C_{(4)}\\ C_{(8A)}-C_{(4A)}-C_{(5)}\\ C_{(5)}-C_{(4A)}-C_{(4)}\\ C_{(7)}-C_{(6)}-C_{(5)}\\ C_{(8A)}-C_{(8)}-C_{(7)}\\ C_{(8A)}-C_{(8)}-C_{(7)}\\ C_{(8A)}-C_{(8)}-C_{(7)}\\ C_{(8A)}-C_{(8A)}-C_{(7)}\\ \end{array}$	111,79(7) 108,63(7) 178,9(1) 109,28(7) 109,28(7) 108,25(7) 176,8(1) 124,29(8) 115,53(7) 110,45(8) 113,13(8) 121,50(8)	$C_{(31)}-C_{(3)}-C_{(4)}$ $C_{(2)}-C_{(3)}-C_{(4)}$ $N_{(32)}-C_{(32)}-C_{(3)}$ $C_{(41)}-C_{(4)}-C_{(4A)}$ $C_{(41)}-C_{(4)}-C_{(3)}$ $C_{(4A)}-C_{(4)}-C_{(3)}$ $N_{(42)}-C_{(42)}-C_{(4)}$ $C_{(8A)}-C_{(4A)}-C_{(4)}$ $C_{(4A)}-C_{(5)}-C_{(6)}$ $C_{(6A)}-C_{(8A)}-N_{(1)}$ $N_{(1)}-C_{(8A)}-N_{(1)}$	109,90(7) 106,85(7) 175,5(1) 109,37(7) 109,41(7) 111,86(7) 176,93(9) 120,19(8) 112,20(8) 111,40(8) 123,21(8) 115,28(8)
$\begin{array}{c} -(7) & -(6) \\ C(8) - C_{(8A)} \\ N_{(1)} - C_{(2)} \\ N_{(32)} - C_{(32)} \\ N_{(42)} - C_{(42)} \\ C_{(2)} - C_{(3)} \\ C_{(21)} - C_{(22)} \\ C_{(23)} - C_{(24)} \end{array}$	1,504(1) 1,443(1) 1,142(1) 1,143(1) 1,573(1) 1,395(1) 1,391(2)			···(1) — ~(8A) — ~(8)	. 10,20(8)

TABLE 6. Bond Lengths and Valence Angles in the Compound (XIa) Molecule

TABLE 7. Coordinates of Nonhydrogen Atoms ($\times 10^4$) and Coefficients of Equivalent Isotropic Displacement ($\dot{A}^2 \times 10^3$) for Compound (XIa)

Атом	x	у	2	U(eq)
N(1)	4410(1)	-863(1)	7494(1)	17(1)
N(31)	4135(2)	2428(2)	8878(1)	34(1)
N(32)	-1944(1)	4427(1)	7997(1)	29(1)
N(41)	2531(1)	6467(1)	6900(1)	28(1)
N(42)	-605(1)	3757(1)	5739(1)	25(1)
C(2)	2283(1)	115(1)	7644(1)	15(1)
C(21)	1632(1)	-850(1)	8422(1)	16(1)
C(22)	-292(2)	-783(2)	8424(1)	23(1)
C(23)	-921 (2)	-170(2)	9118(1)	28(1)
C(24)	370(2)	-2701(2)	9813(1)	27(1)
C(25)	2269(2)	-2746(2)	9823(1)	27(1)
C(26)	2903(2)	-1821(2)	9128(1)	23(1)
C(3)	1841(1)	2291(1)	7701(1)	15(1)
C(31)	3147(1)	2368(1)	8359(1)	19(1)
C(32)	-289(2)	3458(1)	7897(1)	19(1)
C(4)	2309(1)	3179(1)	6795(1)	15(1)
C(41)	2383(1)	5061(1)	6861(1)	19(1)
C(42)	645(1)	3556(1)	6196(1)	17(1)
C(4A)	4292(1)	1802(1)	6451(1)	15(1)
C(5)	5106(1)	2691(1)	5702(1)	21(1)
C(6)	6771(1)	1149(2)	5255(1)	22(1)
C(7)	8230(1)	-440(1)	5907(1)	22(1)
C(8)	7172(1)	-1464(1)	6494(1)	20(1)
C(8A)	5196(1)	-75(1)	6809(1)	15(1)

 $\begin{array}{ccccccc} C_{(4)} \ 63.13; \ C_{(6)} \ 95.51; \ C_{(7)} \ 141.67; \ C_{(3a)}, \ C_{(7a)} \ 56.40; \ 56.88; \ C_{(CN)} \ 117.13; \ 114.70; \ C_{(CH_2)} \ 22.86; \ 23.64; \ 25.85; \ 27.97; \ C_{(C_6H_5)} \ 129.03; \ 129.40; \ 130.57; \ 136.27 \ ppm. \end{array}$

r

Bond	λ, λ	Angle	ω. deg	Angle	ω. deg
O(1)-C(14)	1,206(2)	C(4A)-N(5)-C(6)	119,7(1)	C(8)-N(9)-C(10)	115,9(1)
N(5)-C(4A)	1,390(2)	$C_{(12)}-N_{(11)}-C_{(10)}$	113,0(1)	$C_{(14)} - N_{(13)} - C_{(8)}$	114,5(1)
N(5)-C(6)	1,448(2)	$C_{(14)} - N_{(13)} - C_{(12)}$	126,2(1)	$C_{(8)} - N_{(13)} - C_{(12)}$	119,0(1)
N ₍₉₎ -C ₍₈₎	1,265(2)	$C_{(15A)} - C_{(1)} - C_{(2)}$	112,0(2)	$C_{(3)} - C_{(2)} - C_{(1)}$	110,3(2)
$N_{(9)} - C_{(10)}$	1,489(2)	$C_{(4)} - C_{(3)} - C_{(2)}$	109,1(2)	$C_{(4A)} - C_{(4)} - C_{(3)}$	112,3(2)
$N_{(11)} - C_{(12)}$	1,446(2)	$C_{(15A)} - C_{(4A)} - N_{(5)}$	123,5(2)	$C_{(15A)} - C_{(4A)} - C_{(4)}$	122,1(2)
$N_{(11)} - C_{(10)}$	1,464(2)	N(5)-C(4A)-C(4)	114,3(1)	N(5) - C(6) - C(18)	115,8(1)
$N_{(13)} - C_{(14)}$	1,371(2)	N(5)-C(6)-C(7)	107,0(1)	$C_{(18)} - C_{(6)} - C_{(7)}$	113,2(1)
N(13)-C(8)	1,384(2)	$C_{(16)} - C_{(7)} - C_{(8)}$	105,8(1)	$C_{(16)} - C_{(7)} - C_{(6)}$	110,7(1)
N ₍₁₃₎ —C ₍₁₂₎	1,476(2)	C(8)-C(7)-C(6)	111,3(1)	$C_{(16)} - C_{(7)} - C_{(15)}$	111,5(1)
$N_{(16)} - C_{(16)}$	1,145(2)	$C_{(8)} - C_{(7)} - C_{(15)}$	102,9(1)	C(6)-C(7)-C(15)	114,3(1)
$N_{(17)} - C_{(17)}$	1,144(2)	N(9)-C(8)-N(13)	127,0(1)	N(9)-C(8)-C(7)	124,6(1)
C(1)-C(15A)	1,511(2)	$N_{(13)} - C_{(8)} - C_{(7)}$	108,0(1)	N(11)-C(10)-N(9)	114,6(1)
$C_{(1)} - C_{(2)}$	1,530(3)	N(11)-C(10)-C(24)	108,5(1)	N(9)-C(10)-C(24)	110,2(1)
C ₍₂₎ -C ₍₃₎	1,517(3)	$N_{(11)} - C_{(12)} - N_{(13)}$	108,9(1)	$N_{(11)} - C_{(12)} - C_{(30)}$	112,4(1)
C ₍₃₎ C ₍₄₎	1,516(2)	N(13)-C(12)-C(30)	110,9(1)	O(1)-C(14)-N(13)	126,1(1)
C(4)-C(4A)	1,504(2)	O(1)-C(14)-C(15)	126,9(1)	N(13)-C(14)-C(15)	106,8(1)
C(4A)-C(15A)	1,348(2)	$C_{(17)} - C_{(15)} - C_{(15A)}$	112,2(1)	$C_{(17)} - C_{(15)} - C_{(14)}$	110,4(1)
C(6)-C(18)	1,527(2)	$C_{(15A)} - C_{(15)} - C_{(14)}$	104,1(1)	$C_{(17)} - C_{(15)} - C_{(7)}$	113,3(1)
C ₍₆₎ —C ₍₇₎	1,553(2)	$C_{(15A)} - C_{(15)} - C_{(7)}$	112,9(1)	$C_{(14)} - C_{(15)} - C_{(7)}$	102,8(1)
C ₍₇₎ —C ₍₁₆₎	1,475(2)	$C_{(4A)} - C_{(15A)} - C_{(1)}$	122,9(2)	$C_{(4A)} - C_{(15A)} - C_{(15)}$	120,2(1)
C ₍₇₎ —C ₍₈₎	1,546(2)	$C_{(1)}-C_{(15A)}-C_{(15)}$	116,7(1)	N(16)-C(16)-C(7)	177,5(2)
C ₍₇₎ —C ₍₁₅₎	1,569(2)	N(17)-C(17)-C(15)	178,7(2)	$C_{(23)} - C_{(18)} - C_{(19)}$	118,7(2)
C(10)-C(24)	1,516(2)	$C_{(23)} - C_{(18)} - C_{(6)}$	117,9(1)	$C_{(19)} - C_{(18)} - C_{(6)}$	123,3(2)
C ₍₁₂₎ —C ₍₃₀₎	1,518(2)	C(18)-C(19)-C(20)	120,3(2)	C(21)-C(20)-C(19)	120,5(2)
$C_{(14)} - C_{(15)}$	1,557(2)	C(22)-C(21)-C(20)	119,8(2)	$C_{(21)} - C_{(22)} - C_{(23)}$	119,9(2)
C(15)-C(17)	1,476(2)	$C_{(18)} - C_{(23)} - C_{(22)}$	120,8(2)	C(25)-C(24)-C(29)	118,7(2)
$C_{(15)} - C_{(15A)}$	1,529(2)	$C_{(25)}-C_{(24)}-C_{(10)}$	122,4(1)	$C_{(29)} - C_{(24)} - C_{(10)}$	118,9(2)
C ₍₁₈₎ -C ₍₂₃₎	1,386(2)	C(24)-C(25)-C(26)	120,1(2)	C(27)-C(26)-C(25)	120,8(1)
C(18)-C(19)	1,387(2)	C(26)-C(27)-C(28)	119,4(2)	C(27)-C(28)-C(29)	120,3(2)
C(19)-C(20)	1,389(3)	$C_{(28)} - C_{(29)} - C_{(24)}$	120,7(2)	$C_{(35)} - C_{(30)} - C_{(31)}$	118,8(2)
C ₍₂₀₎ -C ₍₂₁₎	1,377(3)	$C_{(35)}-C_{(30)}-C_{(12)}$	123,9(1)	C(31)-C(30)-C(12)	117,2(2)
C(21)-C(22)	1,377(3)	$C_{(32)}-C_{(31)}-C_{(30)}$	120,2(2)	$C_{(31)} - C_{(32)} - C_{(33)}$	120,9(2)
C(22)-C(23)	1,392(3)	$C_{(32)}-C_{(33)}-C_{(34)}$	119,2(2)	$C_{(33)} - C_{(34)} - C_{(35)}$	120,2(2)
C ₍₂₄₎ -C ₍₂₅₎	1,382(2)	$C_{(30)} - C_{(35)} - C_{(34)}$	120,7(2)		
C(24)-C(29)	1,389(2)				
C(25)-C(26)	1,391(3)				
C(26)-C(27)	1,372(3)	· · · · ·			
C(27)-C(28)	1,376(3)				
C(28)-C(29)	1,385(3)				
C(30)-C(35)	1,384(2)				
C(30)-C(31)	1,392(2)				
C(31)-C(32)	1,376(3)				
$C_{(32)} - C_{(33)}$	1,382(3)				
C(33)C(34)	1,383(3)				
C ₍₃₄₎ —C ₍₃₅₎	1,385(3)				

TABLE 8. Bond Lengths and Valence Angles in the Compound (XXIIIa) Molecule

B. The compound (0.33 g: 1 mmole) was dissolved with heating in isopropyl alcohol (5 ml), the solution cooled, the solvent removed in vacuum, the residue triturated with hexane, and the solid was filtered off and dried in vacuum. The yield of compound (XXa) was 0.33 g (100%).

C. Ketone (Ia) (0.45 g: 2 mmole) and diene (II) (0.3 g: 1 mmole) were stirred in isopropyl alcohol (5 ml) until a clear solution was formed. Triethylamine (1 drop) was added and the solution kept in a closed vessel for 8 h. The resulting solid was filtered off, washed with cold isopropyl alcohol, and dried in vacuum. The yield of compound (XXa) was 0.46 g (70%).

3-Amino-6,7-tetramethylene-1-oxo-4-(2-furyl)-3a,4,5,7*a*-tetrahydro-1H-pyrrolo[3,4-c]pyridine-3a,7*a*-dicarbonitrile (XXIa) C₁₇H₁₅N₅O₂. A. This method was analogous to method A for compound (XXa) using alcohol (IXa) (0.32 g: 1 mmole).

Atom	x	у	:	U(eq)
O(1)	1775(1)	19(1)	4558(1)	25(1)
N(S)	1908(1)	4127(1)	4180(1)	22(1)
N(9)	-1242(1)	3198(1)	5856(1)	21(1)
Nan	-1519(1)	1200(1)	7216(1)	23(1)
N(13)	364(1)	1445(1)	5484(1)	20(1)
N(16)	-1703(2)	3454(1)	2887(1)	35(1)
N(17)	1846(2)	1820(1)	1515(1)	37(1)
C(1)	4313(2)	1333(2)	3384(2)	36(1)
C(2)	5679(2)	1629(2)	3380(2)	43(1)
C(3)	5430(2)	2118(2)	4410(2)	39(1)
C(4)	4373(2)	3293(2)	4255(2)	32(1)
C(4A)	3070(2)	3215(1)	3981(1)	22(1)
C(6)	758(2)	4378(1)	3628(1)	19(1)
C(7)	344(2)	3174(1)	3865(1)	20(1)
C(8)	-263(1)	2640(1)	5193(1)	19(1)
C(10)	-1782(2)	2479(1)	7075(1)	21(1)
C(12)	-63(2)	712(1)	6704(1)	22(1)
C(14)	1277(2)	1044(1)	4553(1)	20(1)
C(15)	1627(2)	2164(1)	3531(1)	21(1)
C(15A)	3031 (2)	2303(1)	3625(1)	23(1)
C(16)	-791 (2)	3341(1)	3292(1)	23(1)
C(17)	1749(2)	1983(1)	2389(1)	25(1)
C(18)	1029(2)	5082(1)	2332(1)	23(1)
C(19)	2332(2)	4916(2)	1530(2)	37(1)
C(20)	2506(2)	5590(2)	363(2)	46(1)
C(21)	1390(2)	6433(2)	-11(2)	41(1)
C(22)	99(2)	6623(2)	780(2)	40(1)
C(23)	-80(2)	5946(2)	1949(2)	30(1)
C(24)	-3364(2)	2922(1)	7501(1)	23(1)
C(25)	-4226(2)	3547(2)	6736(2)	28(1)
C(26)	-5670(2)	3942(2)	7173(2)	35(1)
C(27)	-6264(2)	3709(2)	8362(2)	38(1)
C(28)	-5419(2)	3064(2)	9128(2)	49(1)
C(29)	-3977(2)	2677(2)	8703(2)	42(1)
C(30)	944(2)	628(1)	7416(1)	24(1)
C(31)	856(2)	-226(2)	8500(2)	38(1)
C(32)	1737(2)	-351(2)	9190(2)	49(1)
C(33)	2729(2)	357(2)	8820(2)	46(1)
C(34)	2829(2)	1201(2)	7740(2)	40(1)
C(35)	1939(2)	1336(2)	7045(2)	31(1)

TABLE 9. Coordinates of Nonhydrogen Atoms ($\times 10^4$) and Coefficients of Equivalent Isotropic Displacement ($\dot{A}^2 \times 10^3$) for Compound (XXIIIa)

The yield of compound (XXIa) was 0.22 g (70%) of mp >210°C (decomp.). Found, %: 63.50; H 4.18; N 21.75. $C_{17}H_{15}N_5O_2$. Calculated, %: C 63.54; H 4.71; N 21.79. IR spectrum: 1570, 1680 (ν C=N, ν C=C, ν NH₂); 1750 (ν C=O); 2250 (ν C = N); 3320, 3360 cm⁻¹ (ν N - H). ¹³C NMR spectrum (acetone-D₆): $C_{(1)} \delta$ 179.26; $C_{(3)}$ 178.44; $C_{(4)}$ 53.70; $C_{(6)}$ 96.14; $C_{(7)}$ 139.87; $C_{(3a)}$, $C_{(7a)}$ 53.56; 55.30; $C_{(CN)}$ 115.00; 116.59; $C_{(CH_2)}$ 22.71; 23.53; 24.98; 28.38; $C_{(C_4H_3O)}$ 111.54; 110.40; 143.97 ppm.

B. Similarly to compound (XXa) (by method C) using amide (XVIIIa) (0.32 g: 1 mmole). The yield of compound (XXIa) was 0.29 g (91%).

3-Amino-4-(p-methoxyphenyl)-6,7-tetramethylene-1-oxo-3a,4,5,7a-tetrahydro-1H-pyrrolo[3,4-c]pyridine-3a,7a-dicarbonitrile (XXIIa), $C_{20}H_{19}N_5O_2$ was obtained analogously to compound (XXa) (by method B) using amide (XIXa) (0.36 g: 1 mmole). The yield of compound (XXIIa) was 0.34 g (95%) of mp 161-163°C (decomp.). Found, %: C 66.45; H 5.29; N 19.32. $C_{20}H_{19}N_5O_2$. Calculated, %: C 66.47; H 5.30; N 19.38. IR spectrum: 1560, 1670 (ν C==N, ν C==C, ν NH₂); 1730 (ν C==O); 2240 (ν C = N); 3280, 3340 cm⁻¹ (ν N - H).

3-Amino-6-methyl-7-propyl-1-oxo-3a,4,5,7a-tetrahydro-1H-pyrrolo[3,4-c]pyridine-3a,7a-dicarbonitrile (XXe) $C_{19}H_{19}N_5O$. Ketone (Ie) (0.45 g: 2 mmole) and diene (II) (0.3 g: 1 mmole) were dissolved in acetonitrile (5 ml) at room

Com- pound	ν _{C ∗C} . ν _{C ∗N}	νс∘ο	ν _C as N	V _{N-H}
XIa	1640	-	2250	3345
X16	1660	-	2260	3400
Хів	1645	-	2265	3410
XIr	1650		2250	3400
ХІд	1635	-	2270	3380
Xle	1630	_	2270	3375
XIIa	1655		2260	3380
XIIIa	1595, 1640	_	2270	3370
XIII6	1600, 1660		2260	3400
XIIIB	1600, 1650		2260	3415
XIIIr	1600, 1670		2265	3400
XIVa	1590, 1645	-	2270	3365
XVa	1660	- 1	2270	3370
XVIa	1640)	2265	3370
XXIIIa	1658	1730	2260	3320
XXIII6	1670	1750	2250	3320
XXIIIB	1660	1740	2260	3330
XXIIIr	1670	1740	2260	'3320, 3340
ХХШд	1660	1735	2260	3305
XXIVa	1655	1730	2260	3280
XXIV6	1645	1745	2270	3305, 3285
XXVa	1660	1735	2260	3305

TABLE 10. IR Spectra (cm⁻¹) of the Synthesized Compounds

temperature, triethylamine (a drop) was added, and the mixture set aside for a day. The reaction mixture was diluted with isopropyl alcohol, and dried in vacuum to constant weight. A white powder (0.39 g: 61%) of mp 150-152°C (decomp.) was obtained. Found, %: C 68.51; H 5.78; N 20.96. $C_{19}H_{19}N_5O$. Calculated, %: C 68.45; H 5.74; N 21.01. IR spectrum: 1560, 1660 (ν C=N, ν C=C, ν NH₂); 1725 (ν C=O); 2250 (ν C =N); 3260, 3360 cm⁻¹ (ν N -H).

2-Aryl-1,2,3,4-tetrahydropyridine-3,3,4,4-tetracarbonitriles (XIa-f), (XIIIa-d), (XIVa), (XVa), (XVa). General Procedure. The appropriate diene (II)-(VII) (5 mmole) was added to a suspension of ketone (Ia-f) (10 mmole) in glacial acetic acid (5 ml). The reactants dissolved completely on stirring for 5-10 min and the resulting viscous solution crystallized shortly afterwards. The solid was filtered off, and washed with a cold mixture of isopropyl alcohol and hexane (1:1). Recrystallization was from isopropyl alcohol. The constants and data of elemental analysis are given in Table 1 and the IR spectral data in Table 10.

5,6-Tetramethylene-2-furyl-1,2,3,4-tetrahydropyridine-3,3,4,4-tetracarbonitrile(XIIa) $C_{17}H_{13}N_5O$. Alcohol(IXa) (3.21 g: 10 mmole) was dissolved in glacial acetic acid (5 ml) by heating to 50°C. The solution was cooled, and water (5 ml) added. The resulting precipitate was filtered off, washed with isopropyl alcohol, and then recrystallized from 1,4-dioxan. Compound (IXa) (2.15 g: 71%) was obtained.

5,6-Tetramethylene-2-phenyl-1,2,3,4-tetrahydropyridine-3,3,4,4-tetracarbonitrile (XIa) $C_{19}H_{15}N_5$ was obtained analogously in 96% yield using alcohol (VIIIa). ¹³C NMR spectrum of compound (XIa) (acetone-D₆): $C_{(2)}$ 60.30; $C_{(3)}$, $C_{(4)}$ 47.10; 46.27; $C_{(5)}$ 144.81; $C_{(6)}$ 87.16; $C_{(C_6H_5)}$ 129.27; 130.00; 131.84, 133.61; $C_{(CN)}$ 112.50; 111.76 (double); 110.44; $C_{(CH_2)}$ 22.33; 23.41; 26.06; 28.27 ppm.

X-Ray Structural Investigation of Compound (XIa). Clear colorless crystals were obtained from methanol and were triclinic. At 173 K a = 7.363(1), b = 7.671(2), c = 15.865(3) Å, $\alpha = 81.46(1)^{\circ}$, $\beta = 87.23(1)^{\circ}$, $\gamma = 64.66(1)^{\circ}$, V = 800.8(3) Å³, d = 1.300 g/cm³, space group P₁, Z = 2, F(000) = 328. Reflections measured were 4256, $\theta_{max} = 29.06^{\circ}$. Final divergence factors were R₁ = 0.0335 for 3876 independent reflections with $1 > 2\sigma$ (1) and wR₂ = 0.1067 at each of 3940 independent reflections.

9-Oxo-1,3,5-triphenyl-1,2,3,4b,5,6,8a,9-octahydropyrido[3',4':3,4]pyrrolo[1,2-a][1,3,5]triazine-4b,8a-dicarbonitrile (XXIIIa) $C_{33}H_{28}N_6O$. A. Ketone (Ia) (0.23 g: 1 mmole) and diene (II) (0.3 g: 1 mmole) were dissolved in isopropyl alcohol (5 ml) with stirring until a clear solution was formed. A copious precipitate formed straight away in the reaction mixture and

was dissolved by heating to boiling. After 2 h the precipitate was filtered off, washed, and dried to constant weight in vacuum. Compound (XXIIIa) (0.45 g: 86%) was obtained.

B. Compound (XXa) (0.33 g: 1 mmole) and diene (II) (0.3 g: 1 mmole) were dissolved by heating in isopropyl alcohol (5 ml). Crystallization began even in the hot solution. The reaction mixture was cooled, the solid filtered off, washed with isopropyl alcohol, and dried in vacuum. The yield of compound (XXIIIa) was 0.53 g (98%).

C. Alcohol (VIIIa) (0.33 g: 1 mmole) and diene (II) (0.3 g) were dissolved by heating in isopropyl alcohol (5 ml). The reaction mixture was then cooled, the solid filtered off, washed with isopropyl alcohol, and dried in vacuum. The yield of compound (XXIIIa) was 0.47 g (90%).

D. Compound (XXIIIa) was obtained similarly using amide (XVIIa). The yield was 99%. The constants and data of elemental analysis are given in Table 1, and the IR spectra in Table 10.

1,3,5-Triaryl-9-oxo-1,2,3,4b,5,6,8a,9-octahydropyrido[3',4':3,4]pyrrolo[1,2-a][1,3,5]triazine-4b,8a-dicarbonitriles (XXIIIa-e), (XXIVa, b), (XXVa). General Method. Ketone (Ia-e) (1 mmole) and the appropriate diene (II)-(VII) (1 mmole) were mixed in acetonitrile (3 ml). The reagents dissolved after 2-3 min and the reaction mixture was set aside for 1 day. The solid was filtered off, washed with isopropyl alcohol, and dried in vacuum to constant weight. Yield, constants, and data of elemental analysis are given in Table 1 and IR spectra in Table 10. ¹³C NMR spectrum of compound (XXIIIb) (acetone-D₆): $C_{(1)}$, $C_{(3)}$ δ 67.80; 67.09; $C_{(4a)}$ 148.28; $C_{(4b)}$, $C_{(8a)}$ 52.33; 53.53; $C_{(5)}$ 60.10; $C_{(7)}$ 87.70; $C_{(8)}$ 141.98; $C_{(9)}$ 165.63; $C_{(CN)}$ 116.40; 115.33; $C_{(CH_2)}$ 14.63; 17.34 ppm.

¹³C NMR spectrum of compound (XXIVb) (acetone-D₆): $C_{(1)}$, $C_{(3)}$ δ 64.14; 64.06; 63.99; 62.40; 62.34; 62.27; $C_{(4a)}$ 153.61; $C_{(4b)}$, $C_{(8a)}$ 50.27; 52.99; $C_{(5)}$ 52.02; $C_{(7)}$ 89.18; $C_{(8)}$ 140.16; $C_{(9)}$ 164.29; $C_{(CN)}$ 115.32; 115.27; $C_{(CH_3)}$ 14.99; 18.01 ppm.

X-Ray Structural Investigation of Compound (XXIIIa). Crystals of compound (XXIIIa) were selected from the reaction mixture on carrying out the reaction in acetonitrile. The colorless crystals were triclinic, at 173 K a = 10.155(4), b = 12.217(5), c = 12.481(5) Å, $\alpha = 70.02(1)^{\circ}$, $\beta = 71.23(1)^{\circ}$, $\gamma = 73.09(1)^{\circ}$, V = 1349.1(9) Å³, d = 1.291 g/cm³, space group P₁, Z = 2, F(000) = 552. Reflections measured were 5554, $\theta_{max} = 29.06^{\circ}$. Final divergence factors were R₁ = 0.0423 for 5166 independent reflections with I > 2 σ (I) and wR₂ = 0.1059 at each of 5215 independent reflections.

REFERENCES

1. O. E. Nasakin, A. N. Lyshchikov, P. M. Lukin, and A. Kh. Bulai, Khim. Geterotsikl. Soedin., No. 3, 353 (1994).

2. A. Galffe, Chem. Ind., 93, No. 3, 259 (1965).