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Recent years have witnessed dramatic developments in the 
chemistry of silicon-containing multiple-bonding compounds,’ 
Si=Si,* Si=C,3 and Si=Pn (Pr = N, P, As)? These species 
have been isolated by taking advantage of kinetic stabilization 
with bulky substituents. As for silicon-chalcogen double-bond 
species, however, there has been no example of the isolation 
using kinetic stabilization since bulky substituents for steric 
protection can be introduced only on the silicon atom and hence 
their oligomerization cannot be efficiently prevented. The 
isolation of a thermodynamically stabilized silanethione was 
reported by Comu et al. in 1989: but its X-ray structural 
analysis revealed that the central Si atom was tetracoordinate 
(because of the intramolecular coordination by a nitrogen lone 
pair) and the geometry around silicon was a distorted tetrahedral. 
Thus, any “genuine” silanethione has been still unknown. We 
previously reported the synthesis of germanethione6 and stan- 
nanethione7 stabilized by an efficient steric protection group, 
2,4,6-tris[bis(trimethylsilyl)methyl]phenyl (denoted as Tbt here- 
after). We now delineate the synthesis and structure of the fvst 
stable silanethione, 1, having a “true” Si-S double bond. 

Reaction of Tbt- and Tip-substituted dibromosilane 2 (Tip 
= 2,4,6-t1iisopropylphenyl) with lithium naphthalenide followed 
by addition of sulfur gave a novel cyclic polysulfide, 1,2,3,4,5- 
tetrathiasilolane 3 (31%) as pale yellow crystals (Scheme l).839 
When a hexane solution of 3 was refluxed for 1 h in the presence 
of 3 molar equiv of triphenylphosphine, it tumed yellow and a 
quantitative amount of triphenylphosphine sulfide precipitated. 
After filtration of the phosphine sulfide under argon, the filtrate 
was concentrated in a glovebox to give quantitatively pure 
silanethione 1 as yellow crystals. 
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Silanethione 1 was characterized by lH, 13C, and 29Si NMR, 
Raman, and UV spectroscopy.1° A chemical shift of dsi 166.56 
for the silathiocarbonyl unit is much downfield shifted from 
that of the thermodynamically stabilized Comu’s silanethione 
(dsi 22.3): clearly indicating a genuine Si+ double bond nature 
of 1 without any intra- or intermolecular coordination. The UV 
spectrum of 1 exhibited an absorption maximum at 396 nm 
which is assignable to the n-n* transition, whereas its Raman 
spectrum in solid showed an absorption at 724 cm-’ attributable 
to the Si=S stretching.” 

The molecular structure of 1 was finally determined by X-ray 
crystallographic analysis.14 It was revealed that there are two 
nonidentical silanethiones in the unit cell, caused by the different 
dihedral angles between the Tbt-Rip-aromatic ring planes and 
the silathiocarbonyl plane, in addition to the different direction 
of para-substituted bis(trimethylsily1)methyl of Tbt group. There 
is, however, little difference in the geometry around the silicon 
atom between the two fragments. Figure 1 shows the ORTEP 
drawing of one of these silanethiones. The silathiocarbonyl unit 
of 1 has a completely trigonal-planar geometry, the sum of the 
bond angles around the silicon atom being 359.9”. Dihedral 
angles between the trigonal plane and two aryl planes are 41.8” 
for the Tbt ring and 67.8” for the Tip ring. The silicon-sulfur 
double-bond length is 1.948(4) A, which is about 0.2 A shorter 
than the typical Si-S single-bond length16 (ca. 9% shortening), 
showing an unambiguous double-bond character between silicon 
and sulfur. The value for 1 is significantly shorter than that 
reported for Corriu’s compound [2.013(3) A],S indicative of the 
“true” double-bond nature of 1. 
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2.44, 3.23, 166.56; W (hexane) A,, 396 nm (E 100); FT-Raman spectrum 
in solid (excitation. Nd:YAG laser. 1064 nm) 724 cm-I (w,+). . -. _. 
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Figure 1. ORTEP drawing of silanethione 1 with thermal ellipsoid 
plot (30% probability for non-hydrogen atoms). Selected bond lengths 
(A) and angles (deg): Si( I)-S( I), 1.948(4); Si( I)-C( I), !.894(8); 
Si(l)-C(IO), 1.867(9); Si(l)-Si(l)-C(l), 125.0(3); S(1)-Si(1)-C( 10). 
116.3(3); C( I)-Si( I)-C( 10). 118.6(4). 

Though 1 is thermally stable up to its melting point (185- 
189 “C), 1 has a high chemical reactivity toward various 
reagents. Reactions of 1 with phenyl isothiocyanate, mesito- 
nitrile oxide, and 2,3-dimethyl- 1,3-butadiene gave the cor- 
responding [2 + 21, [2 + 31, and [2 + 41 cycloadducts 4 (63%), 
5 (54%). and 6 (74%). re~pectively.~ 

The synthesis of 1 has enabled us to compare the electronic 
spectra (n--,z*) of a series of R1R2M=S (M = C, Si, Ge, Sn) 
compounds. In Table 1 are listed observed spectra of these 
compounds, along with calculated spectra of H2M=S (M = C, 
Si, Ge, Sn) at the CIS1’/DZ+d level13 using the Gaussian 92/ 
DFT program. One can see a very interesting change in the 

Table 1. Electronic Spectra (n--n*) of Double-Bond Compounds 
between Group 14 Elements and Sulfur 

observeda calculated‘ 

compd A,hm compd A,,,,/nm A c d e V f  

Tbt(H)C=S (7) 587” H?C=S 458 10.81 

Tbt(Tip)Ge=S (8) 45W H2Ge=S 363 9.97 
Tbt(Tip)Si=S (1) 396 HZSi=S 345 10.39 

Tbt(Tip)Sn=S (9)  473” H2Sn=S 380 9.30 

a In hexane. Reference 18. Reference 6. Reference 7. CISIDZ 

observed Amax depending on the difference in group 14 elements; 
Amax is much blue-shifted on going from thione 7 to silanethione 
1, whereas Amax values for 1, germanethione 8, and stannane- 
thione 9 are red-shifted with increasing atomic number of the 
group 14 elements. This trend is also found in calculated values 
for H2M=S (M = C, Si. Ge, Sn). Since calculated Acbv values 
increase continuously from H2Sn=S to H2C=S, a long- 
wavelength absorption for H2C=S (and hence for 7) most likely 
results from a large repulsion integral (Jb,*) for the carbon- 
sulfur double bond, as in the case of H2C=O vs H2Si=O.I9 

Further investigation of physical and chemical properties of 
1 is currently in progress. 

4- d. ’ ~LUMOW) - cHOMO(n). 
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