Stable Intramolecularly Base-Stabilized Germylene- and Stannylene–Borane Adducts: M[C₆H₃(NMe₂)₂-2,6]₂BH₃ $(\mathbf{M} = \mathbf{Ge}, \mathbf{Sn})$

Christian Drost, Peter B. Hitchcock, and Michael F. Lappert*

The Chemistry Laboratory, School of Chemistry, Physics and Environmental Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

Received May 18, 1998

Summary: The synthesis and characterization of two novel and thermally surprisingly stable main-groupelement Lewis acid (BH₃) adducts (3 and 4) of a monomeric germylene (1) and of a diarylstannylene (2) is reported. X-ray crystal structures of the adducts MAr2(BH3) reveal a four-coordinated germanium (3) but five-coordinated tin (4), with regard to the C,N-potentially bidentate chelating ligand $-C_6H_3(NMe_2)_2$ -1,2 and BH₃, respectively.

There is current interest in the base behavior of monomeric bivalent group 14 metal compounds MX₂ with reference to main-group-element Lewis acids M'X'_n. Established compounds are (i) the X-ray-characterized Arduengo-type carbene-M'X'_n adducts **I** (M'X'_n = BH₃ or BF₃ (R = Me; R' = Me, Et, or Prⁱ),¹ AlH₃ (R = H, R' $= C_6 H_2 Me_3 - 2, 4, 6)$,² M'Me₃ (M' = Al or Ga, R = H, R' = Bu^t),³ or SiCl₄, SiCl₂Me₂, SiCl₂Ph₂, SnCl₂Ph₂ or SnCl₂ $(R = Me; R' = Me, Et \text{ or } Pr^i)]^4$ and (ii) the labile silvlene adduct II ($t_{1/2}$ ca. 30 days at 20 °C in PhMe), which readily isomerized into the insertion product III.⁵ A single labile (but X-ray-authenticated) diorganotin(II)-Lewis acid (SnCl₂) adduct (IV) has been obtained from its acid/base precursors but underwent metathesis in tetrahydrofuran (THF) at 25 °C, yielding the organotin-(II) chloride V.⁶ An early report of $Sn(\eta^5-C_5H_5)_2$:BF₃^{7a} proved to have misformulated the compound; it is now established to be the Sn–B-bond-free salt $[Sn(\eta^5-C_5H_5)_2 (\mu - \eta^5 - C_5 H_5) Sn(THF) [BF_4].^{7b}$ The cubanes $[M(\mu_3 - NBu^t)]_4$ formed the 1:2 AlCl₃ adducts VI, which slowly decomposed in solution; X-ray data for the tin compound VIb were provided.⁸ Not only nucleophilic carbenes^{9a} but also silylenes,^{9b} germylenes,¹⁰ stannylenes,¹⁰ and plumbylenes MX_2^{10} are well-known as ligands in a transitionmetal (M') context, but generally M' has the possibility of engaging in synergic $d \rightarrow p_{\pi}$ back-bonding, as in $[Cr(CO)_{5} {Sn[CH(SiMe_{3})_{2}]_{2}}].^{11}$

- (4) Kuhn, N.; Kratz, T.; Bläser, D.; Boese, R. Chem. Ber. 1995, 128, 245
- (5) Metzler, N.; Denk, M. Chem. Commun. 1996, 2657.
- (6) Leung, W.-P.; Kwok, W.-H.; Xue, F.; Mak, T. C. W. *J. Am. Chem. Soc.* **1997**, *119*, 1145.
- (7) (a) Harrison, P. G.; Zuckerman, J. J. J. Am. Chem. Soc. 1970, 92, 2577. (b) Dory, T. S.; Zuckerman, J. J.; Barnes, C. L. J. Organomet. Chem. 1985, 281, C1.
- (8) Veith, M.; Frank, W. Angew. Chem., Int. Ed. Engl. 1985, 24, 223.
 (9) (a)Lappert, M. F. J. Organomet. Chem. 1988, 358, 185. (b) Herrmann, W. A.; Köcher, C. Angew. Chem., Int. Ed. Engl. 1997, 36,
- 2162.

We now report the first main-group-element Lewis acid (BH₃; the archetype) adducts of a monomeric intramolecularly base-stabilized germylene and of a diarylstannylene. Treatment of the recently described¹² vellow diarylgermylene GeX_2 (1) or -stannylene SnX_2 (2) $(X^- = VII)$ with a solution of BH₃(THF) in diethyl ether and then successive removal of volatiles in vacuo and recrystallization from Et₂O afforded colorless (3) or amber (4) crystals of $X_2M:BH_3$ (M = Ge, 3; M = Sn, 4)¹³ in good yields (Scheme 1). Each of the compounds 3 and 4 gave satisfactory microanalytical as well as NMR (¹H, ¹¹B, ${}^{13}C{}^{1}H$, and (for 4) ${}^{119}Sn{}^{1}H$), IR, and EI-MS spectra.¹⁴ Compound **3** was thermally stable both in the solid state and in solution, but a solution of the tin analogue 4 slowly deposited tin.

⁽¹⁾ Kuhn, N.; Henkel, G.; Kratz, T.; Kreutzberg, J.; Boese, R.; (a) Internet, A. H. Chem. Ber. 1993, 126, 2041.
 (2) Arduengo, A. J.; Dias, H. V. R.; Calabrese, J. C.; Davidson, F. J.

Am. Chem. Soc. **1992**, *114*, 9724. (3) Li, X.-W.; Su, J.; Robinson, G. H. Chem. Commun. **1996**, 2683.

⁽¹⁰⁾ Lappert, M. F.; Rowe, R. S. Coord. Chem. Rev. 1990, 100, 267. (11) Cotton, J. D.; Davidson, P. J.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1976, 2275.

⁽¹²⁾ Drost, C.; Hitchcock, P. B.; Lappert, M. F.; Pierssens, L. J.-M. Chem. Commun. 1997, 1141.

Figure 1. Crystal structure and labeling scheme of **4**. Selected bond lengths and angles are in Table 1; additionally, $C(1)-Sn-N(1) = 61.18(10)^{\circ}$, $B-Sn-N(1) = 112.86-(6)^{\circ}$, $C(2)-C(1)-Sn = 100.4(2)^{\circ}$, and $C(6)-C(1)-Sn = 141.0(2)^{\circ}$.

Figure 2. Crystal structure and labeling scheme of **3**. Selected bond lengths and angles are in Table 1.

Scheme 1. Synthesis of the Diarylmetallene-BH₃ Adducts 3 and 4 (X⁻ = VII)

MY	BH ₃ (THF)	~ V M DII	
	Et ₂ O	х ₂ м-вн ₃	
1 M = Ge		3 M = Ge	
2 M = Sn		4 M = Sn	

The crystal structures of the borane adducts are illustrated in Figures 1 (4) and 2 (3).¹⁵ Whereas the crystalline parent base-stabilized germylene (1) and

stannylene (2) are isostructural, both having the metal in a four-coordinate environment (one M-C and one M-N bond from each ligand VII),^{12,16} the adducts differ in that **3** has four-coordinate germanium (two Ge-C, one Ge-N, and one Ge-B bond), while 4 has fivecoordinate Sn (two Sn-C, two Sn-N, and one Sn-B bond). Thus, each aryl ligand **VII** is bound in a C, Nbidentate chelating fashion in 1,12 2,16 and the centrosymmetric 4; however, in 3 only one of the ligands VII adopts this mode, the other being merely C-bonded. Selected comparative geometric parameters for 1-4 are given in Table 1; further details for $\mathbf{1}^{16}$ will appear in the full paper. Compounds 3 and 4 have no close analogue in Ge-B or Sn-B chemistry; the M-B bond lengths for the two former species (Table 1) may be compared with the Ge–B length (2.165(10) Å) in VIII¹⁷ and the Sn–B lengths in *cis*-**IXa** (2.305–2.323(7) Å) and *trans*-**IXb** (2.286-2.277(17) Å),¹⁸ respectively. The germanium complex 3 may also be compared with salt \mathbf{X} ,¹⁹ noting that BH₃ and CH₃⁺ are isoelectronic.

The nonbonding nitrogen atom of each ${}^{-}C_{6}H_{3}(NMe_{2})_{2}$ -2,6 ligand **VII** is remote from the metal center, *e.g.*, 3.815(2) Å in **4**; *cf*. 3.394(5) and 3.783(5) Å in the free stannylene **2**.¹² The M–C and M–C' bonds are slightly shorter in the borane adducts **3** and **4** than in the free bases **1** and **2**, consistent with the former being dipolar, $X_{2}M^{+}$ –BH₃. Such shortening is even more pronounced

(19) Schmidt, H.; Keitemeyer, S.; Neumann, B.; Stammler, H.-G.; Schoeller, W. W.; Jutzi, P. *Organometallics* **1998**, *17*, 2149.

⁽¹³⁾ Preparation of **3** and **4**: a BH₃(THF) solution (2.2 mL of a 1.0 mol L⁻¹ solution in THF; 2.25 mmol for **1**, 2.5 mL for **2**) was added to a stirred yellow solution of the germylene **1** (1 g, 2.51 mmol) or stamylene **2** (1 g, 2.25 mmol)⁹ in Et₂O (100 mL) at *ca*. 25 °C. The solution slowly became decolorized (for **3**) or slightly darkened (for **4**) and was stirred overnight. Volatiles were removed *in vacuo* to yield solid residues, which were extracted with Et₂O. Filtration to remove a slight cloudiness, concentration of the filtrate *in vacuo*, and cooling to -30 °C afforded colorless crystals of **3** (0.9 g, 95%) or amber-colored crystals of **4** (0.85 g, 82%).

⁽¹⁴⁾ Selected data for **3** and **4** are as follows. NMR spectra at 298 K in C₆D₆ (¹H, ¹³C) or PhMe + C₆D₆: ¹H NMR, 250.0 MHz; ¹³C{¹H} NMR, 62.86 MHz; ¹¹B NMR, 80.21 MHz; ¹¹⁹Sn{¹H} NMR, 186.36 MHz. **3**: colorless; mp 145–147 °C; ¹H NMR δ 2.61 (s, 24 H, NMe₂), 6.50 (d, 4 H, H-3/5, ³J(¹H–¹H) = 7.9 Hz), 7.16 (t, 2 H, H-4, ³J(¹H-¹H) = 7.9 Hz); ¹³C{¹H} NMR δ 44.5 (NC₂), 110.8, 129.4, 134.8, 156.8 (aromatic C); ¹¹B NMR δ –35.0 (q) (¹J(¹¹B–¹H) = 73 Hz). EI-MS (70 eV) parent ion at *m/z* 414 (7% intensity of the most abundant ion); IR (Nujol) 2235, 2315, 2351, 2389 cm⁻¹. **4**: amber; mp *ca*. 90 °C dec; ¹H NMR δ 2.62 (s, 24 H, NMe₂), 6.49 (d, 4 H, H-3/5, ³J(¹H–¹H) = 7.9 Hz), 7.16 (t, 2 H, H-4, ³J(¹H–¹H) = 7.9 Hz); ¹¹B NMR δ –328. EI-MS (70 eV) parent ion at *m/z* 460 (1% intensity of the most abundant ion); IR (Nujol) 2333 cm⁻¹ (br).

⁽¹⁵⁾ Crystal data are as follows: **3**: $C_{20}H_{33}BGeN_4$, $M_r = 412.9$, orthorhombic, space group *Pbca* (No. 61), a = 10.256(2) Å, b = 16.289-(5) Å, c = 26.016(10) Å, V = 4346(2) Å³, F(000) = 1744; Z = 8, $\rho_{calcd} = 1.26$ g/cm⁻³, μ (Mo K α) = 14.2 cm⁻¹, specimen 0.3 × 0.1 × 0.1 mm, 3810 reflections collected for $2 < \phi < 25^{\circ}$, 3810 independent reflections, R1 = 0.075 for 1930 reflections with $I > 2\sigma(I)$, wR2 = 0.183 (for all data), S = 1.007. **4**: $C_{20}H_{33}BN_4Sn$, $M_r = 459.0$, monoclinic, space group C2/c (no. 15), a = 13.154(5) Å, b = 11.373(7) Å, c = 14.832(5) Å, β 98.21-(3)°, V = 2196(2) Å³, F(000) = 944; Z = 4, $\rho_{calcd} = 1.39$ g/cm⁻³, μ (Mo K $\alpha) = 11.7$ cm⁻¹, specimen 0.3 × 0.25 mm, 2022 reflections collected for $2 < \theta < 25^{\circ}$, 1941 independent reflections, R1 = 0.0257 for 1849 reflections with $I > 2\sigma(I)$, wR2 = 0.0682 (for all data), S = 1.141. For both **3** and **4**: data at T = 173(2) K, Enraf-Nonius CAD-4 diffractometer, absorption correction, structural solution by direct methods, full-matrix least-squares refinement on F^2 using SHELXL-93 with non-H atoms anisotropic.

⁽¹⁶⁾ Drost, C.; Hitchcock, P. B.; Lappert, M. F.; Pierssens, L. J.-M. unpublished work. Pierssens, L. J.-M. D.Phil. Thesis, University of Sussex, 1997.

⁽¹⁷⁾ Mayer, E. P.; Nöth, H.; Rattay, W.; Wietelmann, U. Chem. Ber. **1992**, *125*, 401.

⁽¹⁸⁾ Frankhauser, P.; Pritzkow, H.; Siebert, W. Z. Naturforsch. 1994, 49B, 250.

Communications

Table 1.	Selected	Geometric	Parameters	for	Crystalline	1-	4
----------	----------	-----------	------------	-----	-------------	----	---

		compd				
param	1 ¹⁶	2 ¹²	3	4 <i>a</i>		
M-C, M-C'/Å	2.014(8), 2.024(7)	2.212(5), 2.216(5)	1.962(8), 1.959(8)	2.170(3), 2.170(3)		
M–N, M–N′/Å	2.394(6), 2.722(6)	2.607(5), 2.669(5)	2.110(6)	2.456(2), 2.456(2)		
M–B/Å			2.041(11)	2.262(5)		
C-M-C'/deg	105.1(3)	105.6(2)	112.7(3)	118.98(13)		
C-M-B, C'-M-B/deg			125.7(3), 117.2(4)	120.51(7), 120.51(7)		
Σ/deg^b			355.6	360		

^a Centrosymmetric. ^b Sum of the angles C-M-C', C-M-B, and C'-M-B.

for the $M{-}N$ and $M{-}N'$ bonds. The atom M is the centroid of a near-equilateral (more closely for ${\bm 4}$ than

3) CBC' triangle; *cf.* Σ M in Table 1; the C-M-C' angles are wider than in the parent base **1** or **2**. The dihedral angles in **4** between the SnCBC' plane and each plane containing Sn and the C₆N₂ skeleton of a ligand **VII** is 78.04(8)°. The five-coordinate Sn atom may be described as being in a trigonal-bipyramidal environment with the N and N' atoms occupying *trans*-apical sites. To enable optimal M-N bonding to be achieved, both C-M bonds in **4** are tilted toward the coordinating N atoms (C(6)-C(1)-Sn = 141.0(2)°, C(2)-C(1)-Sn = 100.4(2)°), but only one in **3** (114.6(6), 96.1(5)°) and hence are strongly (**4**) or less strongly (**3**) divergent from sp² values; this is illustrated in Figure 2 for **3**.

At 298 K the ¹H and ¹³C{¹H} NMR solution spectra of **3** and **4** each showed singlet NMe₂ signals, ¹⁴ indicating that (as in **1** and **2**¹²) there is a rapid exchange involving 2-Me₂N-M \leftrightarrow 6-Me₂N-M groups. The ¹¹⁹Sn-{¹H} signal at δ 328 in **4** was at lower frequency than in the free base **2** (δ 442).¹² The ¹¹B signals showed well-resolved proton coupling for **3** but not for **4**, perhaps because of ¹⁴N coupling. The ¹¹B chemical shifts of δ -35 (**3**) or δ -34 (**4**) are similar to those in **I** (M'X'_n = BH₃; δ (-35)¹ or in the ylides Me₃PCH₂BH₃ and **I** (M'X_n = CH₂BH₃)¹ as are the ¹*J*(¹¹B-¹H) values of 73 Hz in **3** and 86 Hz in **I** (M'X'_n = BH₃).¹ They may also be compared with the δ [¹¹B] values of a variety of other Lewis-base–borane adducts, e.g. Me_2O-BH_3 (δ 2.5), Me_3N-BH_3 (δ –8.3), Me_2S-BH_3 (δ –20.1), or Me_3P-BH_3 (δ –36.8).²⁰

The germylene **1** and stannylene **2** have been shown to form quite strong bonds to BH₃, as is also evident from the fact that their preparation involved displacement of THF from BH₃(THF). The choice of the ligand **VII** in MX₂ ($X^- = {}^-C_6H_3(NMe_2)_2{}^-2{}, 6$, **VII**) was crucial, since we found that under conditions similar to those used for the synthesis of **3** and **4** (Scheme 1), Sn[CH-(SiMe_3)₂]₂ was unreactive toward BH₃(THF), while Sn-[N(SiMe_3)₂]₂ was slowly reduced to elemental tin. The results here presented demonstrate that the germylene **1**, stannylene **2**, and ligand **VII** have a significant potential use as new versatile ligands.

Acknowledgment. This work was supported by the European Commission (category 30 fellowship for C.D.) and the EPSRC.

Supporting Information Available: Tables of crystal data, data collection, and solution and refinement parameters, atomic coordinates, bond distances and angles, anisotropic displacement coefficients, and hydrogen atom coordinates for **3** and **4** (13 pages). Ordering information is given on any current masthead page.

OM980388V

(20) Wrackmeyer, B. Ann. Reports NMR Spectroscopy, 1988, 20, 61.