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Abstract Monoprotected polyethylene glycols (PEG)

react with epichlorohydrin to furnish PEGylated epoxides.

The latter were converted into the corresponding a-(2-F-

alkylethyl)thiomethyl polyethylene glycols by treatment

with 2-F-alkylethanethiol. Surface activity of the obtained

surfactants was investigated by evaluation of PEG and

perfluoroalkyl chains length on the critical micelle con-

centration (CMC), surface and interfacial tensions.
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Introduction

Highly fluorinated amphiphiles are highly stable against

acidic, alkaline, oxidative and reductive reagents as well as

elevated temperature. They are very potent in their ability

to form aqueous solutions with lower surface tensions

when compared to their non fluorinated analogues [1, 2].

Nonionic fluorinated surfactants are important com-

pounds for a wide variety of industrial applications. They

can be applied as monolayers on glass, metal or plastic

surfaces to form an effective antifogging film [3, 4]. They

are useful antistatic and leveling agents for coatings, and

wetting agents in hard surface cleaner formulations [5]. On

the other hand, the growing importance of nonionic and

nontoxic (biocompatible) surfactants has encouraged the

search for improved synthesis routes to such compounds

[6–8].

This paper reports on the synthesis and characterization

of some fluorinated nonionic surfactants, in which the

hydrophilic and lipophilic characters are respectively

assumed to be due to the PEG and perfluoroalkyl chains.

Experimental Section

Materials

Melting points were determined by a SMAP 11 apparatus.

The IR spectra were recorded on a Bruker IFS 66v/s

spectrometer. 1H-, 19F- and 13C-NMR spectra were recor-

ded on a Bruker AC 300 spectrometer (300 MHz proton,

282 MHz fluorine, 75 MHz carbon). All spectra were

obtained using CDCl3 as the solvent and referenced to

TMS for 1H, 13C NMR and CFCl3 for 19F NMR. The

following abbreviations are used to denote multiplicity of

the signals in the NMR spectra; s, singlet; t, triplet; m,

multiplet. Surface tension measurements (cs and ci) were

performed using a Krüss tensiometer, the solution con-

tained 0.1 % (w/w) of amphiphile in water and was mea-

sured at 25 �C. Analytical TLC was conducted using

percolated aluminium TLC plates: silica gel/UV 254.

Column chromatography was carried out with silica gel

(Silica gel, 0.060–0.200 mm, 40 Ä). The microanalysis

was performed with a CHNS instrument by the Analysis

Central Service, CNRS, Vernaison, France.

Preparation of Polyethylene Glycol Monotrityl Ethers

2: General Procedure

To a mixture of 35.5 mmol of polyethylene glycol and

36 mmol (5 mL) of triethylamine in 60 mL of CH2Cl2 was

added 9.2 g (33 mmol) of trityl chloride. After stirring for
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4 h at room temperature, the mixture was washed once

with 50 mL of ice cold water, dried over anhydrous

Na2SO4, and concentrated under reduced pressure. The

residue was purified as indicated below. The main IR signals

encountered were: mC–O–C = 1,100–1,150, mC=C(arom.) =

1,456–1,459, mOH = 3,400–3,490 cm-1.

2a: recrystallization (EtOAc/hexane), 60 % yield.

2b: recrystallization (EtOAc/hexane), 62 % yield.

2c: column chromatography (silica gel, dichlorometh-

ane/methanol: 95/5, v/v), 65 % yield.

2d: column chromatography (silica gel, dichlorometh-

ane/methanol: 95/5, v/v), 67 % yield.

2e: column chromatography (silica gel, dichlorometh-

ane/methanol: 95/5, v/v), 70 % yield.

Preparation of Polyethylene Glycol Glycidyl Trityl

Ethers 3: General Procedure

Polyethylene glycol monotrityl ether (50 mmol) was added

dropwise under rapid stirring to a mixture of epichloro-

hydrin (27 g, 300 mmol), sodium hydroxide pellets (12 g,

300 mmol) water (12 mL) and tetrabutylammonium

hydrogen sulfate (0.33 g, 2 %). The temperature was kept

below 45 �C. After the addition was completed, stirring

was continued for 40 min at 40 �C. The solid material

was filtered off and washed with dichloromethane

(2 9 30 mL). The organic solution was dried (Na2SO4).

Solvent and epichlorohydrin excess were evaporated under

vacuum. The residue obtained was purified as indicated

below. Main IR signals encountered: mC–O–C = 1,100–1,130,

mC=C(arom.) = 1,456–1,459 cm-1.

3a: recrystallization (hexane/chloroform), mp = 72 �C,

83 % yield.

3b: recrystallization (hexane/chloroform), mp = 69 �C,

82 % yield.

3c: recrystallization (hexane/chloroform), mp = 67 �C,

90 % yield.

3d: recrystallization (hexane/chloroform), mp = 57 �C,

87 % yield.

3e: column chromatography (silica gel, dichlorometh-

ane/methanol: 95/5, v/v), 80 % yield.

Preparation of Thioether Monotritylated Polyethylene

Glycols 4: General Procedure

A 100-mL round-bottomed flask, equipped with a magnetic

stirrer was charged with 5 mmol of polyethylene glycol

glycidyl trityl ether in 20 mL of CH2Cl2, 5 mmol of thiol

and 10 drops of triton B. The mixture was stirred at room

temperature until completion (TLC: silica gel, dichloro-

methane/methanol 95/5) (24 h). The mixture was poured

into water and extracted with ether. The organic solution

was dried (Na2SO4) and then the solvent was evaporated

under vacuum. The obtained crude thioether 4 was purified

by column chromatography (dichloromethane/methanol

95/5). Main IR signals encountered: mC–S = 645–649,

mC–O–C = 1,100–1,150, mC–F = 1,000–1,100, mC=C(arom.) =

1,456–1,459 cm-1.

Deprotection of Thioether Monotritylated Polyethylene

Glycols 5: General Procedure

A 100-ml round-bottomed flask, equipped with a magnetic

stirrer was charged with 5 mmol of monotritylated thioe-

ther 4, CH2Cl2 (10 mL) and 2 mL of concentrated HCl.

The mixture was stirred for 1 h at room temperature until

completion (TLC: silica gel, dichloromethane/methanol

95/5). The mixture was poured into water and extracted

with dichloromethane. The organic solution was dried

(Na2SO4) and then the solvent was evaporated under vacuum.

The residue was dissolved in methanol (15 mL). On cooling

the solution to 0 �C, the crystallized byproduct (trityl chlo-

ride) was filtered off. After having concentrated the filtrate, the

crude thioether obtained 5 was purified by column chroma-

tography (dichloromethane/methanol: 95/5, v/v) or by

recrystallization from hexane/chloroform (Table 1). Main IR

signals encountered: mC–S = 645–649, mC–F = 1,000–1,100,

mC–O–C = 1,100–1,150, mO–H = 3,400–3,490 cm-1.

a-(2-F-hexylethyl)thiomethyl Diethylene Glycol (5a)

1H NMR (CDCl3/TMS): d = 2.30–2.50 (m, 2H,

SCH2CH2C6F13), 2.65 (m, 2H, CH2SC2H4C6F13), 2.83 (m,

2H, SCH2CH2C6F13), 3.52 (m, 4H, OCH2CH2O ? 2 9 OH),

3.73 (m, 2H, OCH2CH2OH), 3.52–3.64 (m, 2H, CH2CHO-

HCH2O), 4.05 (m, H, SCH2CHOH) ppm. 13C-{1H} NMR

(CDCl3/TMS): d = 23.52 (s, CH2CH2C6F13), 29.81 (t, CH2

CH2C6F13,
3JC–F = 22.01 Hz), 35.98 (s, CH2SC2H4C6

F13), 65.43 (m, OCH2CH2OH), 70.57 (s, SCH2CHOHCH2),

72.68 (s, OCH2CH2OH), 74.99 (s, OCH2CHOHCH2),

108.94–120.12 (m, C6F13) ppm. 19F NMR (CDCl3/CFCl3):

d = -82.52 (t, 3F, CF3, 3JFF = 9.76 Hz), -115.69 (m, 2F,

CF2a), -123.34 (m, 2F, CF2b), -124.36 (m, 2F, CF2c),

-124.82 (m, 2F, CF2d), -127.71 (m, 2F, CF2x) ppm. Anal.

Calc. for C13H15F13O3S: C, 31.33; H, 3.03. Found: C, 31.48;

H, 3.18.

a-(2-F-hexylethyl)thiomethyl Triethylene Glycol (5b)

1H NMR (CDCl3/TMS): d = 2.31–2.54 (m, 2H,

SCH2CH2C6F13), 2.78 (m, 2H, CH2SC2H4C6F13), 2.97 (m,

2H, SCH2CH2C6F13), 3.45 (m, 2H, 2 9 OH), 3.67 (m,

10H, (CH2OCH2)2CH2), 4.00 (m, H, SCH2CHOH) ppm.
13C-{1H} NMR (CDCl3/TMS): d = 23.52 (s, CH2CH2
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C6F13), 31.96 (t, CH2CH2C6F13, 3JC–F = 22.13 Hz), 35.43

(s, CH2SC2H4C6F13), 61.60 (s, OCH2CH2OH), 70.57 (s,

SCH2CHOHCH2), 72.79 (m, 2 9 (CH2OCH2)), 74.53 (s,

CH2CHOHCH2O), 110.72–117.72 (m, C6F13) ppm. 19F

NMR (CDCl3/CFCl3): d = -82.33 (t, 3F, CF3, 3JFF =

9.72 Hz), -115.60 (m, 2F, CF2a), -123.22 (m, 2F, CF2b),

-124.56 (m, 2F, CF2d), -124.71 (m, 2F, CF2c), -127.82

(m, 2F, CF2x) ppm. Anal. Calc. for C15H19F13O4S: C,

33.22; H, 3.53. Found: C, 33.36; H, 3.49.

a-(2-F-hexylethyl)thiomethyl Tetraethylene Glycol

(5c)

1H NMR (CDCl3/TMS): d = 2.35 (m, 2H, SCH2CH2C6

F13), 2.69 (m, 2H, CH2SC2H4C6F13), 2.70–2.86 (m, 2H,

SCH2CH2C6F13), 3.41 (m, 2H, 2 9 OH), 3.69–3.73 (m,

14H, (CH2OCH2)3CH2), 4.05 (m, H, SCH2CHOH) ppm.
13C-{1H} NMR (CDCl3/TMS): d = 23.52 (s, CH2CH2C6

F13), 31.96 (t, CH2CH2C6F13, 3JC–F = 22.16 Hz), 35.43 (s,

CH2SC2H4C6F13), 61.60 (s, CH2CH2OH), 70.57 (s, SCH2

CHOH), 72.05 (s, (OCH2CH2)2OCH2), 74.53 (m, CHOH-

CH2O), 110.72–117.72 (m, C6F13) ppm. 19F RMN (CDCl3/

CFCl3): d = -82.33 (m, 3F, CF3), -115.60 (m, 2F, CF2a),

-123.22 (m, 2F, CF2b), -124.56 (m, 2F, CF2d), -124.71

(m, 2F, CF2c), -127.82 (m, 2F, CF2x) ppm. Anal. Calc. for

C17H23F13O5S: C, 34.82; H, 3.95. Found: C, 34.79; H,

4.02.

a-(2-F-hexylethyl)thiomethyl Pentaethylene Glycol

(5d)

1H NMR (CDCl3/TMS): d = 2.30–2.50 (m, 2H,

SCH2CH2C6F13), 2.75 (m, 2H, CH2SC2H4C6F13), 2.83 (m,

2H, SCH2CH2C6F13), 3.52 (m, 2H, OCH2CHOHCH2O),

3.69 (m, 18H, CH2(CH2OCH2)3CH2 ? 2 9 OH), 4.05 (m,

H, SCH2CHOH) ppm. 13C-{1H} NMR (CDCl3/TMS):

d = 23.51 (s, CH2CH2C6F13), 29.52 (t, CH2CH2C6F13,
3JC–F = 21.21 Hz), 35.98 (s, CH2SC2H4C6F13), 65.43

(s, OCH2CH2OH), 70.57 (s, SCH2CHOH), 72.68 (m,

OCH2(CH2 OCH2)3), 74.99 (s, CH2CHOHCH2O),

108.94–120.12 (m, C6F13) ppm. 19F RMN (CDCl3/CFCl3):

d = -82.52 (t, 3F, CF3, 3JFF = 9.76 Hz), -115.69 (m, 2F,

CF2a), -123.34 (m, 2F, CF2b), -124.36 (m, 2F, CF2c),

-124.82 (m, 2F, CF2d), -127.70 (m, 2F, CF2x) ppm. Anal.

Calc. for C19H27F13O6S: C, 34.82; H, 3.95. Found: C,

34.79; H, 3.98.

a-(2-F-hexylethyl)thiomethyl Hexaethylene Glycol

(5e)

1H NMR (CDCl3/TMS): d = 2.30–2.46 (m, 2H,

SCH2CH2C6F13), 2.78 (m, 2H, CH2SC2H4C6F13), 2.85 (m,

2H, SCH2CH2C6F13), 3.40 (m, 2H, 2 9 OH), 3.56 (m, 2H,

CHOHCH2O), 3.67 (m, 20H, OCH2(CH2OCH2)4CH2),

4.01 (m, H, SCH2CHOH) ppm. 13C-{1H} NMR (CDCl3/

TMS): d = 23.63 (s, CH2CH2C6F13), 29.83 (t, CH2CH2

C6F13, 3JC–F = 21.73 Hz), 35.13 (s, CH2SC2H4C6F13),

61.54 (s, CH2CH2OH), 70.09 (s, SCH2CHOHCH2), 72.23

(m, CH2(CH2OCH2)4), 74.02 (s, CHOHCH2O), 109.13–

117.47 (m, C6F13) ppm. 19F RMN (CDCl3/CFCl3): d =

-82.76 (t, 3F, CF3, 3JFF = 8.56 Hz), -115.58 (m, 2F,

CF2a), -123.46 (m, 2F, CF2b), -124.54 (m, 2F, CF2d),

-124.69 (m, 2F, CF2c), -127.95 (m, 2F, CF2x) ppm. Anal.

Calc. for C21H31F13O7S: C, 37.39; H, 4.63. Found: C,

37.44; H, 4.13.

a-(2-F-octylethyl)thiomethyl Diethylene Glycol (5a0)

1H NMR (CDCl3/TMS): d = 2.31–2.54 (m, 2H,

SCH2CH2C8F17), 2.77 (m, 2H, CH2SC2H4C8F17), 2.97 (m,

2H, SCH2CH2C8F17), 3.50–3.65 (m, 2H, CHOHCH2O),

3.67 (m, 4H, OCH2CH2OH ? 2 9 OH), 3.73 (m, 2H,

OCH2CH2OH), 4.00 (m, H, SCH2CHOH) ppm. 13C-{1H}

NMR (CDCl3/TMS): d = 23.49 (s, CH2CH2C8F17), 32.25

(t, CH2CH2C8F17, 3JC–F = 21.96 Hz), 35.42 (s, CH2

SC2H4C8F17), 61.24 (m, OCH2CH2OH), 70.59 (s, SCH2

CHOHCH2), 72.68 (s, OCH2CH2OH), 74.23 (s, CH2CHO

HCH2O), 128.86 (m, C8F17) ppm. 19F NMR (CDCl3/

CFCl3): d = -82.82 (t, 3F, CF3, 3JFF = 9.76 Hz),

-115.28 (m, 2F, CF2a), -122.20 (m, 2F, CF2b?d),

-123.75 (m, 2F, CF2e), -124.36 (m, 2F, CF2n), -127.71

(m, 2F, CF2x) ppm. Anal. Calc. for C15H15F17O3S: C,

30.11; H, 2.53. Found: C, 30.19; H, 2.88.

a-(2-F-octylethyl)thiomethyl Triethylene Glycol (5b0)

1H NMR (CDCl3/TMS): d = 2.35 (m, 2H, SCH2

CH2C8F17), 2.69 (m, 2H, CH2SC2H4C8F17), 2.73–2.86 (m,

2H, SCH2CH2C8F17), 3.51 (m, 2H, 2 9 OH), 3.67 (m,

10H, CH2(OCH2CH2)2), 4.00 (m, H, SCH2CHOH) ppm.
13C-{1H} NMR (CDCl3/TMS): d = 23.17 (s, CH2CH2

C8F17), 32.13 (t, CH2CH2C8F17, 3JC–F = 21.96 Hz), 35.54

(s, CH2SC2H4C8F17), 61.71 (s, OCH2CH2OH), 70.57 (s,

SCH2CHOH), 72.68 (m, OCH2CH2OCH2), 74.25 (s,

CHOHCH2O), 112.14–122.23 (m, C8F17) ppm. 19F RMN

(CDCl3/CFCl3): d = -82.14 (t, 3F, CF3, 3JFF = 9.23 Hz),

-113.89 (m, 2F, CF2a), -121.96 (m, 6F, CF2b?d),

-123.01 (m, 2F, CF2e), -123.48 (m, 2F, CF2n), -126.98

(m, 2F, CF2x) ppm. Anal. Calc. for C17H19F17O4S: C,

31.79; H, 2.98. Found: C, 31.53; H, 3.01.

a-(2-F-octylethyl)thiomethyl Tetraethylene Glycol

(5c0)

1H NMR (CDCl3/TMS): d = 2.28–2.56 (m, 2H,

CH2CH2C8F17), 2.87 (m, 2H, CH2SC2H4C8F17), 3.04 (m,
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2H, CH2CH2C8F17), 3.50–3.59 (m, 2H, CH2OCH2CHOH),

3.69 (m, 14H, OCH2(CH2OCH2)2CH2 ? 2 9 OH), 4.03

(m, H, SCH2CHOH) ppm. 13C-{1H} NMR (CDCl3/TMS):

d = 23.39 (s, CH2CH2C8F17), 32.04 (t, CH2CH2C8F17,
3JC–F = 21.95 Hz), 35.47 (s, CH2SC2H4C8F17), 63.29 (s,

OCH2CH2OH), 70.07 (s, SCH2CHOH), 72.05 (m, (OCH2

CH2)2OCH2), 74.74 (s, CH2CHOHCH2O), 120.98 (m,

C8F17) ppm. 19F RMN (CDCl3/CFCl3): d = -82.14 (t, 3F,

CF3, 3JFF = 9.23 Hz), -113.89 (m, 2F, CF2a), -121.96

(m, 6F, CF2b?d), -123.01 (m, 2F, CF2e), -123.48 (m, 2F,

CF2n), -126.98 (m, 2F, CF2x) ppm. Anal. Calc. for

C19H23F17O5S: C, 33.25; H, 3.38. Found: C, 33.12; H, 3.42.

a-(2-F-octylethyl)thiomethyl Pentaethylene Glycol

(5d0)

1H NMR (CDCl3/TMS): d = 2.45 (m, 2H, SCH2

CH2C8F17), 2.68 (m, 2H, CH2SC2H4C6F13), 2.80 (m, 2H,

SCH2CH2C8F17), 3.43 (m, 2H, 2 9 OH), 3.68 (m, 16H,

(OCH2CH2)4), 3.91 (m, H, SCH2CHOH), 3.54 (m, 2H,

CHOHCH2O) ppm. 13C-{1H} NMR (CDCl3/TMS):

d = 23.49 (s, CH2CH2C8F17), 31.94 (t, CH2CH2C8F17,
3JC–F = 20.96 Hz), 35.32 (s, CH2SC2H4C8F17), 61.61 (s,

CH2CH2OH), 70.68 (s, SCH2CHOH), 72.70 (m,

CH2(CH2OCH2)3), 74.20 (s, CHOHCH2O), 109.20–119.93

(m, C8F17) ppm. 19F RMN (CDCl3/CFCl3): d = -81.05

(t, 3F, CF3, 3JFF = 9.56 Hz), -115.34 (m, 2F, CF2a),

-122.77 (m, 6F, CF2b?d), -123.80 (m, 2F, CF2e), -124.42

(m, 2F, CF2n), -127.20 (m, 2F, CF2x) ppm. Anal. Calc. for

C21H27F17O6S: C, 34.53; H, 3.73. Found: C, 34.33; H, 3.65.

a-(2-F-octylethyl)thiomethyl Hexaethylene Glycol

(5e0)

1H NMR (CDCl3/TMS): d = 2.49 (m, 2H, SCH2CH2

C8F17), 2.61 (m, 2H, CH2SC2H4C8F17), 2.71 (m, 2H,

SCH2CH2C8F17), 3.66 (m, 22H, (CH2OCH2)5CH2), 4.95

(m, H, SCH2CHOH) ppm. 13C-{1H} NMR (CDCl3/TMS):

d = 23.41 (s, CH2CH2C8F17), 31.96 (t, CH2CH2C8F17,
3JC–F = 20.16 Hz), 35.27 (s, CH2SC2H4C8F17), 61.61 (s,

OCH2CH2OH), 70.70 (s, SCH2CHOH), 72.68 (m,

OCH2(CH2OCH2)4), 74.24 (s, CHOHCH2O), 116.17 (m,

C8F17) ppm. RMN 19F (CDCl3/CFCl3): d = -81.83 (t, 3F,

CF3, 3JF–F = 8.56 Hz), -115.43 (m, 2F, CF2a), -122.68 (m,

6F, CF2b?d), -123.75 (m, 2F, CF2e), -124.51 (m, 2F, CF2n),

-127.31 (m, 2F, CF2x) ppm. Anal. Calc. for C23H31F17O7S:

C, 35.67; H, 4.03. Found: C, 35.34; H, 3.99.

Results and Discussion

Protection of PEG by the reaction with trityl chloride [9,

10] furnished a mixture of mono- and diprotected

derivatives. The monotritylated PEG, main product of the

reaction, was purified by conventional techniques.

Monoprotected polyethylene glycol was epoxidized by

the reaction of its monoprotected derivative 2 with epi-

chlorohydrin [11, 12]. The coupling reaction of the epoxide

3 and 2-F-alkylethanethiol [13–20] furnished the adduct 4,

which was easily deprotected [9] into surfactant 5

(Scheme 1).

Compounds 5 are obtained in good yields as indicated in

Table 1. Their surface tension cs and interfacial tension ci

were measured by the Du Noüy ring method and grouped

in Table 1.

As indicated in Table 1, cs values are remarkably low in

comparison with those of conventional hydrocarbon sur-

factants. The values of ci are, however, slightly higher than

those observed for hydrocarbon analogues [21].

The data provided in Table 1 show that cs as well as ci

decrease when the perfluoroalkyl chain and/or polyoxy-

ethylene (POE) chain length increases. The lowest values

of cs and ci correspond to the surfactant which has the

longest perfluoroalkyl and POE chains.

The presence of two hydroxyl groups in surfactant 5

probably contributes to lowering the surface tension since,

for similar structures devoid of a hydroxyl group; the

aqueous surface tensions are slightly higher [22–24].

Surfactant 5 may exhibit some crown ether properties.

They should be able to complex small metallic cations due

to their POE chain length.

We plotted in Figs. 1 and 2 the variation of surface

tension against the logarithm of the molar concentration of

compounds 5b–e and 5c, 5c0, 5d, 5d0.
The values of the break points (CMC and corresponding

surface tension cCMC) depicted from Figs. 1 and 2 are

grouped in Table 2.

Values reported in Table 2 show that the CMC

increases progressively with n (the number of ethylene

oxide units). Thus, an increase of n from 2 to 5 induces an

increase in the CMC from 0.50 to 3.98 lM. Since

hydrophilicity of the surfactant headgroup hinders mic-

ellization, smaller PEG chains seem to favor micelle

formation (Table 2).

In Fig. 2 are plotted the surface tensions against their

concentration for compounds 5c, c0 and 5d, d0. As indicated

in Table 2, the cCMC decreases when the perfluoroalkyl

chain becomes longer. For instance, cCMC values fall from

2.36 to 1.46 lM when the RF goes from C6F13 to C8F17.

We have already signaled such behavior in previous works

[25].

Nevertheless, amphiphiles 5 seem to be more sensitive

to n variation, since when n and the RF length increase, the

overall effect is an increase in cCMC. Furthermore, this

increase becomes more significant for higher values of

n. For instance, when going from surfactant 5b (n = 2,
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RF = C6F13) to 5c0 (n = 3, RF = C8F17), the augmentation

of CMC is 0.23 lM, whereas an augmentation of 0.48 lM

was observed for the transition from surfactant 5c (n = 3,

RF = C6F13) to 5d0 (n = 4, RF = C8F17).
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Scheme 1 Synthesis of

amphiphiles 5
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Fig. 1 Surface tension against log(c) for aqueous solutions of 5b–e in

water at 25 �C
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5c: C6F13, n=3

5d: C6F13, n=4

5d': C8F17, n=4

5c': C8F17, n=3

Fig. 2 Surface tension versus log(c) of compounds 5c, 5c0, 5d and

5d0 in water at 25 �C

Table 2 CMC and cCMC values of compounds 5b–e, c0, d0

Surfactant Break points

5 n RF CMC (lM) cCMC (mN/m)a

5b 2 C6F13 0.50 19.10

5c 3 0.98 20.45

5d 4 2.36 21.22

5e 5 C8F17 3.98 22.20

5c’ 3 0.73 19.20

5d’ 4 1.46 18.46

a Typical uncertainties on cCMC are ±0.04 mN/m

Table 1 Amphiphiles 5 prepared

Surfactant n RF Yield

(%)

mpa

(�C)
cb

s

(mN m-1)

cc
i

(mN m-1)

5a 1 C6F13 93 – 17.90 26.30

5b 2 88 – 19.10 27.60

5c 3 86 – 20.45 28.15

5d 4 87 – 20.22 29.60

5e 5 91 – 21.90 33.30

5a0 1 C8F17 95 77 16.80 23.30

5b0 2 92 72 17.96 24.10

5c0 3 89 69 18.46 24.45

5d0 4 88 63 19.10 25.90

5e0 5 86 59 19.92 26.20

a Otherwise viscous oil, bCyclohexane/water and cAqueous 0.1 %

(w/w) solution at 25 �C
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Conclusion

In this paper we have presented an efficient pathway for the

synthesis of new amphiphilic compounds. Acceptable

yields were obtained by the use of simple experimental

procedures which can be applied to large-scale production.

The surface activity of these new compounds is closely

dependent on the PEG chain length.
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