September 1990 Papers 779

Stereospecific Synthesis of N-(Diphenylmethylene)- α , β -didehydroamino Acid Methyl Esters from β -Hydroxy- α -amino Acids

Cesarino Balsamini,**a Ermanno Duranti,* Leonardo Mariani,* Americo Salvatori,* Gilberto Spadoni*

^a Istituto di Chimica Farmaceutica, Università di Urbino, Piazza del Rinascimento 6, I-61029 Urbino, Italy

^b Istituto di Scienze Chimiche, Università di Urbino, Piazza del Rinascimento 6, I-61029 Urbino, Italy

N-(Diphenylmethylene)- α , β -didehydroamino acid methyl esters $2\mathbf{b}-\mathbf{d}$ are prepared with absolute geometric selectivity from inexpensive β -hydroxyamino acids through the intermediates N-(diphenylmethylene)- β -hydroxyamino acid methyl esters $1\mathbf{b}-\mathbf{d}$. Besides, an easy conversion from E isomers to the corresponding Z isomers was performed, thus avoiding the use of the uncommon allo- β -hydroxyamino acids as starting materials.

Protected α,β -didehydroamino acids are valuable intermediates in the synthesis of bioactive didehydropeptides and uncommon or optically pure amino acids. ¹⁻³ Among these intermediates, the recently introduced *N*-(arylmethylene)- α,β -didehydroamino acids are a synthons of increasing interest, as implemented by the following examples.

- The *N*-benzylidene protection has been used to activate the α , β -double bond of didehydroamino esters in the nucleophilic addition of organometallics to yield β -substituted alanines.⁵
- A similar but more general synthesis involving Michael-type reaction on methyl N-(DPM)-didehydroalaninate (2a) was recently reported,⁶ (DPM = diphenylmethylene); the DPM group can be easily removed by dilute protic acids.⁷
- The double bond of the N-(DPM)-didehydroalanine is the reactive functionality of a nickel complex which is the chiral building block of an asymmetric synthesis of amino acids.⁸

In the course of a research program on the reactivity and new synthetic applications of N-(DPM)- α , β -didehydroamino acids, e.g. for the stereospecific synthesis of β , β -disubstituted amino acids, we needed the E and Z isomers of alkyl N-(DPM)- α , β -didehydro- β -methylalaninates **2b,c** and N-(DPM)- α , β -didehydro- β -phenylalaninates **2d,e**. Here we describe the synthesis of these compounds.

Methods useful for the above-mentioned synthesis have been recently and authoritatively examined.2 The authors of this review observed that the procedures involving both direct or indirect β -elimination of water are noteworthy when the starting β -hydroxyamino acids are easily available, as the commercial serine, threonine and phenylserine. The direct elimination has been performed in mild reaction conditions by a number of different reagents, as DAST (diethylaminosulfur trifluoride)/pyridine,9 triphenylphosphine/diethyl azodicarboxylate, 10 DiPCD (diisopropyl carbodiimide/copper(I) chloride). 11 While DAST is reported to behave stereospecifically, the others gave E, Z mixtures. In general, the synthesis of didehydroamino acids leads to isomeric mixtures or to the thermodynamically more stable Z isomer.

We investigated these reagents with the N-(DPM)- β -hydroxyamino acid methyl esters 1a-d, which are readily prepared from the corresponding amino acids. The tri-

phenylphosphine/diethyl azodicarboxylate system was found ineffective. The DAST method gave compound 2c from 1b with the expected Z geometry although in very poor yield (<10%); 1d surprisingly did not produce 2c. Finally, the DiPCD/copper(I) chloride system, a dehydrating agent for β -hydroxy ketones formerly proposed by Corey¹² and later used on N-(benzyloxycarbonyl)-L-threonine by Miller, 1c stereospecifically gave 2a-d in satisfactory yield (Scheme A).

Starting Material	Substrate	R ¹	R ²	Product	Yield (%)
D,L-Ser	(±) 1a	H	H	2a	87
L-Thr	1b	Me	H	(E)-2b	84
L-a-Thr	1c	H	Me	(Z)-2c	81
D,L-PhSer	(±) 1d	Ph	H	(E)-2d	34

Scheme A

These results appear interesting since the E isomers, which have now been prepared with high selectivity, are not easily accessible. However, the preparation of (Z)-2c and (Z)-2e implies the use of the expensive L-allothreonine and the commercially unavailable allophenylserine as starting materials, respectively. To avoid this drawback, and supposing a kinetic control in the formation of the E isomers, we also investigated the $E \rightarrow Z$ isomerization of 2b and 2d.

Scheme B

The best conditions for the highest yield of conversion were defined: the $2d \rightarrow 2e$ conversion occurs thermally, while the $2b \rightarrow 2e$ conversion occurs in dioxane and is catalyzed by piperidine (Scheme B). Similar base-catalyzed $E \rightarrow Z$ isomerization has been observed; a mechanism, admitting a reversible Michael-type addition of the base and an α -carbanion intermediate, has

Table. Compounds 1 and 2 Prepared

Product	Yield (%)	mp (°C) (solvent)	Molecular Formula	IR (Nujol) v(cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz)	MS (70 eV) m/z (%)
(±)-1a	83	96–97 (Et ₂ O/ hexane)	C ₁₇ H ₁₇ NO ₃ (283.3)	3300, 1735	3.17 (br s, 1H, OH), 3.77 (s, 3H, CH ₃), 3.95 (m, 3H, CH-CH ₂), 7.20-7.70 (m, 10H _{arom})	283 (M ⁺ , 5), 206 (100), 105
1b	78	78-80 (hexane)	C ₁₈ H ₁₉ NO ₃ (297.4)	3310, 1740, 1660	1.34 (d, 3 H, ${}^{3}J = 6.1$, CH $-$ CH $_{3}$), 3.20 (br s, 1 H, OH), 3.35 (br d, 1 H, H $_{\alpha}$), 3.76 (s, 3 H, OCH $_{3}$), 4.12 (dq, 1 H, H $_{\beta}$, ${}^{3}J_{\alpha,\beta} = 7.9$, ${}^{3}J = 6.1$), 7.10–7.70 (m, 10 H $_{arom}$)	297 (M ⁺ , 2), 220 (100), 105
1c	75	76 (hexane)	C ₁₈ H ₁₉ NO ₃ (297.4)	3300, 1740, 1660	1.23 (d, 3 H, ${}^{3}J$ = 6.3, CH – CH ₃), 3.20 (br s, 1 H, OH), 3.77 (s, 3 H, OCH ₃), 3.85–4.05 (br s, 1 H, H _{α}), 4.24 (dq, 1 H, H _{β} , ${}^{3}J_{\alpha,\beta}$ = 8.4, ${}^{3}J$ = 6.3), 7.10–7.80 (m, 10 H _{arom})	297 (M ⁺ , 2), 105 (100), 220
(±)-1d	84	81-82 (Et ₂ O/ hexane)	C ₂₃ H ₂₁ NO ₃ (359.4)	3350, 1730, 1630	3.20 (br d, 1 H, OH), 3.70 (s, 3 H, OCH ₃), 3.85 (br s, 1 H, H _{\theta}), 5.01 (d, 1 H, $^3J = 8.05$, H _{\theta}), 7.10-7.90 (m, 15 H _{arom})	195, 165, 105, 91 (100)
2a 2b	87 84	oil ⁶ 53 (hexane)	C ₁₈ H ₁₇ NO ₂ (279.3)		- 1.91 (d, 3H, ${}^{3}J = 7.57$, CH - CH ₃), 3.55 (s, 3H, OCH ₃), 5.60 (q, 1H, ${}^{3}J = 7.57$, H _{β}), 7.17-7.78 (m, 10H _{arom})	279 (M ⁺ , 99), 165 (100), 105
2c	81 95 ^b	oil	C ₁₈ H ₁₇ NO ₂ (279.3)	1720, ^a 1640, 1620	1.59 (d, 3 H, ${}^{3}J = 7.21$, CH – CH ₃), 3.65 (s, 3 H, OCH ₃), 6.10 (q, 1 H, ${}^{3}J = 7.21$, H _{θ}), 7.15–7.77 (m, 10 H _{arom})	279 (M ⁺ , 95), 165 (100), 105
2d	34	88 (hexane)	C ₂₃ H ₁₉ NO ₂ (341.4)	1720, 1660, 1620	3.50 (s, 3H, OCH ₃), 6.35 (s, 1H, H _{β}), 7.20–7.82 (m, 15H _{arom})	341 (M ⁺ , 100), 282, 179, 165, 105
2e	90°	147 (Et ₂ O/ hexane)	C ₂₃ H ₁₉ NO ₂ (341.4)	1715, 1625	3.57 (s, 3H, OCH ₃), 6.95 (s, 1H, H _{β}), 7.16–7.90 (m, 15H _{arom})	341 (M ⁺ , 100), 282, 179, 165

^a Neat.

been also proposed.¹³ The reaction conditions of the more widely studied hydrogen chloride catalyzed isomerizations¹⁴ are incompatible with our substrates.

The high stereospecificity of the DiPCD β -elimination has a mechanistic relevance besides being synthetically useful. Our results are consistent with the mechanism previously proposed for this reaction, which implies a concerted synelimination of an O-alkylisourea intermediate. ¹² The absence of stereospecificity, otherwise observed in the reaction of N-(benzyloxycarbonyl)-L-threonine with DiPCD, ¹¹ suggests that the structure of the N-substituent could have an influence on the mechanism of these reactions.

The new compounds were characterized by ¹H-NMR spectroscopy and mass spectrometry. The structures of 2b,c were determinated by ROESY experiments. 15 Furthermore, the ¹³C-NMR data (2**b**, $\delta_{C=0} = 164.7$, $\delta_{\rm C=O}=164.4,$ 2c, and $^{3}J_{C=O,H} = 10.77 \text{ Hz},$ ${}^{3}J_{C=0,H} = 4.65 \text{ Hz}$) correspond to those reported respectively for E and Z isomers of similar didehydroamino acid esters. 16 With regard to the geometry of 2d and 2e, the ¹H-NMR signal of the 2e vinyl proton shows a downfield shift of 0.6 ppm with respect to 2d. This shift value corresponds to that observed for (Z)-2c and (E)-2b (0.5 ppm). These NMR data and the occurrence of the $E \rightarrow Z$ isomerization of 2d and of 2b support the geometry proposed for (E)-2d and (Z)-2e.

Melting points were determined on a Buchi SMP-510 capillary apparatus and are uncorrected. IR spectra were obtained on a Perkin-Elmer 257 spectrometer. NMR measurements were taken by a Bruker AC 200 spectrometer. The ROESY experiments were performed by a Varian VXR 300 spectrometer and MS spectra by VG ZAB 2 F (70 eV) instrument. Satisfactory elemental analysis (C, H, N \pm 0.4 from the theoretical value) were obtained for the new compounds.

N-(Diphenylmethylene)- β -hydroxyamino Acid Methyl Esters 1 a-d: The compounds are prepared from the commercial β -hydroxyamino acids, which are esterified by conventional procedures and N-(DPM) protected according to the literature⁷ (Table).

N-(Diphenylmethylene)- α , β -didehydroamino Acid Methyl Esters 2a-d; General Procedure:

The substrate 1a-d (10 mmol), 1,3-diisopropylcarbodiimide (2.525 g, 20 mmol) and CuCl (0.297 g, 3 mmol) in dry CH_2Cl_2 (50 mL) are stirred for 32 h at 40 °C (r. t. for 2d) with exclusion of moisture. The mixture is filtered on Celite by suction, washed with H_2O (3 × 20 mL), dried (Na₂SO₄) and evaporated. Flash column chromatography (silica gel; benzene/EtOAc, 98:2) is used to obtain pure samples of compounds 2a-d (Table).

Methyl (Z)-N-(Diphenylmethylene)- α , β -didehydro- β -methylalaninate (2c):

A solution of methyl (E)-N-(DPM)- α , β -didehydro- β -methylalaninate (**2b**, 2.79 g, 10 mmol) and piperidine (0.5 mmol) in dioxane (20 mL) is heated at 60 °C for 15 h. The reaction is followed by ¹H-NMR. The solvent is evaporated *in vacuo* to give **2c** practically pure by ¹H-NMR (Table); yield: 2.70 g (95%).

b From 2b.

From 2d.

September 1990 Papers 781

Methyl (Z)-N-(Diphenylmethylene)- α , β -didehydro- β -phenylalanin-ate (2e):

Methyl (E)-N-(DPM)- α , β -didehydro- β -phenylalaninate (2d, 3.41 g, 10 mmol) is heated at 145 °C for 1 h in a scaled vessel to give 2e. ¹H-NMR control reveals an almost complete isomerization (Table); yield. 3.20 g (90%).

Received: 27 December 1989; revised: 27 February 1990

- Noda, K.; Shimohigashi, Y.; Izumya, N.; in: The Peptides, Vol. 5, Academic Press, New York, 1983, p. 285.
- (2) Schmidt, U.; Lieberknecht, A.; Wild, J. Synthesis 1988, 159.
- (3) Martell, A.E. Acc. Chem. Res. 1989, 22, 115.
- (4) Schmidt, U.; Prantz, E. Angew. Chem., 1977, 89, 345; Angew. Chem. Int. Ed. Engl. 1977, 16, 328.
 Öhler, E.; Prantz, E.; Schmidt, U. Chem. Ber. 1978, 111, 1058.
 Öhler, E.; Schmidt, U. Chem. Ber. 1979, 112, 107.
 Wulff, G.; Böhnke, H. Angew. Chem. 1984, 96, 326; Angew. Chem., Int. Ed. Engl. 1984, 23, 380.

- Wulff, G.; Böhnke, H. Angew. Chem. 1986, 98, 101; Angew. Chem., Int. Ed. Engl. 1986, 25, 90.
 Wulff, G.; Böhnke, H.; Klinken, H.T. Liebigs Ann. Chem. 1988, 501.
- (6) Tarzia, G.; Balsamini, C.; Spadoni, G.; Duranti, E. Synthesis 1988, 514.
- (7) O'Donnel, M.J.; Polt, R.B. J. Org. Chem. 1982, 47, 2663.
- (8) Belokon, Y. N.; Sagyan, A. S.; Dzhamgaryan, S. M.; Bakhmutov, V. I.; Belikov, V. M. Tetrahedron Lett. 1988, 44, 5507.
- (9) Somekh, L.; Shanzer, A. J. Org. Chem. 1983, 48, 907.
- (10) Wojciechowska, H.; Pawlowicz, R.; Andruszkiewicz, R.; Grzybowska, J. Tetrahedron Lett. 1978, 42, 4063.
- (11) Miller, M.J. J. Org. Chem. 1980, 45, 3131.
- (12) Corey, E. J.; Andersen, N. H.; Carlson, R. M. Paust, J.; Vedejs, E.; Vlattas, I.; Winter, R. E. K. J. Am. Chem. Soc. 1968, 90, 3245.
- (13) Nitz, T.J.; Holt, E.M.; Rubin, B.; Stammer, C.H. J. Org. Chem. 1981, 46, 2667.
- (14) Poisel, H.; Schmidt, U. Chem. Ber. 1975, 108, 2547.
- (15) The pulse sequence is that reported in: Kessler, H.; Griesinger, C.; Kerssebaum, R.; Wagner, K.; Ernst, R.R. J. Am. Chem. Soc. 1987, 109, 607; the 2D matrix has the dimension 1024 pts × 512 increments, mixing time 0.8 s.
- (16) Prokof'ev, E.P.; Karpeiskaya, E.I. Tetrahedron Lett. 1979,