134 Communications SYNTHESIS

Facile Synthesis of 4-Hydroxy-(E)-2-alkenoic Esters from Aldehydes

Rikuhei TANIKAGA*, Yoshihito NOZAKI, Tadashi TAMURA, Aritsune KAR

Department of Chemistry, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606, Japan

The skeleton of 4-hydroxy-(E)-2-alkenoic esters (3) is found in many naturally occurring compounds^{1,2}. We have previously reported that the condensation of methyl phenylsulfinylacetate (2a) with aldehydes (1) in the presence of a catalytic amount of piperidine yields 2-phenylsulfinyl-2-alkenoic esters³. We have now found that compounds 3 are easily obtained from aldehydes 1 and methyl arylsulfinylacetates 2 using excess piperidine via Knoevenagel reaction, C=C double-bond shift, [2,3]-sigmatropic rearrangement, and hydrolysis by a one-step procedure⁴. When methyl 4-chloro- (2b) or methyl 4-nitrophenylsulfinylacetate (2c) are used in place of 2a, compounds 3 are obtained in better yields because the competitive self-condensation of aldehydes 1 scarcely occurs.

$$R^{2}$$
 CH—CHO + $H_{2}C$ S $X = H$ $X = CH$ X

The present method has the following advantages: the reagents are readily available; the procedure is simple, e.g., inert atmosphere and dry solvents are not required; the reaction conditions are mild; and the reaction can be performed with a wide range of aldehydes. A limitation of the method is that ketones fail to react with compounds 2.

Methyl 4-Chlorophenylsulfinylacetate (2b):

Methyl (4-Chlorophenylthio)-acetate: Sodium (11.5 g, 0.5 mol) is dissolved in methanol (250 ml). To this solution is added, with stirring, a solution of 4-chlorobenzenethiol (72.3 g, 0.5 mol) in methanol (100 ml) and a solution of methyl chloroacetate (54.3 g, 0.5 mol) in methanol (50 ml) at room temperature. The resultant mixture is refluxed for 1 h, then distilled in vacuo to give the ester as a colorless liquid; yield: 99.5 g (92%); b.p. 118 °C/1.2 torr.

Methyl 4-Chlorophenylsulfinylacetate (2b): A 30% hydrogen peroxide solution (51.0 g, 0.45 mol) is added dropwise to a stirred solution of methyl (4-chlorophenylthio)-acetate (97.5 g, 0.45 mol) in acetic acid (200 ml) at 10 °C. Stirring is continued at room temperature overnight and the solvent then removed in vacuo to give 2b as a colorless solid; yield: 94.2 g (90%); m.p. 58-59 °C (ethanol/hexane 1/1).

M.S.: m/e = 232 (Ref.⁵, m/e = 232).

Methyl 4-Hydroxy-(E)-2-hexenoate (3a); Typical Procedure:

A solution of butanal (1a; 2.0 g, 24 mmol) in acetonitrile (10 ml) is added, over a period of 1 h, to a stirred solution of methyl 4-chlorophenylsulfinylacetate (2b; 4.7 g, 20 mol) and piperidine (2.0 g, 24 mmol) in acetonitrile (40 ml) at room temperature and stirring is continued for a further 2 h. Acetonitrile and piperidine are then removed in vacuo and product 3a is isolated by distillation in vacuo or by column chromatography on silica gel (chloroform); yield: 2.4 g (83%); b.p. 81-83 °C/0.3 torr.

When the above procedure is carried out using compounds 2a or 2c in place of 2b the yield of product 3a is 74% or 85%, respectively.

Table 1. 4-Hydroxy-(E)-2-alkenoic Ester (3) prepared

3	R¹	R ²	Reaction Conditions time/temperature	Yield ^a [%]	b.p. [°C]/ torr	Lit. Data or Molecular f	
 a	C ₂ H ₅	Н	r.t./3 h	83	81-83°/0.3	$C_7H_{12}O_3$	(144.2)
	n-C4H9	н	r.t./3 h	84	90-95°/0.3	$C_9H_{16}O_3$	(172.2)
	n - C ₅ H ₁₁	н	r.t./3 h	76	105-111°/0.2	$C_{10}H_{18}O_3$	(186.2)
	n-C ₆ H ₁₃	H	r.t./3 h	80	125-130°/0.3	$C_{11}H_{20}O_3$	(200.3)
_	17 6611(3	***	r.t./3 h ^e	82°			
_	CH₃	СН₃	r.t./3 days	66	80-84°/0.3	120°/16	
`			r.t./l h+	64			
			reflux/2 h				
f	n-C4H9	C ₂ H ₅	r.t./1 h+	73	130-135°/0.3	$C_{11}H_{20}O_3$	(200.3)
•			reflux/10 h				
g			r.t./1 h +	72	110-116°/0.6	$C_{10}H_{16}O_3$ (184.	(184.2)
9			reflux/2 h				
h			r.t./1 h+	72	113-116°/0.2	$C_{10}H_{14}O_3$	(182.2)
••	$\overline{}$	\smile	reflux/2 h				
i	CH₂-	н	r.t./1 day	67	106~110°/0.1	$C_{12}H_{18}O_4$	(226.3)
•	<u></u>	• •	· •				

Yield of isolated product based on 2b.

Table 2. I.R.- and ¹H-N.M.R.-Spectral Data of Compounds 3

3	I.R. (neat) $v_{C=-0}$ [cm ¹]	1 H-N.M.R. (CDCl ₃ /TMS $_{\mathrm{int}}$) δ [ppm]
a	1720	0.94 (t, 3 H, J=7 Hz); 1.4-1.8 (m, 2 H); 2.7 (br. s, 1 H); 3.69 (s, 3 H); 4.1-4.3 (m, 1 H); 5.97 (dd, 1 H, J=16 Hz, 2 Hz); 6.94 (dd, 1 H, J=16 Hz, 4 Hz)
b	1720	0.8-1.0 (m, 3 H); 1.1-1.7 (m, 6 H); 2.6 (br. s, 1 H); 3.69 (s, 3 H); 4.1-4.3 (m, 1 H); 5.99 (dd, 1 H, J=16 Hz, 1 Hz); 6.97 (dd, 1 H, J=16 Hz, 4 Hz)
c	1720	0.8-1.0 (m, 3 H); 1.1-1.7 (m, 8 H); 3.0 (br. s, 1 H); 3.67 (s, 3 H); 4.1-4.3 (m, 1 H); 5.97 (dd, 1 H, J=16 Hz, 1 Hz); 6.94 (dd, 1 H, J=16 Hz, 4 Hz)
d	1720	0.8-1.0 (m, 3 H); 1.1-1.7 (m, 10 H); 3.0 (br. s, 1 H); 3.68 (s, 3 H); 4.1-4.3 (m, 1 H); 5.95 (dd, 1 H, J=16 Hz, 1 Hz); 6.95 (dd, 1 H, J=16 Hz, 4 Hz)
e	1720	1.31 (s, 6 H); 2.8 (br. s, 1 H); 3.67 (s, 3 H); 5.88 (d, 1 H, J=16 Hz); 6.92 (d, 1 H, J=16 Hz)
f	1720	0.7-1.0 (m, 6 H); $1.1-1.7$ (m, 8 H); 2.5 (br. s, 1 H); 3.68 (s, 3 H); 5.84 (d, 1 H, $J = 16$ Hz); 6.73 (d, 1 H, $J = 16$ Hz)
g	1720	1.2-2.5 (m, 11 H); 3.70 (s, 3 H); 5.96 (d, 1 H, <i>J</i> = 16 Hz); 6.98 (d, 1 H, <i>J</i> = 16 Hz)
h	1720	1.3-2.4 (m, 7 H); 3.74 (s, 3 H); 5.6-5.8 (m, 2 H); 6.09 (d, 1 H, J=16 Hz); 7.04 (d, 1 H, J=16 Hz)
i	1710, 1720	1.4-2.9 (m, 12 H); 3.70 (s, 3 H); 5.0 (br. s, 1 H); 5.98 (dd, 1 H, J=16 Hz, 2 Hz); 6.96 (dd, 1 H, J=16 Hz, 5 Hz)

Financial support from the Japan Society for the Promotion of Science is gratefully acknowledged.

Received: September 8, 1982

Satisfactory microanalyses obtained: C, ± 0.28 ; H, ± 0.21 .

^c Mol. ratio used, **2b**: **1d**: piperidine = 1.2:1.0:1.2; yield based on **1d**.

^{*} Address for correspondence.

¹ B. M. Trost, J. H. Rigby, J. Org. Chem. 43, 2938 (1978).

² P. A. Bartlett, F. G. Green, J. Am. Chem. Soc. 100, 4858 (1978).

³ R. Tanikaga, M. Nishida, N. Ono, A. Kaji, *Chem. Lett.* 1980, 781.

⁴ S. Yamagiwa, H. Sato, N. Hoshi, H. Kosugi, H. Uda, J. Chem. Soc. Perkin Trans. 1 1979, 570.

⁵ G. M. Coppola, G. E. Hardtmann, J. Heterocycl. Chem. 16, 1609 (1979).

⁶ E. Winterfeldt, H. Preuss, Chem. Ber. 99, 450 (1966).