Coordination Polymer of Ag Trifluoroacetate with 2-Methylpyrazine: Synthesis and Structure of [Ag(CF₃CO₂)(2-Me-Pyz)]

Yu. V. Kokunov and Yu. E. Gorbunova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119991 Russia Received March 24, 2006

Abstract—The [Ag(CF₃CO₂)(2-Me-Pyz)] complex (where 2-Me-Pyz is 2-methylpyrazine) was synthesized and its structure was determined. The crystals are monoclinic, space group $P2_1/n$, a = 12.440(2) Å, b = 2.605(3) Å, c = 12.646(3) Å, $\beta = 95.95(3)^{\circ}$, V = 1972.3(7) Å³, $\rho = 2.122$ g/cm³, Z = 8. The structure consists of the polymer zigzag chains of $[Ag(C_5H_6N_2)]_{\infty}^{-}$ united into a three-dimensional framework through (CF₃CO₂)⁻ anions.

DOI: 10.1134/S1070328406110017

The authors of [1, 2] suggested that coordination polymers and supramolecular compounds could be synthesized from so-called secondary building units (SBU). By making use of such a building unit, i.e., silver triacetate dimer, $Ag_2(CF_3CO_2)_2$, and pyrazine and tetramethylpyrazine, the coordination polymers of the composition [Ag(CF_3CO_2) L] were synthesized (where L is pyrazine and tetramethylpyrazine). In these compounds, pairs of Ag⁺ ions are connected by carboxylate bridges. In addition, the Ag⁺ ions coordinate neutral N-containing ditopic ligands to give layered structures [3].

This work was devoted to the synthesis of $[Ag(CF_3CO_2)(2-Me-Pyz)]$ (I) (where 2-Me-Pyz is 2-methylpyrazine, $C_5H_6N_2$), and X-ray diffraction study of its structure.

EXPERIMENTAL

Synthesis of $[Ag(CF_3CO_2)(2-Me-Pyz)]$. Solutions of $Ag(CF_3CO_2)$ and 2-Me-Pyz were prepared in isopropyl alcohol. The reaction was performed at the reagent molar ratio of 1 : 1, i.e., $Ag(CF_3CO_2)$ (0.22 g, 1 mmol) and 2-Me-Pyz (0.094 g, 1 mmol). The reaction mixture was stored in the dark, and in three weeks, rhomboid crystals of I were formed. The crystals were studied by the elemental analysis, IR and X-ray diffraction methods.

For $[Ag(CF_3CO_2)(C_5H_6N_2)]$ anal. calcd. (%): Ag 34.28, N 8.89, C 26.67, H 1.90. Found (%): Ag 33.60, N 8.00, C 28.90, H 2.50.

IR spectra of the complex were recorded on a Nexus Fourier spectrometer at $200-4000 \text{ cm}^{-1}$ with

samples prepared as mineral oil mulls. IR spectrum of complex I contains absorption bands characteristic of the $CF_3CO_2^-$ anion (1023, 1603, and 1745 cm⁻¹) and 2-Me-Pyz (650, 1010, 1230, and 1580 cm⁻¹).

The study of the thermal stability of the complex showed that at 130°C, 29.3% of its mass is lost due to removal of methylpyrazine molecule. The complete destruction of the complex with the formation of Ag_2O occurs at 230°C.

X-ray diffraction analysis was performed on a CAD4 Enraf-Nonius diffractometer. Absorption correction was applied empirically by North–Philips algorithm, by making use of two Ψ -scan curves. The structure was solved by the heavy-atom method and refined by full-matrix least-squares method for all non-hydrogen atoms. The obtained abnormally high values of thermal parameter for the F atoms of both independent

 $CF_3CO_2^-$ ions suggest their sufficiently high degree of disordering, which does not allow determination of possible orientations of the F atoms. The H atoms were localized from geometrical analysis and included in refinement in the rider model with isotropic thermal parameters (for all H atoms, $U_{eq} = 0.08$ Å²). All calculations were carried out with SHELXS86 and SHELXL93 programs.

Crystallographic parameters and summary of data collection for structure I are listed in Table 1; coordinates of atoms and their thermal parameters are given in Table 2, selected bond lengths and bond angles are presented in Table 3.

Empirical formula	C ₇ H ₆ AgF ₃ N ₂ O ₂	Atom	x	у	z	$U_{\rm eq}$, Å ²
М	315.01	Ag(1)	0.22947(4)	0.26170(4)	0.39532(4)	0.0430(2)
1/1	515.01	Ag(2)	0.10174(5)	0.25371(4)	0.77018(4)	0.0445(2)
Crystal size, mm	$0.25 \times 0.23 \times 0.18$	O (1)	-0.0311(4)	0.2260(5)	0.6214(4)	0.056(1)
Crystal system	Monoclinic	O(2)	0.1082(5)	0.2344(5)	0.5265(5)	0.063(2)
Crystar system	Wonoennie	O(3)	0.3786(4)	0.2799(6)	0.5297(4)	0.065(2)
Space group	$P2_1/n$	O(4)	-0.0281(5)	0.2227(6)	0.8909(4)	0.065(2)
Unit cell parameters:		N(1)	0.1825(5)	0.4144(4)	0.7599(4)	0.042(1)
0 0		N(2)	0.2283(5)	0.4155(4)	0.3016(4)	0.041(1)
<i>a</i> , A	12.440(2)	N(3)	0.2004(5)	0.0991(4)	0.7616(5)	0.044(1)
b, Å	12.605(3)	N(4)	0.2516(4)	0.1009(4)	0.3140(5)	0.042(1)
ç		C(1)	0.1813(6)	0.5936(5)	0.2601(6)	0.045(1)
с, А	12.646(3)	C(2)	0.1700(5)	0.5017(5)	0.3178(5)	0.039(1)
β, deg	95.95(3)	C(3)	0.2976(6)	0.4241(5)	0.2273(6)	0.054(2)
92		C(4)	0.1937(6)	0.0162(5)	0.3304(6)	0.051(2)
<i>V</i> , A ³	1972.3(7)	C(5)	0.1709(5)	0.4981(5)	0.8223(6)	0.041(1)
Z	8	C(6)	0.2288(6)	0.5889(5)	0.8098(6)	0.046(2)
2		C(7)	0.1866(7)	0.0144(6)	0.8202(6)	0.052(2)
ρ (calcd.), g/cm ³	2.122	C(8)	0.2460(7)	-0.0771(5)	0.8113(6)	0.054(2)
μ_{Mo}, mm^{-1}	2.070	C(9)	0.0147(5)	0.2202(5)	0.5384(5)	0.039(1)
		C(10)	-0.0381(5)	0.2122(6)	0.9867(5)	0.043(1)
F(000)	1216	C(11)	0.0927(8)	0.4896(7)	0.9039(8)	0.074(3)
Temperature, K	293	C(12)	0.0933(8)	0.4959(7)	0.4006(8)	0.077(3)
	$MoK_{\alpha}(0.71073)$	C(9)'	-0.0610(7)	0.1908(9)	0.4409(7)	0.067(2)
Radiation (λ, A)		C(10)'	0.0628(7)	0.1901(9)	1.0606(7)	0.068(2)
Scan type	ω/θ	F(1)	-0.0246(9)	0.201(1)	0.3541(6)	0.209(6)
Dense of O day	2 20 20 49	F(2)	-0.089(1)	0.096(1)	0.4351(9)	0.241(8)
Range of θ , deg	2.29-30.48	F(3)	-0.1486(9)	0.232(2)	0.434(1)	0.29(1)
Range in indices	$-17 \le h \le 0, 0 \le k \le 17,$	F(4)	0.0737(8)	0.250(1)	1.1410(8)	0.198(7)
	$-27 \le l \le 18$	F(5)	0.0622(8)	0.0971(9)	1.099(1)	0.222(7)
Total number of reflections	5201	F(6)	0.1511(5)	0.197(1)	1.0194(7)	0.158(4)
		H(1A)	0.139	0.655	0.274	
Number of independent reflections	$5009 (R_{\rm int} = 0.0197)$	H(3A)	0.342	0.364	0.21	
		H(4A)	0.143	0.020	0.383	
Number of refined parame- ters	272	H(6A)	0.218	0.648	0.855	
		H(7A)	0.134	0.017	0.870	
GOOF on F^2	0.723	H(8A)	0.235	-0.137	0.857	
		H(11A)	0.060	0.421	0.899	
$R\left(I > 2\sigma(I)\right)$	$R_1 = 0.0445, wR_2 = 0.1445$	H(11 <i>B</i>)	0.130	0.499	0.974	
Coefficient of extinction	0.0018(4)	H(11 <i>C</i>)	0.038	0.543	0.892	
		H(12A)	0.097	0.426	0.430	
Residual electron density $(\max/\min) e/Å^3$	1.374/-0.763	H(12B)	0.116	0.546	0.456	
(1111/1, 6/17)		H(12C)	0.020	0.512	0.372	

 $\label{eq:constraint} \begin{array}{l} \textbf{Table 1. Crystallographic parameters and summary of data \\ \textbf{collection for structure I} \end{array}$

Table 2. Coordinates of atoms and their thermal parameters $(U_{eq} = 1/3\Sigma U_{ij})$ for structure **I**

Table 3. Bond lengths and bond angles in structure I^*

Bond	<i>d</i> , Å	Bond	$d, \mathrm{\AA}$	Angle	ω, deg	Angle	ω, deg
Ag(1)–N(2)	2.271(5)	C(1)–C(2)	1.384(8)	N(4)Ag(1)O(3)	106.4(2)	N(4)C(4)C(3)#4	121.6(6)
Ag(1)–N(4)	2.302(5)	C(2)–C(12)	1.490(10)	O(2)Ag(1)O(3)	91.1(2)	N(1)C(5)C(6)	120.1(6)
Ag(1)–O(2)	2.380(5)	C(4)-C(3) ^{#4}	1.381(9)	N(1)Ag(2)N(3)	120.6(2)	N(1)C(5)C(11)	118.1(6)
Ag(1)–O(3)	2.394(6)	C(5)–C(6)	1.371(8)	N(1)Ag(2)O(4)	121.3(2)	C(6)C(5)C(11)	121.8(6)
Ag(2)–N(1)	2.270(5)	C(5)–C(11)	1.494(10)	N(3)Ag(2)O(4)	107.0(2)	N(3) ^{#2} C(6)C(5)	123.5(6)
Ag(2)–N(3)	2.311(5)	C(6)–N(3) ^{#2}	1.331(8)	N(1)Ag(2)O(1)	111.0(2)	N(3)C(7)C(8)	121.9(6)
Ag(2)–O(4)	2.368(5)	C(7)–C(8)	1.381(9)	N(3)Ag(2)O(1)	99.6(2)	N(1) ^{#3} C(8)C(7)	121.5(6)
Ag(2)–O(1)	2.398(6)	C(8)–N(1) ^{#3}	1.334(8)	O(4)Ag(2)O(1)	91.2(2)	O(2)C(9)O(1)	129.0(7)
O(1)–C(9)	1.247(7)	C(9)–C(9)'	1.518(10)	C(9)O(1)Ag(2)	109.3(4)	O(2)C(9)C(9)'	117.5(6)
O(2)–C(9)	1.202(8)	C(10)–C(10)'	1.511(11)	C(9)O(2)Ag(1)	143.2(5)	O(1)C(9)C(9)'	113.5(6)
O(3)-C(10) ^{#1}	1.223(8)	C(9)'–F(1)	1.237(11)	$C(10)^{\#1}O(3)Ag(1)$	108.8(4)	O(3) ^{#6} C(10)O(4)	127.1(7)
O(4)–C(10)	1.238(8)	C(9)'–F(3)	1.205(12)	C(10)O(4)Ag(2)	142.5(5)	O(3) ^{#6} C(10)C(10)'	115.3(6)
N(1)-C(8) ^{#2}	1.334(8)	C(9)'–F(2)	1.248(14)	C(8) ^{#2} N(1)C(5)	117.1(5)	O(4)C(10)C(10)'	117.6(6)
N(1)–C(5)	1.334(8)	F(4)–C(10)'	1.265(12)	C(8) ^{#2} N(1)Ag(2)	116.1(4)	F(1)C(9)'F(3)	107.5(12)
N(2)–C(3)	1.344(8)	F(5)–C(10)'	1.269(13)	C(5)N(1)Ag(2)	126.6(4)	F(1)C(9)'F(2)	100.0(12)
N(2)–C(2)	1.334(7)	F(6)–C(10)'	1.267(10)	C(3)N(2)C(2)	116.0(5)	F(3)C(9)'F(2)	99.9(13)
N(3)-C(6) ^{#3}	1.331(8)			C(3)N(2)Ag(1)	117.7(4)	F(1)C(9)'C(9)	116.2(8)
N(3)–C(7)	1.320(8)			C(2)N(2)Ag(1)	126.1(4)	F(3)C(9)'C(9)	115.7(9)
N(4)–C(4)	1.316(8)			C(6) ^{#3} N(3)C(7)	115.8(6)	F(2)C(9)'C(9)	115.3(9)
N(4)-C(1)#4	1.322(8)			C(6) ^{#3} N(3)Ag(2)	120.3(4)	F(6)C(10)'F(4)	105.3(11)
Angle	ω, deg	Angle	ω, deg	C(7)N(3)Ag(2)	123.7(4)	F(6)C(10)'F(5)	105.1(11)
N(2)Ag(1)N(4)	120.8(2)	N(2)C(2)C(1)	121.0(6)	C(4)N(4)C(1) ^{#4}	116.9(6)	F(4)C(10)'F(5)	104.7(11)
N(2)Ag(1)O(2)	121.1(2)	N(2)C(2)C(12)	117.8(6)	C(4)N(4)Ag(1)	123.4(4)	F(6)C(10)'C(10)	115.6(8)
N(4)Ag(1)O(2)	107.3(2)	C(1)C(2)C(12)	121.2(6)	$C(1)^{#4}N(4)Ag(1)$	119.4(4)	F(4)C(10)'C(10)	113.5(8)
N(2)Ag(1)O(3)	104.5(2)	$N(2)C(3)C(4)^{\#5}$	121.9(6)	N(4) ^{#5} C(1)C(2)	122.5(6)	F(5)C(10)'C(10)	111.7(9)

* Symmetry transformations of atoms: ${}^{\#1}x + 1/2, -y + 1/2, z - 1/2, {}^{\#2}-x + 1/2, y + 1/2, -z + 3/2; {}^{\#3}-x + 1/2, y - 1/2, -z + 3/2, {}^{\#4}-x + 1/2, y - 1/2, -z + 1/2, {}^{\#5}-x + 1/2, y + 1/2, -z + 1/2, {}^{\#6}x - 1/2, -y + 1/2, z + 1/2.$

RUSSIAN JOURNAL OF COORDINATION CHEMISTRY Vol. 32 No. 11 2006

Fig. 1. General view of structure I (the F and H atoms are omitted).

RESULTS AND DISCUSSION

The structure of complex I consists of the polymer cationic chains of $[Ag(C_5H_6N_2)]_{\infty}^{-}$ united into a threedimensional network through the $CF_3CO_2^-$ anions (Fig. 1). Each of two crystallographically nonequivalent silver atoms (Ag(1) and Ag(2)) has a distorted tetrahedral coordination due to two N atoms of two methylpyrazine molecules and two O atoms of two different CF_3CO_2 groups. The distances Ag–N lie in a range of 2.271(5)–2.311(5) Å, Ag–O change from 2.368(5) to 2.398(6) Å. The angles at the Ag(1) and Ag(2) atoms are strongly distorted and vary within $91.1(2)^{\circ}-121.1(2)^{\circ}$ (Table 3). The molecules of 2-methylpyrazine act as bridges between neighboring Ag ions (Ag. Ag 7.34 Å). As a result of the interaction of 2-Me-Pyz with the Ag(1) and Ag(2) atoms, zigzag chains oriented along the direction [010] are formed. The length of zigzag "wave" is equal to 12.61 Å in both cases; all metal ions lie in its crests and troughs. Note that two zigzag chains occupy different positions and have different orienta-

tions of crests and troughs. The chains involving the Ag(1) atoms are oriented along the z axis, while the chains incorporating the Ag(2) atoms are directed along the x axis (Fig. 2). The chains are united by bidentate bridging $CF_3CO_2^-$ anions (Fig. 3) into a three-dimensional network. The chains in I are analogous in shape to the chains in silver nitrate complex with tetrasubstituted pyrazine $[Ag(4Me-Pyz)](NO_3)$ (II) we studied previously [4]. However, in complex I, as was shown above, all metal ions lie in the zigzag crests and troughs, while in crystal II, only half of the Ag⁺ ions lie in the zigzag crests and troughs, whereas the other half lie in the middle positions. The structures of I and II also differ in the type and form of polymer motifs. Complex I under study has a three-dimensional structure, while complex II forms layers.

Zigzag chains are frequently encountered in coordination polymers, where extended molecules, for example bipyridine in $[Cu(4,4'-Bipy) (MeCN)_2]BF_4$ [5], act as bridging ligands, while the chains have the shapes

Fig. 2. Zigzag chains of $[Ag(C_5H_6N_2)]_{\infty}$ with participation of (a) Ag(1) atoms and (b) Ag(2) atoms in structure **I**.

analogous to those in complex I, where all metal ions lie in zigzag crests and troughs.

The analysis of structure I shows that the interaction of $Ag(CF_3CO_2)$ with 2-Me-Pyz results in the rupture of

dimeric carboxylate cycle $Ag_2(CF_3CO_2)_2$. At the same time, the $CF_3CO_2^-$ anion retains its bidentate bridging function and links zigzag $[Ag(C_5H_6N_2)]_{\infty}^-$ chains into a three-dimensional network. Thus, in coordination

RUSSIAN JOURNAL OF COORDINATION CHEMISTRY Vol. 32 No. 11 2006

Fig. 3. Fragment of the structure formed by the cationic $[Ag(C_5H_6N_2)]_{\infty}^{-1}$ chains linked through trifluoroacetate anions.

polymer **I**, both ligands, i.e., the $CF_3CO_2^-$ anion and neutral ditopic 2-Me-Pyz, behave as bridges, which favors the formation of a three-dimensional framework.

ACKNOWLEDGEMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 06-03-32460) and by the RAS Presidium program for fundamental research "The Development of the Methods of Preparation of Chemical Compounds and Design of New Materials".

REFERENCES

- 1. Eddauddi, M., Moler, D.B., Li, H., et al., Acc. Chem. Res., 2001, vol. 34, no. 4, p. 319.
- Eddauddi, M., Kim, J., Wachter, J.B., et al., J. Am. Chem. Soc., 2001, vol. 123, no. 18, p. 4368.
- 3. Brammer, L., Burgard, M.D., Rodger, C.S., et al., J. Chem. Soc., Chem. Commun., 2001, p. 2468.
- Kokunov, Yu.V., Gorbunova, Yu.E., and Kazarinova, A.S., *Zh. Neorg. Khim.*, 2005, vol. 50, no. 12, p. 1981 [*Russ. J. Inorg. Chem.* (Engl. Transl.), vol. 50, no. 12, p. 1856].
- Batsanov, A.S., Begley, M.J., Hubberstey, P., and Stroud, J., J. Chem. Soc., Dalton Trans., 1996, p. 1947.