REACTIONS OF N-CHLOROAMINES WITH OLEFINS IN THE PRESENCE OF SULFUR TRIOXIDE

N. S. Zefirov, N. V. Zyk, S. I. Kolbasenko, and A. G. Kutateladze

UDC 542.91:547.416+547.313

With halogenamines as examples, we developed a new approach to the activation of electrophilic reagents $X^{\delta+}-Y^{\delta-}$ in reactions with olefins by introducing SO_3 to form a more reactive reagent of type $X^{\delta+}-\delta^{-}OSO_2Y$, containing the nucleophilic anion YSO_2O^- (cf. [1]). Thus, dichloroamine, treated with equimolar amounts of SO_3 (-50°C, CH₂Cl₂) and then cyclohexene (-60°C gradual increase in temperature to 20°C) gives trans-l-chlorocyclohexan-2-ol diethylamidosulfate (I) in an 80% yield, according to the following scheme:

The individual chloride can be additionally purified by distillation (bp 101-102°C (1 mm), n_D^{21} 1.4774, R_f 0.76, silica gel Silpearl in the hexane:ethyl acetate = 6:1 system), or by chromatography on silica gel. The structure of the chloride (I) was confirmed by the data of ¹H NMR spectra (100 MHz, CCl₄, δ , ppm): 4.48 d.t (1H, H-C-O, $J_1 = J_2 = 7.5$, $J_3 = 4.0$ Hz) and 4.04 d.t. (1H, H-C-Cl, $J_1 = J_2 = 7.5$, $J_3 = 4$ Hz) and ¹³C NMR spectra (δ 81.79 (C-O) and 59.24 (C-Cl)) and by elemental analysis for C, H, N, S, and Cl. Similar dimethylamidosulfates of chlorohydrins were obtained from cyclopentene and 1-hexene. The limits of applicability of this new reaction of conjugated 1,2-addition and its synthetic possibilities (cf. [2]) are being studied.

LITERATURE CITED

- N. S. Zefirov, A. S. Loz'min, V. V. Zhdankin, V. N. Kurin, N. M. Yur'eva, and V. D. Sorokin, Chem. Scripta, 22, 195 (1983).
- 2. H. Emil, H. White, and C. Ellingen, J. Am. Chem. Soc., 87, 5261 (1965).

M. V. Lomorosov Moscow State University, Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp. 959-960, April, 1984. Original article submitted January 30, 1984.