

Available online at www.sciencedirect.com

ScienceDirect

Mendeleev Communications

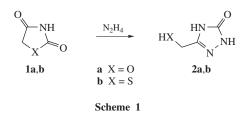
Mendeleev Commun., 2014, 24, 161-162

Recyclization of 1-aryl-4-iminoimidazolidin-2-ones on treatment with hydrazine: synthesis of 5-arylaminomethyl-2,4-dihydro[1,2,4]triazol-3-ones

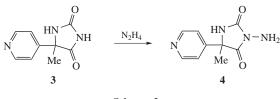
Andrey N. Komogortsev,^{*a*} Boris V. Lichitsky,^{*a*} Konstantin S. Krylov,^{*a*} Arkady A. Dudinov,^{*a*} Petr P. Purygin^{*b*} and Mikhail M. Krayushkin^{**a*}

^a N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow,

Russian Federation. Fax: +7 499 135 5328; e-mail: mkray@ioc.ac.ru

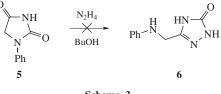

^b Samara State University, 443011 Samara, Russian Federation. Fax: +7 846 334 5417;

e-mail: puryginpp2002@mail.ru


DOI: 10.1016/j.mencom.2014.04.012

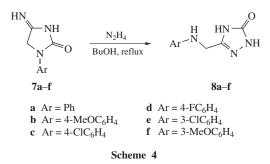
Treatment of 4-imino-*N*-arylimidazolidin-2-ones with hydrazine causes recyclization to afford 5-arylaminomethyl-2,4-dihydro[1,2,4]-triazol-3-ones.

It is known¹ that the reaction of oxazolidinone 1a and thiazolidinone 1b with hydrazine occurs *via* recyclization of the azole moiety to give the corresponding hydroxymethyl- and mercaptomethyltriazolones 2a and 2b, respectively (Scheme 1).


On the other hand, treatment of 5-methyl-5-(4'-pyridyl)hydantoin **3** with hydrazine under the same conditions results in *N*-amino-substituted hydantoin **4** (Scheme 2).²

Scheme 2

In view of this, we studied the reactivity of *N*-phenylhydantoin **5** in the hope to synthesize analogues of compounds **2** or **4**. It is known that various substituted 1,2,4-triazolones and hydantoin derivatives have a broad scope of biological activity.^{3–6}


However, our attempts to perform the recyclization of *N*-phenylhydantoin **5** on treatment with hydrazine into the corresponding *N*-arylaminomethyltriazolone **6** failed. Even after prolonged refluxing in *n*-butanol with a threefold excess of hydrazine, the reaction mixture contained much of starting compound **5** and only traces of the target product **6**. This suggests that the reactivity of hydantoin **5** is extremely low (Scheme 3).

Scheme 3

We assumed that incorporation of an imino group possessing a higher reactivity than a carbonyl moiety into a hydantoin molecule would allow us to perform the desired recyclization. In fact, we found that the reaction of 4-imino-*N*-arylimidazolidinones **7a–f** with a threefold excess of hydrazine in boiling butanol led to recyclization products **8a–f** in high yields (Scheme 4).[†]

Obviously the difference in reactivity between hydantoin 5 and iminoazolidinones 7 is due to the higher reactivity of the

[†] ¹H, ¹³C, ¹⁵N, ¹H-¹³C HMBC and ¹H-¹⁵N HMBC spectra were recorded with Bruker AM-300 (300 MHz) and Bruker AM-600 (600 MHz) instruments in DMSO- d_6 . The melting points were measured on a Boetius heating stage and were not corrected.

The starting iminoimida zolidinones ${\bf 7a-f}$ were obtained using reported methods. ^10

5-Arylaminomethyl-2,4-dihydro[1,2,4]triazol-3-ones **8a–f** (general procedure). A mixture of iminoimidazolidinone **7a–f** (10 mmol) and hydrazine hydrate (1.5 g, 30 mmol) in 15 ml of butanol was refluxed for 16 h. The solvent was distilled off. The residue was recrystallized from acetonitrile, filtered, and washed with acetonitrile and water on the filter.

 $\begin{array}{l} 5\mbox{-}Phenylaminomethyl-2,4\mbox{-}dihydro[1,2,4]triazol-3\mbox{-}one~8a. Yield~71\%, \\ mp~206\mbox{-}210~^\circC.~^{1}H~NMR~(DMSO\mbox{-}d_6)~\delta\colon 4.02~(d,~2H,~CH_2,~J~6~Hz),~5.91~(t,~1H,~NH,~J~6~Hz),~6.60~(m,~3H,~H_{Ar}),~7.09~(m,~2H,~H_{Ar}),~11.20~(s,~2H,~NH).~^{13}C~NMR~(DMSO\mbox{-}d_6)~\delta\colon 39.6,~112.5,~116.6,~128.8,~146.2,~148.1,~156.3.~Found~(\%):~C,~56.61;~H,~5.40;~N,~29.61.~Calc.~for~C_9H_{10}N_4O~(\%):~C,~56.83;~H,~5.30;~N,~29.46. \end{array}$

5-(4-Methoxyphenylaminomethyl)-2,4-dihydro[1,2,4]triazol-3-one **8b**. Yield 77%, mp 197–199 °C. ¹H NMR (DMSO- d_6) δ: 3.63 (s, 3 H, OMe), 3.96 (d, 2 H, H⁶, J 5 Hz), 5.51 (t, 1H, H⁷, J 5 Hz), 6.58 (d, 2 H, H²', H^{2''}, J 8 Hz), 6.72 (d, 2 H, H^{3'}, H^{3''}, J 8 Hz), 11.22 (s, 2 H, H², H⁵). ¹³C NMR (DMSO- d_6) δ: 40.5 (C⁶), 55.4 (OMe), 113.9 (C^{2'}, C^{2''}), 114.6 (C^{3'}, C^{3''}), 142.2 (C^{1'}), 146.6 (C⁴), 151.5 (C^{4'}), 156.4 (C¹). ¹⁵N NMR (DMSO- d_6) δ: -323.51 (N⁷), -236.72 (N⁵), -213.15 (N²), -119.52 (N³). Found (%): C, 54.77; H, 5.38; N, 25.57. Calc. for C₁₀H₁₂N₄O₂ (%): C, 54.54; H, 5.49; N, 25.44.

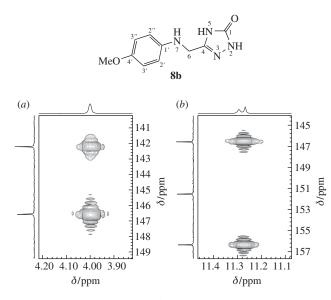
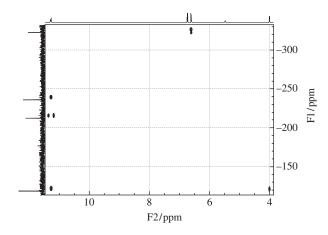


Figure 1 Fragments of the 2D 1 H- 13 C HMBC spectrum (600 MHz, DMSO- d_{6}) of compound **8b**.

cyclic system of iminoazolidinones 7 toward hydrazine. At the present time the available experimental data do not allow us to make the conclusion explaining the difference in the reactivity between compounds 5 and 7, which can be the subject of our further investigations.

The triazolones **8a–f** are solid crystalline compounds whose structures were confirmed by ¹H and ¹³C NMR spectroscopy and elemental analyses. The ¹H NMR spectra of the products contain characteristic signals of methylene protons at δ 3.96–4.04 ppm and substituted amino group protons at δ 5.51–6.32 ppm. These values are in good agreement with literature data.⁷


The structure of 4-methoxyphenylaminomethyltriazolone **8b** was proved by ¹⁵N NMR spectroscopy and HMBC experiments. The ¹H-¹³C HMBC spectrum contains cross-peaks between the doublet of protons at C⁶ (δ 3.96, *J* 5 Hz) and C^{1'} (δ 142.21), C⁴

 $\begin{array}{ll} & 5\mbox{-}(4\mbox{-}Chlorophenylaminomethyl)\mbox{-}2,4\mbox{-}dihydro[1,2,4]triazol\mbox{-}3\mbox{-}one & {\bf 8c}.\\ & Yield 73\%, mp 222\mbox{-}225\mbox{\,°C}. \mbox{}^1H \mbox{NMR} \mbox{(DMSO-}d_6\mbox{-}\delta\mbox{-}4.01\mbox{(d}, 2H, \mbox{CH}_2, J\mbox{6}\mbox{-}16\mbox{(t}, 1H, \mbox{NH}, J\mbox{6}\mbox{Hz}), 6.63\mbox{(d}, 2H, \mbox{H}_{Ar}, J\mbox{8}\mbox{Hz}), 7.11\mbox{(d}, 2H, \mbox{H}_{Ar}, J\mbox{8}\mbox{Hz}), 7.11\mbox{(d}, 2H, \mbox{H}_{Ar}, J\mbox{8}\mbox{Hz}), 7.11\mbox{(d}, 2H, \mbox{H}_{Ar}, J\mbox{8}\mbox{Hz}), 11.26\mbox{(m}, 2H, \mbox{NH}). \mbox{}^{13}\mbox{C} \mbox{NMR} \mbox{(DMSO-}d_6\mbox{-}\delta\mbox{-}\delta\mbox{-}0.5$

5-(4-Fluorophenylaminomethyl)-2,4-dihydro[1,2,4]triazol-3-one 8d. Yield 81%, mp 218–221 °C. ¹H NMR (DMSO- d_6) δ: 4.00 (d, 2H, CH₂, J 6 Hz), 5.89 (t, 1 H, NH, J 6 Hz), 6.61 (m, 2H, H_{Ar}), 6.93 (m, 2H, H_{Ar}), 11.24 (s, 2H, NH). ¹³C NMR (DMSO- d_6) δ: 40.1, 113.4, 115.3, 144.8, 146.1, 153.3, 156.3, 156.4. Found (%): C, 52.14; H, 4.25; N, 27.07. Calc. for C₉H₉FN₄O (%): C, 51.92; H, 4.36; N, 26.91.

5-(3-Chlorophenylaminomethyl)-2,4-dihydro[1,2,4]triazol-3-one **8e**. Yield 75%, mp 231–233 °C. ¹H NMR (DMSO- d_6) δ: 4.04 (d, 2H, CH₂, J 5 Hz), 6.32 (t, 1H, NH, J 5 Hz), 6.61 (m, 3H, H_{Ar}), 7.09 (t, 1H, H_{Ar}, J 7 Hz), 11.29 (m, 2H, NH). ¹³C NMR (DMSO- d_6) δ: 39.3, 111.2, 111.7, 116.0, 130.3, 133.6, 145.7, 149.6, 156.2. Found (%): C, 47.91; H, 3.91; N, 24.76. Calc. for C₉H₉ClN₄O (%): C, 48.12; H, 4.04; N, 24.94.

 $\begin{array}{l} 5\text{-}(3\text{-}Methoxyphenylaminomethyl)\text{-}2,4\text{-}dihydro[1,2,4]triazol-3\text{-}one ~~ \textbf{8f}.\\ \text{Yield 67\%, mp 204-205 °C. $^{1}\text{H NMR (DMSO-}d_6) \delta\text{:} 3.66 (s, 3 \text{H}, OMe), \\ 4.00 (d, 2 \text{H}, CH_2, J 6 \text{Hz}), 5.94 (t, 1 \text{H}, \text{NH}, J 6 \text{Hz}), 6.20 (m, 3 \text{H}, \text{H}_{\text{Ar}}), \\ 6.98 (t, 1 \text{H}, \text{H}_{\text{Ar}}, J 7 \text{Hz}), 11.26 (m, 2 \text{H}, \text{NH}). $^{13}\text{C NMR (DMSO-}d_6) \delta\text{:} \\ 39.7, 54.7, 98.5, 102.1, 105.7, 129.6, 146.2, 149.5, 156.3, 160.3. Found (\%): \\ \text{C}, 54.32; \text{H}, 5.60; \text{N}, 25.61. Calc. for $C_{10}\text{H}_{12}\text{N}_4\text{O}_2(\%)\text{: } \text{C}, 54.54\text{; H}, 5.49\text{;} \\ \text{N}, 25.44. \end{array}$

Figure 2 A fragment of the 2D 1 H- 15 N HMBC spectrum (600 MHz, DMSO- d_{6}) of compound **8b**.

(δ 146.57) atoms [Figure 1(*a*)]. The interactions of the hydrogen atoms at N² (δ 11.27) with C⁴ (δ 146.57) and C¹ (δ 156.35) atoms of the triazolone moiety [Figure 1(*b*)] are also characteristic.

The ¹H-¹⁵N HMBC spectrum contains cross-peaks between the doublet of protons at C⁶ (δ 3.96, J 5 Hz) and the N⁵ (δ –236.72), N³ (–119.52) atoms. A correlation of the protons at C², C^{2''} of the aromatic moiety (δ 6.58, J 8 Hz) with the N⁷ atom (δ –323.51) is also observed. Furthermore, interactions of the hydrogen atom at N² (δ 11.27) with the N⁵ (δ –236.72), N² (–213.15), and N³ (–119.52) atoms of the triazolone moiety are characteristic (Figure 2).

In conclusion, we have developed a new convenient approach to the synthesis of hitherto unknown substituted 5-arylaminomethyl-2,4-dihydro[1,2,4]triazol-3-ones **8a–f** based on the reaction of 4-imino-*N*-arylimidazolidinones **7a–f** with hydrazine. The products obtained can be of interest as antemetic agents⁸ as well as in the prevention and treatment of amyotrophic lateral sclerosis.⁹

References

- O. P. Shvaika, V. N. Artemov and S. N. Baranov, *Chem. Heterocycl. Compd.*, 1970, 6, 922 (*Khim. Geterotsikl. Soedin.*, 1970, 991).
- 2 H. Varbanov, R. Buyukliev, A. Bakalova and A. Roller, Acta Crystallogr., 2009, E65, 0953.
- 3 T. R. Rodgers, M. P. LaMontagne, A. Markovac and A. B. Ash, J. Med. Chem., 1977, 20, 591.
- 4 M. L. Brown, G. B. Brown and W. J. Brouillette, *J. Med. Chem.*, 1997, **40**, 602.
- 5 M. Sanudo, M. Garcia-Valverde, S. Marcaccini and T. Torroba, *Tetrahedron*, 2012, 68, 2621.
- 6 J. Sharma, S. Ahmad and M. S. Alam, J. Chem. Pharm. Res., 2012, 4, 5157.
- 7 M. T. Bilodeau, C. Chen, N. D. P. Cosford, B. W. Eastman, J. C. Hartnett, E. H. Hu, P. J. Manley, L. A. Neilson, L. R. Tehrani and Z. Wu, US Patent WO 2005/100356, 2005.
- 8 J. J. Hale, S. G. Mills, M. MacCoss, S. K. Shah, H. Qi, D. J. Mathre, M. A. Cascieri, S. Sadowski, C. D. Strader, D. E. MacIntyre and J. M. Metzger, *J. Med. Chem.*, 1996, **39**, 1760.
- 9 Y. Zhang, R. Benmohamed, H. Huang, T. Chen, C. Voisine, R. I. Morimoto, D. R. Kirsch and R. B. Silverman, J. Med. Chem., 2013, 56, 2665.
- 10 J. W. Hanifin, R. Z. Gussin, E. Cohen and P. River, US Patent 1977/ 4,044,021, 1977.

Received: 26th November 2013; Com. 13/4252