Preliminary communication

Reduction products and bromodeoxy derivatives of dehydro-L-ascorbic acid 2-phenylhydrazone

BERNARD GROSS[†], MOHAMED ALI EL SEKILY*, and SOHILA MANCY*

Laboratoire de Chimie Organique III, Université de Nancy I, Case Officielle 140, 54037 Nancy Cedex (France)

(Received December 2nd, 1981; accepted for publication, December 14th, 1981)

Dehydro-L-ascorbic acid 2-phenylhydrazone (L-*threo*-2,3-hexodiulosono-1,4lactone 2-phenylhydrazone)^{1,2} (1) is a compound of great synthetic potential; it reacts with aryl- and aroyl-hydrazones, giving mixed bishydrazones³⁻⁵, and with hydroxylamine, to give the 3-oxime 2-phenylhydrazone³. From a different viewpoint, compound 1 has been considered a useful, synthetic precursor to nitrogen heterocycles^{5,4,6}. In this respect, we describe the reduction, and also some bromodeoxy derivatives, of 1.

On treatment of dehydro-L-ascorbic acid 2-phenylhydrazone (1) with sodium borohydride in methanol solution at -10° a product (m.p. 156–157°) was obtained whose elemental analysis, and n.m.r.- and mass-spectral data, agreed with the molecular formula $C_{12}H_{14}N_2O_5$, and, accordingly, it was given the structure L-xylo-2-hexulosono-1,4lactone 2-phenylhydrazone (2). The infrared spectrum of 2 showed a hydroxyl band at 3450 cm^{-1} and the lactone band at 1750 cm^{-1} , but the carbonyl absorption (at 1680 cm^{-1}) of its precursor was absent; ¹H-n.m.r. data (CDCl₃, 250 MHz): δ 3.86 (m, 2 H, H-6), 4.44 (m, 1 H, H-5), 5.0 (m, 1 H, H-4), 5.5 (d, 1 H, H-3), 2.86 (s. 2 H, 2 OH), 4.66 (s, 1 H, OH), and 7.0–7.5 (m, 5 H, phenyl). The configuration of C-3 was determined by the high value of the coupling constant for H-3 and H-4 ($J_{3,4}$ 7.5 Hz). The mass spectrum of 2 showed a small, molecular-ion peak at m/z 266, corresponding to a molecule resulting from the addition of a molecule of hydrogen to the C-3 carbonyl group.

Acetylation of 2 with boiling acetic anhydride, or with acetic anhydride-pyridine, afforded a mono-O-acetyl derivative designated 5-O-acetyl-3,6-anhydro-L-xyio-2hexulosono-1,4-lactone 2-phenylhydrazone (3); its elemental analysis agreed with the molecular formula $C_{14}H_{14}N_2O_5$, and its ¹H-n.m.r. spectrum showed only one O-acetyl group signal, at δ 2.08, in addition to those for the expected protons. Its mass spectrum showed a strong, molecular-ion peak at m/z 290.

^{$\dagger}$ To whom inquiries should be addressed.</sup>

^{*}On leave of absence from The Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.

Treatment of compound 1 with hydrogen bromide in acetic acid did not give the monobromodeoxy derivative (4) expected, but a product having m.p. $155-156^{\circ}$ was obtained, and identified as 5,6-dibromo-5,6-dideoxy-L-threo-2,3-hexodiulosono-1,4lactone 2-phenylhydrazone (5) on the basis of elemental analysis, and i.r.-, n.m.r.-, and mass-spectral data. Compound 5 had no i.r. absorption for hydroxyl, and showed a carbonyl absorption at 1750 cm⁻¹ (lactone) in addition to a carbonyl absorption at 1680 cm⁻¹ (C-3); ¹H-n.m.r. data (CDCl₃, 250 MHz): δ 4.0 (m, 2 H, H-6), 4.80 (m, 1 H, H-5), 5.36 (d, 1 H, H-4), and 7.3-7.8 (m, 5 H, phenyl). The mass spectrum of 5 showed a molecular-ion peak at m/z 388, 392, appearing as two peaks having almost the same intensity due to the equal abundance of the two isotopes of bromine.

Treatment of 5 with phenyl- or (p-nitrophenyl)-hydrazine afforded the corresponding bis(hydrazones) 6 (m.p. $118-120^{\circ}$) and 7 (m.p. $198-200^{\circ}$), respectively. Similarly, treatment of 5 with semicarbazide or with thiosemicarbazide gave the 2-phenylhydrazone 3-semicarbazone 8 (m.p. $183-185^{\circ}$) and the 2-phenylhydrazone 3-(thiosemicarbazone) 9 (m.p. $150-151^{\circ}$), respectively.

REFERENCES

- 1 F. Micheel and K. Hesse, Ber., 69 (1936) 879-881.
- 2 F. Micheel and R. Mittag, Hoppe-Seyler's Z. Physiol. Chem., 247 (1937) 34.
- 3 M. A. El Sekily, S. Mancy, I. El Kholy, E. S. H. El Ashry, H. S. El Khadem, and D. L. Swartz, Carbohydr. Res., 59 (1977) 141-149.
- 4 M. A. El Sekily, Pharmazie, 34 (1978) 531-534.
- 5 E. S. H. El Ashry, M. M. A. Abd El-Rahman, S. Mancy, and Z. M. El Shafei, Acta Chim. Acad. Sci Hung., 95 (1977) 409-415.
- 6 E. S. H. El Ashry, Y. El Kilany, and F. Singab, Carbohydr. Res., 56 (1977) 93-104.