Tetrahedron 69 (2013) 7568-7591

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Expeditious cascade reactions: controlled syntheses of fenestradienes and cyclooctatrienes under palladium catalysis

Mélanie Charpenay[†], Aicha Boudhar[‡], Catherine Hulot, Gaëlle Blond, Jean Suffert^{*}

Faculté de Pharmacie, Université de Strasbourg UMR 7200 CNRS/UDS, 74 Route du Rhin, 67401 Illkirch Graffenstaden, France

A R T I C L E I N F O

Article history: Received 11 March 2013 Received in revised form 19 May 2013 Accepted 20 May 2013 Available online 24 May 2013

Keywords: Fenestradienes Cyclooctatrienes Cascade Palladium 4-exo-Dig

ABSTRACT

Palladium cyclization cascades represent an elegant way to access complex polycyclic scaffolds in a minimum amount of steps. Herein we provide a complete account on two new methodologies including these kind of cascades, each leading to two types of attractive compounds, cyclooctatrienes and [4.6.4.6]fenestradienes. The reader will first discover a strategy requiring three steps starting from alkenyl bromides, based on a first 4-*exo*-dig carbopalladation/Sonogashira coupling tandem reaction, and a subsequent P-2 Ni induced semi-hydrogenation. This leads to a first generation of cyclooctatrienes and [4.6.4.6]fenestradienes. Next, the second approach will be presented, in which the second generation of these compounds is accessed in a one-pot reaction including five steps, starting from the same alkenyl bromide compounds. These methods are appealing in terms of atom economy, the use of easy to handle conditions as well as the variability of its scope.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The usefulness of strategies based on palladium cyclization cascades leading to polycyclic frameworks in a regio- and stereo-selective manner has been demonstrated in the past.¹ Today, one of the challenges of modern synthetic method development is to form as many bonds as possible in the least number of steps, ideally in a single operation.² Significant recent studies in our laboratory are directed toward the development of synthetic methodologies to design highly strained scaffolds from simple starting materials using common reagents and mild reaction conditions. In this context, we report herein our investigations of cascade reactions involving a semi-hydrogenation of an alkyne moiety in first generation and in a second one a fascinating palladium catalyzed alkyne addition reaction. Both lead to two types of polycyclic structures, fenestradienes and cyclooctatrienes.

Eight-membered ring substructures are present in over 100 different natural products, many of, which demonstrate exceptional and broad-ranging biological activity. For example, Ophiobolin A³

exhibits a broad spectrum of biological activity against nematodes, fungi, and bacteria,⁴ as well as showing potent antitumor activity.⁵ Aleurodiscal⁶ is an antifungal and antibiotic, while one of the most notable examples is the diterpene paclitaxel (taxol), that is, a major anticancer agent used in clinics today.⁷ Synthesis of eight-membered ring compounds has constantly been a challenging area due to high degree of ring strain, transannular interactions and unfavorable entropic and enthalpic factors. However, modern synthetic methods allow access toward a large variety of cyclooctanoids⁸ (Fig. 1).

Fig. 1. Natural products containing an eight-membered ring.

^{*} Corresponding author. Tel.: +33 368 854 230; e-mail address: jean.suffert@ unistra.fr (J. Suffert).

 $^{^\}dagger\,$ Current address: Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.

[‡] Current address: National University of Singapore (NUS) YLL School of Medicine, Department of Microbiology Block MD4, 5 Science Drive 2, Singapore 117597, Singapore.

Sato et al. recently reported a Rh¹-catalyzed intermolecular cycloaddition of 4-allenals with alkynes to provide various monocyclic eight-membered rings in good to high yields in a stereoselective manner.⁹ Another example by Snyder et al. displays a rapid access to diverse members of the lauroxocane family, natural products containing an oxocene core. This oxygencontaining eight-membered ring compound is designed by a novel diastereoselective ring-expanding bromoetherification reaction of tetrahydrofurans triggered by a unique bromonium source (BDSB, Et₂SBr·SbBrCl₅). Strategically positioned and designed nucleophilic traps, afford diverse functionalities on the eightmembered ring backbone.¹⁰ Despite diversity in strategy and in product structures, none of these approaches involve the direct formation of a 5-8-5 or 6-8-5 tricyclic skeleton.

We have previously reported a straightforward preparation of 5-8-5 or 6-8-5 condensed polycycles that employs an 8π electrocyclization reaction (Scheme 1).¹¹ Cyclooctatrienes **B** can be obtained in a one-step operation starting from simple alkenyl bromides **A**, using mild reaction conditions, and common palladium catalysts and solvents. The key step is a tandem reaction, namely a 4-*exo*-dig carbopalladation/Stille coupling. In some cases, the reaction suffered from low yields (<20%), but these were compensated for the complexity of the products formed in a onestep operation. To the best of our knowledge, this is the shortest reported route to functionalized polycyclic cyclooctanoid structures of this type and degree of complexity. Encouraged by these promising results, we investigated this methodology further in hope of developing a new versatile and efficient route to this type of cyclooctatriene derivatives in higher yields.

Scheme 1. Cyclooctatriene synthesis starting from alkenyl bromides A.

In general, few methodologies utilize the 8π electrocyclization reaction because of the formation of cyclohexadiene by a spontaneous 6π electrocyclization reaction, which leads to a 4-6 bicyclic skeleton (Scheme 2).¹² The equilibrium between the cyclooctatriene and the bicyclooctadiene depends on the reaction conditions used, and examples have been shown by several authors in total syntheses.¹³ For this reason, the 1,3,5-cyclooctatriene moiety is not a common substructure and is very rarely encountered in natural products.¹⁴ Therefore it appears to be of interest to develop new accesses to this type of structure, which can be the starting point of the synthesis of more complex natural or unnatural compounds.¹⁵

Scheme 2. Equilibrium between cyclooctatrienes and bicyclooctadienes.

During our initial investigations on the uses of the 8π electrocyclization for the synthesis of stable 1,3,5-cyclooctatrienes, we were pleased to discover that a subsequent 6π electrocyclization reaction took place at room temperature after the 8π process providing in excellent yields a new class of fenestranes: the [4,6,4,6] fenestradienes and fenestrenes. The fenestrane family represents structurally fascinating compounds, which contain four condensed cycles sharing the same central carbon atom (Scheme 3). Laurenen is the only all carbon fenestrane natural product known.¹⁶ This compound does not present any significant biological activity. However, natural products of the fenestrane family, which contain various heteroatoms, such as the penifulvines and asperarulines, have been reported.¹⁷ The fenestranes have attracted much synthetic interest over the past 40 years, because of the planar geometry of the central carbon atom.¹⁸ For some examples, the bond angles around this central atom can be enlarged up to 130° instead the regular 109.5°.

Scheme 3. Some examples of natural product structurally related to the fenestrane family.

Our group has developed methodologies toward both cyclooctatrienes and new members of this family, the [4.6.4.6]fenestradienes (Scheme 4).¹⁹ Herein we present for the first time a complete account on two different approaches: the earlier P-2 Ni strategy, leading to the first generation of polycycles, and the alkynylation strategy, leading to the second generation. In the first approach, fenestradienes **3** were obtained with excellent yields, from precursor trienynes **2** synthesized in three steps from alkenyl bromides 1.²⁰ This sequence requires the use of stannanes for the 4exo-dig carbopalladation/Stille coupling in the preparation of the precursors $\mathbf{2}$, and then a sensitive nickel(0) catalyst and hydrogen gas. The stannanes could later be eliminated by the development of a new tandem reaction, 4-exo-dig carbopalladation/Sonogashira coupling.²¹ In the second approach, a new type of fenestradienes **4** was directly prepared from alkenyl bromides 1, thus shortening the synthesis drastically and avoiding dangerous hydrogenation.²² We will describe the results for this one-pot synthesis of fenestradienes 4, the limits of this method as well as the synthesis of a new series of 6-4-8, 7-4-8 or 4-8 fused systems.

Scheme 4. Different pathways toward [4.6.4.6]fenestradienes 3 and 4 or cyclooctatrienes 8 and 12.

2. Results and discussion

2.1. The first generation of fenestradienes and cyclooctatrienes

While applying a 4-exo-dig cyclocarbopalladion reaction toward efficient cascade processes, we discovered a step-economical synthesis of a new family of substituted fenestradienes 3 and cvclooctatrienes 8 (Scheme 4). These novel systems are obtained directly, in a one-pot operation, by a remarkable cascade reaction starting with the Ni-catalyzed semi-hydrogenation of trienynes 2, readily prepared from alkenyl bromides **1** in three steps and in good overall yield. The partial reduction of the triple bond was successfully achieved using P-2 Ni (Ni(OAc) $_2 \cdot 4H_2O$, 1 equiv; NaBH₄, 1 equiv; EDA, 3.5 equiv; EtOH, H₂ 1 atm, 16 h, room temperature). These conditions generate tetraene 5, which can undergo a conrotatory 8π electrocyclization to form cyclooctatriene 6 (Scheme 5). This intermediate, then reacts further with a disrotatory 6π electrocyclization, to provide **3** as the sole product isolated in this reaction sequence. One can note that the reaction is totally torquoselective, none of the other diastereomer 8 is formed at room temperature. This behavior, explaining the unique formation of **3** in the cascade reaction, has been carefully studied by DFT calculations.^{16b}

Scheme 5. Mechanism of formation of the fenestradiene 3 and fenestrene 7 of the first generation.

When compound **3** was stored at -20 °C under air for several days, it produces a new product that possesses all characteristic data corresponding to the [4.6.4.6]fenestrene **7** (Scheme 5). Exemplary of the novel chemistry of strained fenestranes, the transformation of **3** into **7** can be explained by a spontaneous oxidation of the highly reactive [4.6.4.6]fenestradiene **3** with molecular oxygen. Another oxidation conditions using *m*-CPBA in CH₂Cl₂ also lead to the same product in similar yields. All the results regarding this first generation of [4.6.4.6]fenestradienes and fenestrenes are summarized in Table 1. Numerous products containing either a hydroxy group (R¹=OH, entries 1–7) an amino group (R¹=NHPh, NHBn, NHBoc, entries 8–11), or a 1,2,3-triazole (entry 12) have been obtained in moderate to good yields (28–93%). One example with R² as an amino group (R²=CH₂NHBoc, entry 7) also produced the oxidized fenestrene **7g** in 28% yield (two steps).

When the reaction conditions were slightly modified by increasing the temperature to 70 $^{\circ}$ C, none of the fenestradiene **3a** was obtained and we only observed a clean formation of the

Table 1

Synthesis of first generation fenestradienes and fenestrenes

to the second se	2	R^{1} 1.0 equiv Ni(OAc) ₂ 1.0 equiv NaBH ₄ 3.5 eq. eda H ₂ EtOH, RT	0 0 3		n-CPB/ laHCO CM, 0	$A \xrightarrow{3}{^{\circ}C} C$	H = O or NHBoc
Entry	2	R ¹ , R ²	3	Yield (%)	7	R ³	Yield (%) ^b
1 ^h	2a	$R^1 = OH$	3a	88 ^a	7a	CH₃	63
2 ^h	2b	$R^{-}=C(CH_{3})_{2}OH$ $R^{1}=OH$ $R^{2}=C(^{i}butyl)_{2}OH$	3b	63 ^{a,c}	7b	ⁱ Butyl	67
3 ^h	2c	R ¹ =OH	3c	93 ^a	7c	$(CH_2)_4$	62
		$R^2 = \frac{HO}{2}$					
4^{h}	2d	$R^1 = OH$	3d	86 ^a	7d	$(CH_2)_5$	68
		R ² = ¹⁰					
5 ^h	2e	$R^1 = OH$ $R^2 = CH_2OH$	3e	d	7e	Н	35 ^e
6 ^h	2f	$R^1 = OH$ $R^2 = (CH_2) \in CH_2$	3f	90 ^a	—	_	—
7 ^h	2g	$R^{1} = OH$ $R^{2} = CH_{2}NHBoc$	3g	d	7g	Н	28 ^e
8	2h	$R^1 = NHPh$ $R^2 = C(CH_3)_2OH$	3h	51 ^b	—	_	_
9	2i	$R^1 = NHPh$ $R^2 = C(^i butyl)_2OH$	3i	36 ^b	_	_	_
10	2j	$R^{1} = NHBn$ $R^{2} = C(^{i}butyl)_{2}OH$	3j	41 ^b	_	_	_
11	2k ^f	$R^{1} = NHBoc$ $R^{2} = C(^{i}butyl)_{2}OH$	3k	53 ^b	_	_	_
12	21	$R^1 = 1,2,3$ -triazole-4-	31	28 ^g	_	_	_
		$(CH_2)_4OTBS$ $R^2 = C(^i butyl)_2OH$					

^a Yield determined by ¹H NMR of the crude.

^b Yield of isolated product after chromatography.

^c The product **3b** was contaminated by 30% of inseparable **2b**.

^d Not determined.

^e Yield for the two steps (a, b) from **2g**.

f 11% of **2k** is recovered.

^g The product **3I** was contaminated by 50% of inseparable **2I**.

^h Previous results.¹⁹

cyclooctatriene **8a**. It is important to note that the stereochemistry of the newly formed bond C3–C16 is opposite to that present in the fenestradiene **3a**. In other words, the torquoselectivity of the 8π electrocyclization is different when the reaction was conducted at room temperature or at 70 °C (Scheme 6).

Scheme 6. Direct access to cyclooctatriene 8a from trienyne 2a.

Furthermore when fenestradienes **3** were subjected to microwave irradiation at 110 °C for 30–50 min in benzene, stable cyclooctatrienes **8** were obtained in good yields (Scheme 7).

These polycyclic compounds represent the thermodynamic products, while the corresponding fenestradienes **3** are the kinetic compounds. It is worth mentioning that the first generation method did not give fenestradienes, but only cyclooctatrienes, when trienynes bearing no cycle or a seven-membered cycle were used in place

Scheme 7. Preparation of cyclooctatrienes 8 from fenestradienes 3.

of the six-membered ring.^{19b} However, this first generation methodology suffers from some inconveniences. First, the manipulation and purification of the sensitive polyenynes **2** are difficult, in some cases leading to partial degradation. Secondly, the reaction is conducted using a sensitive and toxic Ni(0) catalyst, which must be prepared in situ before the cascade reaction and, which is added in stoichiometric amount. Finally, the reduction of the triple bond involves the use of molecular hydrogen that needs some precautions, a special apparatus and room to be conducted under safe conditions. These inconveniences drove us to find an alternative route for the formation of related, but new classes of fenestradienes and cyclooctatrienes. In this regard, we recently proposed new shorter and safer syntheses of these types of compounds.

2.2. The second generation of fenestradienes and cyclooctatrienes

The second approach to fenestradienes of type **4** proceeds via a new cascade reaction of five steps, forming five new carbon--carbon bonds starting from the alkenyl bromide compounds 1 previously used. This was the first described cascade reaction with five non-identical steps. In the meantime, another complex cascade reaction has been reported in the literature.²³ The key reaction is an alkyne addition reaction, which is totally regioselective and avoids the inclusion of dihydrogen and sensitive P-2 Ni catalyst. Two recent contributions to this field inspired this new route: the first was developed by Gevorgyan et al.,²⁴ who managed to dimerize terminal alkynes to obtain mainly head-to-head regioisomer enynes, while Trost et al. developed conditions to add terminal donor alkynes on internal triple bonds substituted by an electron-withdrawing group, affording head-to-tail regioisomer enynes.²⁵ Another contribution by Tsukada, Inoue et al.²⁶ proposed a regioselective addition of terminal silvlated alkynes onto non-activated internal asymmetric acetylenes. Our strategy is based on employing an excess of enyne C to induce the regioselective addition of the terminal triple bond onto the internal alkyne function of the intermediate trienyne 9 or 2 (Scheme 8). In the first approach, the corresponding compounds 2 were easily obtained in pure form in one-step starting from alkenyl bromide **1**, employing a 4-exo-dig carbopalladation/Sonogashira cascade reaction following our previous results,²¹ but here they directly reacted further without isolation.

The regioselective addition of enyne **C** onto the triple bond of **9** or **2** furnished a highly unsaturated intermediate tetraene **10** with the enyne moiety at carbon 14. This intermediate, never isolated, was prone to spontaneously undergo an 8π , followed by a 6π electrocyclization leading to the [4.6.4.6]fenestradiene **4**. According to this result and previous calculations made in the field,²⁷ we propose the following mechanism. The conrotatory 8π electrocyclization of the intermediate tetraene **10** takes place via Möbius aromatic transition structures of helical conformations TS1 and TS2, which present opposite *M*- and *P*-helical topologies. At lower reaction temperatures, the transition state TS1 of the 8π electrocylization present a *M*-helical topology, and the cyclooctatriene **11** obtained includes a proton at carbon 3 and R³ substituent at carbon 16 on the opposite face of the polycycle compared to the acetonide

Scheme 8. Proposed cascade reaction mechanism.

moiety. This eight-membered ring derivative **11** undergoes spontaneously the 6π electrocylization leading to the expected fenestradiene **4**. If the temperature of the reaction is increased, the transition state TS2, with opposite helical topology of a higher energy, can be reached, leading to the cyclooctatriene **12**, which does not undergo the 6π electrocyclization. This polycycle presents a proton at carbon 3 and R³ substituent at carbon 16 on the same face of the polycycle compared to the acetonide moiety. The 8π electrocyclization via *pathway 2* presents an opposite torquoselectivity than for the reaction via *pathway 1*, shown by the structures of the transition states TS1 and TS2 (Scheme 8).

The 8π electrocyclizations are stereospecific, fenestradienes **4** and cyclooctatrienes **12** are obtained with complete diastereoselectivity. When the reaction was performed at higher temperature (e.g., 130 °C), the cyclooctatriene **12a**, was obtained as the sole product in a very high yield of 98% (Scheme 9).

Scheme 9. Two different products obtained from 1a.

More interestingly, the electrocyclic reactions *via pathway 1* are reversible and this hypothesis was confirmed by experimentation. When fenestradiene **4a** is subjected to microwave irradiation in

benzene for 30 min at 130 °C, only one product is obtained, the cyclooctatriene 12a, in a modest 26% yield. This low yield can be explained by the weak stability of highly tense polycycle 4a at 130 °C. Considering all these observations and accordingly to our previous results for the first generation of fenestradienes 3, in addition to DFT calculations, we propose that cyclooctatrienes **12** are the thermodynamic products as well, while the fenestradienes 4 are the kinetic products. This rearrangement of kinetic into thermodynamic products implies the following sequence: a retro 6π , retro 8π , and then 8π electrocyclization among *pathway 2*. In summary, we have performed a straightforward synthesis of substituted fenestradienes and cyclooctatrienes by simply adjusting the microwave irradiation time and temperature.

2.2.1. Scope of the step-economical synthesis of [4.6.4.6]fenestradienes. In order to define the scope and limitations of this cascade reaction, several differently substituted dioxolanes 1 and enynes (13-28) were tested. The alkenyl bromide 1a was easily prepared from 2-bromocyclohexenone in a sequence of four steps in good overall yield, as previously reported²⁰ and was first chosen as a suitable model for this study. Then, a series of amine derivatives **1b**–**d** were synthesized in 2–4 steps.²¹

These starting materials were then treated with Pd(OAc)₂ (5 mol %), PPh₃ (10 mol %), and CuI (10 mol %) as catalysts in the presence of 3 equiv of envne C in diisopropylamine under microwave irradiation (90–100 °C), affording in a single process the stable fenestradienes 4. The results obtained are summarized in Table 2. Isolated yields are moderate to high in regards to the highly strained

`R¹

13 R^2 =Me, R^3 = R^4 =H

13 $R^2 = Me$. $R^3 = R^4 = H$

13 R²=Me, R³=R⁴=H

25 R²=Me, R³=CH₂OTBS, R⁴=H

26 R²=Me, R³=H, R⁴=CH₂OTBS

25 R^2 =Me, R^3 =CH₂OTBS, R^4 =H

26 R²=Me, R³=H, R⁴=CH₂OTBS

=

Table 2

17^k

18^k

19^k

20^k

21

22¹

23¹

1b

1b

1b

1c

1c

1c

1d^j

One pot synthesis of fenestradienes 4

structures obtained in only one-step: 13-80%. Several envnes 13-28 bearing different chemical functions appeared to be effective in this cascade reaction: aliphatic enynes 13-17 (entries 1-5), aromatic envne 18 (entry 6), free or methylated primary alcohols 19 and 24 (entries 7, 12), tertiary alcohols 20-23 (entries 8-11), silylated ethers 25–27 (entries 13–15), and a protected amine 28 (Entry 16). As for the starting material substituted by a propargylic alcohol **1a**, we were surprised to observe that a linear conjugated envne such as 14 and 15 (entries 2 and 3) appeared to be less effective than those bearing a methyl group in α position to the triple bond such as **13**, **19**, and **25**, which could appear more sterically hindered (entries 1, 7, 13). Moreover, a congested environment around the oxygen in allylic position of enynes 25-26 does not prevent the cascade to occur (entries 7, 13 and 14). However, a disfavoring parameter would be the steric hindrance of alkyl groups in allylic position. Indeed the fenestradiene **4h** is isolated with a 59% yield when alkyl groups are cyclopentanol in allylic position and it drops to 39% when the enyne 21 employed bears a cyclohexanol group (entries 8 and 9). As expected, a sterically hindered (Z)-enyne 26 presents lowered effectiveness compared to the (E)-enyne 25 (entries 13 and 14). And yet, the results of the cascade reaction using starting material **1b-d** substituted by a propargylic amine were slightly divergent. The cascade reaction was also effective using envne 13 when protected amine functionalities were used (entries 1, 17, 20). The yield drops from 72–80% to 48% when the carbamate 1d is engaged (entry 23). We were also surprised to observe that when the amine function was protected with a phenyl group (1b), the results of the cascade reaction using substituted envnes with silvlated ethers 25-26 (entries

Yield (%) _

590 Traces

25

47

_

29

48

_

_

20

9q

9r

9s

9t

9u

9v

9w

15

22

i

12q

12r

12s

12t

12u

12v

12w

	1a 1b 1c 1d	$\begin{array}{c} O \\ O $		R^4 R^3	+ 0 + H R ³ R ⁴ R 12	R ¹	+ + + + + + + + + + + + + + + + + + +	R ¹ R ² R ⁴ R ³
Entry	1	Enyne	Time (min)	4	Yield (%)	12	Yield (%)	2 or 9
1 ^k	1a	13 $R^2 = Me$, $R^3 = R^4 = H$	60	4a	73	12a ^a	15	9a ^a
2 ^k	1a	14 $R^2 = R^4 = H$, $R^3 = CH_2CH_2Ph$	30	4b	46	12b	36	9b
3	1a ^b	15 $R^2 = R^4 = H$, $R^3 = (CH_2)_5 CH_3$	60	4c	Traces	12c	47	2f
4	1a ^c	16 $R^4 = H, R^2 - R^3 = (CH_2)_4$	60	4d	—	12d	11	9d
5	1a ^d	17 $R^2 = H, R^3 - R^4 = (CH_2)_3$	60	4e	—	12e	—	9e
6	1a ^e	18 $R^2 = R^4 = H, R^3 = Ph$	60	4 f	—	12f	44 ^e	9f
7 ^ĸ	1a	19 $R^2 = Me$, $R^3 = CH_2OH$, $R^4 = H$	60	4g	68	12g	—	9g
8 ^k	1a	20 $R^2 = R^4 = H, R^3 = HO_{\frac{7}{2}}$	60	4h	59	12h	8	2c
9 ^k	1a	21 $R^2 = R^4 = H, R^3 = HO_{\frac{3}{2}}$	120	4 i	39	12i	9	2d
10	1a	22 $R^2 = R^4 = H$, $R^3 = C(Me)_2OH$	60	4j	32	12j	34	2a
11	1a	23 $R^2 = R^4 = H$, $R^3 = C(^i butyl)_2 OH$	60	4k	_	12k	6	2b
12	1a ^f	24 R^2 =Me, R^3 =CH ₂ OMe, R^4 =H	60	41	32	121	_	91
13 ^k	1a	25 $R^2 = Me$, $R^3 = CH_2OTBS$, $R^4 = H$	60	4m	72	12m	10	9m
14 ^ĸ	1a	26 $R^2 = Me$, $R^3 = H$, $R^4 = CH_2OTBS$	120	4n	40	12n	_	9n
15	1a ^g	27 R^2 =CH ₂ OTBS, R^3 = R^4 =H	60	40	18	120	14	90
16 ^ĸ	1a ⁿ	28 $R^2 = R^4 = H$, $R^3 = NHBoc$	60	4p	43	12p	25	2g

60

60

60

60

60

60

60

72

40

45

80

59

48

4q

4r

4s

4t

4u

4v

4w

 $\overline{\mathbf{R}^{1}}$

7572

Table 2 (continued)

Entry	1	Enyne	Time (min)	4	Yield (%)	12	Yield (%)	2 or 9	Yield (%)
24	1d	20 $R^2 = R^4 = H, R^3 = HO_{\frac{1}{2}}$	60	4x	14	12x	_	9x	45
25	1d	21 $R^2 = R^4 = H, R^3 = HO$	60	4y	13	12y	7	9y	38
26	1d	25 R^2 =Me, R^3 =CH ₂ OTBS, R^4 =H	60	4z	13	12z	_	9z	45

^a Inseparable mixture with 11% of starting material **1a**.

^b 39% of **1a** is recovered.

^c Inseparable mixture of 19% of **1a** and 59% of **9d**.

^d 33% of **1a** is recovered.

^e Inseparable mixture of 38% of **1a** and 44% of **12f**.

^f 20% of **1a** is recovered.

g 23% of 1a is recovered.

^h 29% of **1a** is recovered.

ⁱ 77% of a mixture of **4u** and **12u** (2:1).

^j 6% of **1d** is recovered.

^k Previous result.²²

18–19) are lower to those using as a starting material propargylic alcohol **1a** (entries 13–14). Pleasingly, we observed that (*Z*)-enyne **26** with **1c** allowed to isolate up to 59% of the corresponding fenestradiene **4v** (entry 22). In this study, alternative products formation could not be avoided and trienynes **2a–d**, **9d**, **9l–n**, **9r–s**, and **9w–z**, were isolated between 8 and 94% yield, while cyclooctatrienes **12a–d**, **12f**, **12h–k**, **12m**, **12o–r**, **12w**, and **12y** were obtained in 6–47% yield. Both product types can be separated by column chromatography.

2.2.2. Scope of the step-economical synthesis of cyclooctatrienes. Our second objective was to determine the best reaction conditions in order to selectively prepare the substituted cyclooctatriene derivative **12** directly from the protected alkenyl bromide **1**. Toward this goal, we tested several microwave irradiation times and temperatures. As it was described above (Scheme 8), this direct transformation of **1** into **12** is the result of a thermodynamic control of the cascade reaction leading to the more stable polycycle.

In this particular case, DFT calculations have clearly shown in the first generation of cyclooctatrienes **8** that these types of compounds are more stable than the corresponding fenestradienes **3**. The optimized reaction conditions for this transformation were a compromise between irradiation time and temperature to force consumption of the starting compound **1** and avoid decomposition: 100-130 °C, 30 min to 3 h, Pd(OAc)₂ (5 mol %), PPh₃ (10 mol %), CuI (10 mol %) in pure i Pr₂NH in the presence of 3 equiv of the enyne **C**. We were pleased to isolate, after silica gel chromatography, the cyclooctatriene 12 in acceptable to very good yield when considering the complexity of these cascade events (Table 3). The propargylic alcohol **1a** gave the best result with the formation of **12a** (entry 1) in 98% yield after only 30 min of microwave irradiation. The presence of R^3 group as an alkyl group (entries 2–4) or as a phenyl substituent (entry 5) usually conducted to a good yield of the expected cyclooctatrienes, respectively **12b–d** and **12f**. Depending on the envne used, we observed, in some cases, the formation of a non-negligible amount of the kinetic product, for instance the fenestradienes 4m and 4q (entries 9 and 11). Despite applying a longer reaction time, it was not possible to increase the yields of the corresponding cyclooctatrienes **12m** and **12q**. When the enyne bearing a free primary alcohol 19 was used under standard irradiation conditions, only the cyclooctatriene 12g was obtained in good yield (80%) (entry 6). Employing the protected allylic alcohol 25 dramatically reduced the formation of product 12m to 15% (entry 9). Aside 12m, the trienyne 9m was isolated in 55% yield and fenestradiene 4m in 16% yield. In

Table 3

One-pot synthesis of cyclooctatrienes 12

		R ¹ C R ¹ C R ² C R ³ (3 equiv.) R ⁴ 5 mol% Pd(OAc) ₂ 10 mol% PPh ₃ 10 mol% PPh ₃ 10 mol% Cul <i>i</i> -Pr ₂ NH, MW T°C > 100°C	4	+ .R ²	0 H R ³ Ř ⁴ R ² 12	R ⁴ R ³	Pr 2 or 9	R^1 R^2 R^3	
Entry	1	Enyne	MW conditions	4	Yield (%)	12	Yield (%)	2 or 9	Yield (%)
1	1a	13 $R^2 = Me, R^3 = R^4 = H$	30 min, 130 °C	4a	_	12a	98	9a	_
2	1a	$14 R^2 = R^4 = H, R^3 = CH_2CH_2Ph$	1 h, 110 °C	4b	_	12b	59	9b	_
3	1a	15 $R^2 = R^4 = H$, $R^3 = (CH_2)_5 CH_3$	3 h, 100 °C	4c	Traces	12c	72	2f	_
4	1a	16 $R^4 = H$, $R^2 - R^3 = (CH_2)_4$	2 h, 100 °C	4d	_	12d	77	9d	20
5	1a	18 R ² =R ⁴ =H, R ³ =Ph	3 h, 100 °C	4 f	_	12f	68	9f	—
6	1a	19 R ² =Me, R ³ =CH ₂ OH, R ⁴ =H	2 h, 130 °C	4g	_	12g	80	9g	—
7	1a	$20 R^2 = R^4 = H, R^3 = HO_{\frac{1}{2}}$] 1 h, 130 °C	4h	Traces	12h	81	2c	Traces
8	1a	21 $R^2 = R^4 = H, R^3 = HO$	} 3 h, 100 °C	4i	Traces	12i	51	2d	30
9	1a	25 R ² =Me, R ³ =CH ₂ OTBS, R ⁴ =H	1 h, 130 °C	4m	16	12m	15	9m	55

7574

Entry	1	Enyne	MW conditions	4	Yield (%)	12	Yield (%)	2 or 9	Yield (%)
10	1a	28 R ² =H, R ³ =CH ₂ NHBoc, R ⁴ =H	1 h, 130 °C	4p	_	12p	41	9p	_
11	1b	13 R^2 =Me, R^3 = R^4 =H	1 h, 130 °C	4q	23	12q	65	9q	_
12	1c	13 R ² =Me, R ³ =R ⁴ =H	1 h, 130 °C	4t	_	12t	66	9t	_
13	1c	25 R ² =Me, R ³ =CH ₂ OTBS, R ⁴ =H	1 h, 130 °C	4u	a	12u	a	9u	_
14	1d	13 $R^2 = Me$, $R^3 = R^4 = H$	1 h, 130 °C	4w	_	12w	62	9w	_

^a 26% of an inseparable mixture of **4u** and **12u** (1:3).

spite of applying a longer reaction time both products did not rearrange to **12m**. Similarly, the protected propargylic amine **1c** gave a low yield (26%) of an inseparable mixture (1:3) of **4u** and **12u** (entry 13). The sterically congested tetraene **10u** (see Scheme 8) probably requires much higher activation energy to eventually form the favorable *P*-helical topologies affording the final cyclooctatriene **12u**. This behavior can also be observed when the enyne is switched from **20** (cyclopentanol substitution) to **21** (cyclohexanol substitution) (entries 7 and 8). These results support the fact that the full cascade process is quite sensitive to the steric hindrance in the allylic position of the enyne moiety. The presence of a protected amine in the starting alkenyl bromides **1b**–**d** as well as in the allylic position of the enyne **28** did not affect the cascade leading to the cyclooctatrienes **12p–q**. **12t**, and **12w** in acceptable yield (41–66%, entries 10–12 and 14).

The direct transformation of some fenestradienes **4** into cyclooctatrienes **12** has been accomplished by simply heating **4** under microwave irradiation at temperatures up to 130 °C. The sequence retro $6\pi - 8\pi$ than 8π cyclization afforded low yields (25–53%) of the corresponding cyclooctatriene **12** with an opposite torquoselectivity compared to **4** (Scheme 10).

Scheme 10. Direct transformation of fenestradienes 4 into cyclooctatrienes 12.

Table 4

One-pot synthesis of cyclooctatrienes 30

Another substrate of interest was the starting material bearing a cycloheptene moiety 29.²⁰ When applying our classical reaction conditions used for the six-membered compounds 1a-d, not surprisingly, no trace of the [4.6.4.7]fenestradiene was isolated. This observation was in accordance to our previous results obtained by the semi-hydrogenation procedure using P-2 Ni for the synthesis of cyclooctatrienes **8** (first generation). [4.6.4.7]fenestradienes present a high energy level and cannot be isolated.^{19b}

Similarly to previous examples, diverse irradiation conditions were used, the best results are summarized in Table 4. When the enyne 13 was engaged in optimized conditions using the sevenmembered ring starting material 29, the expected cyclooctatriene 30a was isolated in 86% yield (entry 1). A 3 h irradiation time was required to isolate the condensed 7-4-8 polycycle **30b** in high yield (89%) as sole product when the enyne 14 was used (entry 2). When using enyne **20**, the yield of the reaction dropped to 45% for **30g** while no cyclooctatriene 30h was formed when enyne 21 was reacted with 29 (entries 7 and 8). Only the trienyne 31h was isolated in 95% yield in this case. Utilizing higher irradiation temperature only resulted in degradation of the trienyne **31h**. In the majority of cases, the tricycle **30** was accompanied by the corresponding trienyne **31** formed after the monoaddition of the enyne moiety on 29 (entries 3-9). With envne 16 and 21, the nonexpected products **31d** and **31h** became the major ones (entries 4 and 8). Using the envne substituted with an aliphatic chain 15–16, irradiating the reaction mixture longer only resulted in degradation (entries 3 and 4). Again the alkynylation step on the triple bond of 29 was totally regioselective and no formation of the other regioisomer was detected after completion of the reaction.

Considering all the above results, the effectiveness of the cascade reaction does not depend on the enyne structure indeed. We

Entry	Enyne	MW conditions	30	Yield (%)	31	Yield (%)
1	13 $R^2 = Me$, $R^3 = R^4 = H$	30 min, 130 °C	30a	86	31a	_
2	14 $R^2 = R^4 = H$, $R^3 = CH_2CH_2Ph$	3 h, 100 °C	30b	89	31b	_
3	15 $R^2 = R^4 = H$, $R^3 = (CH_2)_5 CH_3$	1 h, 100 °C	30c	58	31c	20
4	16 $R^4 = H, R^2 - R^3 = (CH_2)_4$	3 h, 100 °C	30d	32	31d	68
5	18 $R^2 = R^4 = H$, $R^3 = Ph$	1 h, 130 °C	30e	50	31e	45
6	19 R ² =Me, R ³ =CH ₂ OH, R ⁴ =H	3 h, 100 °C	30f	60	31f	35
7	20 $R^2 = R^4 = H, R^3 = HO_{T_{r_1}}$	3 h, 100 °C	30g	45	31g	40
8	21 $R^2 = R^4 = H, R^3 = HO$	1 h, 100 °C	30h	_	31h	95
9	25 R^2 =Me, R^3 =CH ₂ OTBS, R^4 =H	1 h, 100 °C	30i	64	3 1i	29

Table 5

can suggest that the activation energy of the 8π electrocyclization leading to cyclooctatrienes **12** and **30** appears to be particularly high for some compounds (**12m**, **12p** and **30d**, **30e**, **30g**, **30h**), resulting in a medium to high yields for the intermediate trienynes.

Next, we were interested in examining the reactivity of an acyclic starting material 32 in the conditions of the cascade reaction (Table 5).²⁰ When aliphatic enynes **13–14** and silylated enyne **25** were used, a complex mixture of inseparable products was obtained, and the expected cyclooctatriene 33 and trienyne 34 were not observed (entries 1-2, 5). When ethynylcyclohexene 16 was engaged in the same conditions, the trienyne 34c was isolated in 75% yield (entry 3). In fact, the reaction was already quantitative in only 5 min (entry 4). The 4-8 condensed polycycle 33a,b and 33d and the cyclobutane containing compound 34a,b and 34d appeared to be sensitive toward microwave irradiation. Moreover, the trienyne 34 does not seem to be a good substrate toward alkyne addition reaction, probably due to the high degree of liberty of the structure. The enynes used in this study have proven to be effective with cyclic starting materials 1a-d and 29, thus cannot be the problematic component here. These examples demonstrate a limit of the scope of this cascade reaction.

3. Conclusion

In summary we have given a complete account of the new methods for the synthesis of cyclooctatrienes, fenestradienes, and fenestrenes developed in our group. The first strategy allows for the access to a first generation of cyclooctatrienes 8, fenestradienes 3, and fenestrenes 7. This method can be applied to a series of precursor trienynes 2 bearing a hydroxy group or amino groups in homopropargylic position, obtained in three steps from alkenyl bromides 1. In the second strategy, a new generation of polycycles was directly prepared from alkenvl bromides 1. The cascade reaction involves five steps, which is the first of its kind and renders the synthesis even more efficient and shorter. Twenty-one new fenestradienes 4 were obtained bearing a hydroxy group or amino groups in homopropargylic position in modest to very good yields, and using a variety of enynes (aliphatic and aromatic enynes, as well as enynes bearing a protected amine, a free primary alcohol, tertiary alcohols, and silylated ethers). Changing only the microwave irradiation conditions selectively give access to 20 new cyclooctatrienes 12. Using the different precursors bearing not a six- but seven-membered cycle, the isolation of eight new cyclooctatrienes 30 was equally achieved. Thus, especially this second new approach reveals to be appealing in terms of atom and step economy, the use of easy to handle conditions, as well as the variability of its scope. Furthermore, the alkynylation reaction on the attacked triple bond is totally regioselective leading to only one diastereomer. This is the first alkyne addition reaction of a simple enyne onto a non-activated internal triple bond, using the very common catalytic system Pd(OAc)₂/PPh₃. It proved efficient with different functions on the alkyne donor: alkyl groups but also inductive electron-withdrawing groups as alcohols. Investigations explaining the high regioselectivity are being undertaken.

4. Experimental section

4.1. General

Microwave irradiations were performed using a BIOTAGE Smith Creator apparatus. The crude products were purified by flash column chromatography on Merck silica gel Si 60 (40-63 µm). For some compounds, with 5% Et₃N in Et₂O treated silica gel was used to avoid decomposition due to the acidity of the not treated silica gel. Analytical thin layer chromatography (TLC) was carried out on Merck aluminum sheets silica gel 60 F254. TLC spots were examined under UV light and revealed by sulfuric acid/anisaldehyde. NMR spectra were recorded in CDCl₃ on a Bruker 500 MHz, Ultrashield+, Avance III BBFO+ probe spectrometer, a Bruker Avance III 400 MHz BBFO+ probe spectrometer for ¹H and 100 MHz for 13 C, and a Bruker Avance 300 MHz dual probe spectrometer for 1H. Proton chemical shifts are reported in parts per million (δ), relatively to residual CHCl₃ (δ 7.26 ppm). Carbon chemical shifts are reported in ppm (δ), relatively to the internal standard (CDCl₃, δ 77.16 ppm). ¹H and ¹³C NMR signals were assigned mostly on the basis of DEPT and 2D-NMR (COSY, HMBC, HMQC) experiments, and using increment tables.²⁸ Chemical ionization (CI) mass spectra were recorded on a Thermo Trace GC/DSO II GC/MS mass spectrometer. High Resolution Mass Spectral analysis (HRMS) was performed using an Agilent 1200 RRLC HPLC chain and an Agilent 6520 Accurate mass OToF. Infrared spectra (IR) were recorded on an FT IR Thermo Nicollet ATR 380, Diamant Spectrometer.

4.2. Experimental data for the starting materials

The syntheses of the following starting materials were described in earlier publications: 1a,²⁰ 1b-e,²¹ seven-membered ring 29^{20} and acyclic 32,²⁰ (*E*)-hex-3-en-5-yn-1-ylbenzene 14,²² (*E*)-1-(but-1-en-3-yn-1-yl)cyclopentanol 20,²² (*E*)-1-(but-1-en-3-yn-1-yl) cyclohexanol, 21^{22} (*E*)-*tert*-butyldimethyl((3-methylpent-2-en-4-yn-1-yl)oxy)silane 25,²² (*Z*)-*tert*-butyldimethyl((3-methylpent-2-en-4-yn-1-yl)oxy)silane 26,²¹ (*E*)-*tert*-butylpent-2-en-4-yn-1-yloxy)silane 26,²¹ (*E*)-*tert*-b

The following enynes are commercially available: 2-methyl-1-buten-3-yne **13**, ethynylcyclohexene **16**, 2-bromo-2-propen-1-ol, and (E)-3-methyl-2-penten-4-yn-1-ol **19**, which was distilled prior to use.

4.2.1. (E)-5-Methoxy-3-methylpent-3-en-1-yne (24).

To a solution of NaH (60% dispersion in mineral oil, 272 mg, 6.81 mmol, 1.5 equiv) in anhydrous THF (21 mL, 0.3 M) was added dropwise, at 0 °C, a solution of (*E*)-3-methylpent-2-en-4-yn-1-ol (436 mg, 4.54 mmol, 1 equiv) in anhydrous THF (40 mL, 0.1 M). Then MeI (848 µL, 13.6 mmol, 3 equiv) was added at 0 °C. The reaction mixture was stirred for 1 h at room temperature and quenched with a saturated solution of NH₄Cl. The phases were separated and the aqueous phase was extracted with $Et_2O(2\times)$. The combined organic phase was washed with water, brine, dried with MgSO₄, filtered, and the solvent was removed under reduced pressure. The product is unstable on silica gel, even treated with Et₃N (5%), so the crude product is purified by a treatment with activated carbon and filtrated over Celite to afford 300 mg of 24 (60%) as orange oil; ¹H NMR (400 MHz, CDCl₃) δ 6.03 (td, ³*I*=8.0 Hz, ⁴*I*=1.2 Hz, 1H, H-5), 4.00 (d, ³/=8.0 Hz, 2H, H-6), 3.33 (s, 3H, H-7), 2.83 (s, 1H, H-1), 1.84 (s, 3H, H-4). ¹³C NMR (100 MHz, CDCl₃) δ 135.2 (C-5), 120.5 (C-3), 86.0 (C-2), 75.2 (C-1), 68.6 (C-6), 58.3 (C-7), 17.7 (C-4).

4.3. General procedure I for enynes 15, 18, 22

To a solution of TMS-acetylene (1 equiv) in anhydrous THF (0.13 M) was added at 0 °C a solution of vinyl iodide (1 equiv), Pd(PPh₃)₂Cl₂ (0.03 equiv), and CuI (0.1 equiv) in anhydrous THF (0.80 M). Then diisopropylamine (12 equiv) was added. The reaction mixture was stirred 5 min at 0 °C and then 1 h at room temperature. The reaction was quenched with NH₄Cl and the layers were separated. The aqueous phase was extracted with Et₂O and the combined organic phases were washed with water, brine, dried with Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The crude product was then purified by flash chromatography over silica gel to afford the silylated enyne, which was then deprotected according to the following procedure: the envne was dissolved in MeOH (0.20 M) and K₂CO₃ was added (1 equiv). The reaction mixture was stirred for 1 h at room temperature, quenched with NH₄Cl and the layers were separated. The aqueous phase was extracted with Et₂O and the combined organic phases were washed with water, brine, and dried with Na₂SO₄. The solvent was removed under reduced pressure before purification.

4.3.1. (E)-Dec-3-en-1-yne (15).

The enyne **15** was prepared following the **general procedure I** starting from a solution of TMS–acetylene (110 µL, 0.80 mmol, 1 equiv) in anhydrous THF (6.2 mL, 0.13 M), a solution of (*E*)-1-iodo-1-octene (190 mg, 0.80 mmol, 1 equiv), Pd(PPh₃)₂Cl₂ (17 mg, 0.02 mmol, 0.03 equiv), Cul (15 mg, 0.08 mmol, 0.1 equiv) in THF (1.0 mL, 0.8 M), and diisopropylamine (1.35 mL, 9.6 mmol, 12 equiv). The crude product was then directly deprotected with K₂CO₃ (111 mg, 0.80 mmol, 1 equiv) in MeOH (4.9 mL, 0.20 M). The crude product was purified by flash chromatography over silica gel (elution: pentane), to afford 100 mg of **15** (92% over two steps) as a yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 6.25 (dt, ³*J*=15.8 Hz, ³*J*=6.9 Hz, 1H, H-4), 5.45 (dt, ³*J*=15.8 Hz, ⁴*J*=2.0 Hz, 1H, H-3), 2.77 (dd, ⁴*J*=2.0 Hz, ⁵*J*=0.4 Hz, 1H, H-1), 2.17–2.08 (m, 2H, H-5), 1.43–1.24 (m, 8H, H-6, H-7, H-8, H-9), 0.88 (t, ³*J*=7.0 Hz, 3H, H-10).

¹³C NMR (100 MHz, CDCl₃) δ 147.1 (C-4), 143.5 (C-3), 108.6 (C-2), 82.8 (C-1), 75.6 (C-5), 33.2 (CH₂, non assig.), 33.1 (CH₂, non assig.), 28.9 (CH₂, non assig.), 28.7 (CH₂, non assig.), 14.2 (C-10). IR (neat) ν (cm⁻¹)=3315, 2926, 2856, 2360, 1733, 1458, 1250, 954, 850, 635.

4.3.2. (E)-but-1-en-3-yn-1-ylbenzene (18).

The envne **18** was prepared following the **general procedure I** starting from a solution of TMS-acetylene (470 µL, 3.33 mmol, 1 equiv) in anhydrous THF (26 mL, 0.13 M), a solution of (E)-(4iodobut-1-en-3-yn-1-yl)benzene³⁰ (766 mg, 3.33 mmol, 1 equiv), Pd(PPh₃)₂Cl₂ (70 mg, 0.10 mmol, 0.03 equiv), CuI (63 mg, 0.33 mmol, 0.1 equiv) in THF (4.2 mL, 0.80 M), and diisopropylamine (5.7 mL, 40 mmol, 12 equiv). The crude product was then directly deprotected in MeOH (17 mL, 0.20 M) with K₂CO₃ (460 mg, 3.33 mmol, 1 equiv). The crude product was then purified by flash chromatography over 10 cm of silica gel (elution: pentane) to afford 367 mg (86% over two steps) of **18** as a yellow oil; $R_f=0.76$ (hexane/EtOAc=95:05). ¹H NMR (400 MHz, CDCl₃) δ 7.27-6.91 (m, 5H, H-6, H-7, H-8), 6.93 (dd, ${}^{3}J$ =16.2 Hz, ${}^{4}J$ =1.2 Hz, 1H, H-3), 6.01 (ddd, ${}^{3}J$ =16.2 Hz, ${}^{4}J$ =2.2 Hz, ${}^{4}J$ =2.2 Hz, 1H, H-4), 2.94 (dd, ${}^{4}J$ =1.2 Hz, ${}^{5}J$ =2.2 Hz, 1H, H-1). ${}^{13}C$ NMR (100 MHz, CDCl₃) δ 143.2 (C-3), 136.0 (C-5), 129.0 (C-8), 128.8 (C-7), 126.5 (C-6), 107.2 (C-4), 83.0 (C-2), 79.4 (C-1). IR (neat) ν (cm⁻¹) 3289, 3031, 2098, 1491, 1447, 953, 746, 687, 604, 518, 477.

4.3.3. (E)-2-Methylhex-3-en-5-yn-2-ol (22).

The envne **22** was prepared following the **general procedure I** starting from a solution of TMS-acetylene (200 µL, 1.41 mmol, 1 equiv) in anhydrous THF (11.0 mL, 0.13 M), a solution of (E)-4iodo-2-methylbut-3-en-2-ol^{19a} (300 mg, 1.41 mmol, 1 equiv), Pd(PPh₃)₂Cl₂ (30 mg, 0.04 mmol, 0.03 equiv), CuI (27 mg, 0.14 mmol, 0.1 equiv) in THF (2.0 mL, 0.80 M), and diisopropylamine (2.4 mL, 17.0 mmol, 12 equiv). The crude product was then directly deprotected with K₂CO₃ (195 mg, 1.41 mmol, 1 equiv) in MeOH (7.1 mL, 0.20 M). The product is unstable on silica gel, even treated with $Et_3N(5\%)$, so the crude product is purified by a treatment with activated carbon and filtrated over Celite to afford 101 mg of 22 (65% in two steps) as orange oil; ¹H NMR (400 MHz, CDCl₃) δ 6.30 (d, ${}^{3}J$ =16.4 Hz, 1H, H-4), 5.65 (dd, ${}^{3}J$ =16.4 Hz, ${}^{4}J$ =2.3 Hz, 1H, H-3), 2.84 (d, ${}^{4}J$ =2.3 Hz, 1H, H-1), 1.27 (s, 6H, H-6), ${}^{13}C$ NMR (100 MHz, CDCl₃) & 152.5 (C-4), 105.7 (C-3), 82.0 (C-2), 77.7 (C-1), 70.8 (C-5), 29.2 (2C, C-6). IR (neat) v (cm⁻¹)=(3393, 2967, 2927, 2856, 2360, 2342, 1717, 1459, 1363, 1262, 1121, 956, 907, 729, 647, 541.). GC-MS (CI-NH₄, positive ion): 220.05 [2M⁺•].

4.3.4. tert-Butyl(dimethyl)[(2-methylenebut-3-yn-1-yl)oxy]silane (27).

To a solution of alcohol 2-bromo-2-propen-1-ol (885 mg, 6.50 mmol, 1.0 equiv) in dry CH_2Cl_2 (21 mL) at 0 °C was added imidazole (665 mg, 9.76 mmol, 1.50 equiv), DMAP (79.4 mg, 0.65 mmol, 0.10 equiv), and TBSCl (1.47 g, 9.76 mmol, 1.5 equiv). The transparent solution turned into a white suspension, and the reaction mixture was stirred first at 0 °C and then for 5 h at room temperature. The reaction was quenched with H_2O , the phases

were separated and the aqueous phase was extracted with CH₂Cl₂. The combined organic phases were washed with brine, dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography over silica gel (elution: pentane/Et₂O=95:5) to afford 1.63 g (100%) as colorless oil. R_f =0.38 (pentane/Et₂O=95:5). ¹H NMR (400 MHz, CDCl₃) δ 5.95 (d, ²*J*=1.6 Hz, 1H, H-3a), 5.53 (d, ²*J*=1.6 Hz, 1H, H-3b), 4.20 (br s, 2H, H-1), 0.92 (s, 9H, TBS), 0.10 (s, 6H, TBS). ¹³C NMR (100 MHz, CDCl₃) δ 132.0 (C-2), 114.8 (C-3), 67.6 (C-1), 25.9 (TBS), 18.5 (TBS), -5.2 (TBS). GC–MS (positive ion, 70 eV): 251.10 and 253.13 [M+H⁺⁺].

A solution of the previous compound (1.63 g, 6.50 mmol, 1.0 equiv) in MeCN and Et₃N (c=0.10 M, MeCN/Et₃N=8:2, 52.0 mL MeCN, 13.0 mL Et₃N) was degassed under vacuum and put under argon. At room temperature was then added TMS-acetylene (1.0 mL, 7.15 mmol, 1.10 equiv), Pd(PPh₃)₄ (230 mg, 0.20 mmol, 0.05 equiv), and CuI (186 mg, 0.96 mmol, 0.15 equiv). The yellow solution turned brown-red. After 1 h stirring at room temperature, ethanolamine (10 equiv/CuI) was added; the solution was stirred for another 2 h and then quenched with H₂O. The phases were separated and the aqueous phase was extracted with Et₂O. The combined organic phases were washed with water, brine, dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography over silica gel (elution: pentane) yielding 1.78 g (100%) of the TMS-enyne as gray oil. R_f =0.37 (pentane). ¹H NMR (400 MHz, CDCl₃) δ 5.59 (d, ²*J*=1.6 Hz, 1H, H-4a), 5.49 (d, ²*J*=1.6 Hz, 1H, H-4b), 4.13 (br s, 2H, H-5), 0.92 (s, 9H, TBS), 0.18 (s, 9H, TMS), 0.08 (s, 6H, TBS). ¹³C NMR (100 MHz, CDCl₃) δ 131.1 (C-3), 120.6 (C-4), 103.3 (C-2), 95.4 (C-1), 65.2 (C-5), 26.0 (TBS), 18.5 (TBS), 0.08 (TMS), -5.2 (TBS). GC-MS (positive ion, 70 eV): 269.24 [M+H⁺•].

The TMS–enyne (350 mg, 1.30 mmol, 1.0 equiv) was then deprotected in MeOH (8.70 mL) and with K₂CO₃ (180 mg, 1.30 mmol, 1.0 equiv). The crude product was purified by flash chromatography over silica gel (elution: pentane/Et₂O=98:2 to pentane/Et₂O=95:5) to afford 196 mg (77%) of **27** as a yellow oil, with traces of a byproduct. R_{f} =0.37 (pentane). ¹H NMR (400 MHz, CDCl₃) δ 5.66 (m, 1H, H-4a), 5.54 (m, 1H, H-4b), 4.16 (br s, 2H, H-5), 2.91 (s, 1H, H-1), 0.92 (s, 9H, TBS), 0.09 (s, 6H, TBS). ¹³C NMR (100 MHz, CDCl₃) δ 130.2 (C-3), 121.2 (C-4), 82.0 (C-2), 78.2 (C-1), 65.0 (C-5), 26.0 (TBS), 18.5 (TBS), -5.2 (TBS). GC–MS (positive ion, 70 eV): 214.19 [M + NH₄⁺⁺].

4.4. General procedure I for the tandem reaction 4-*exo*-dig/ Sonogashira coupling

The syntheses of the following starting materials were described in an earlier publication: **1b**, **1c**, and **1d**.²¹

In a 2–5 mL microwave vial were added the propargylic amine (1.0 equiv), $Pd(OAc)_2$ (0.05 equiv), copper iodide (0.10 equiv), and triphenylphosphine (0.10 equiv). The vial was sealed with a Teflon cap and the reaction mixture was then dissolved in diisopropylamine (c=0.05 M). The reaction mixture was degassed with two freeze–pump–thaw cycles. Then, the TMS–acetylene (1.5 equiv) was added to the reaction mixture. The vial was irradiated in the microwave for 20 min at 100 °C. The reaction mixture was then filtered through Celite to eliminate the metal traces and then concentrated under vacuum. The crude product was purified by flash column chromatography.

4.4.1. 1-{3-[(4S*,5S*)-6-Bromo-2,2-dimethyl-1,3-dioxaspiro[4.5]dec-6-en-4-yl]prop-2-yn-1-yl}-4-(4-{[tert-butyl(dimethyl)silyl]oxy}butyl)-1H-1,2,3-triazole (**1e**).

The (4S*,5S*)-6-bromo-4-(3-bromoprop-1-ynyl) 2,2-dimethyl-1,3-dioxaspiro[4.5]dec-6-ene²⁰ (731 mg, 2.01 mmol, 1.0 equiv) was diluted in DMF (20.0 mL) in a microwave tube. Sodium azide (1.04 g, 16.1 mmol, 8 equiv) was added and the tube was sealed. The mixture was irradiated 10 min at 80 °C in the microwave and then quenched with H₂O distilled. The phases were separated and the aqueous phase was extracted with Et₂O. The combined organic phases were washed with brine, dried over MgSO₄, filtered, and the solvent was removed under reduced pressure. The residual vellow oil was purified by flash chromatography over silica gel (elution: pentane/Et₂O=9:1) yielding 622 mg (95%) of the azide as a yellow oil. $R_{f}=0.33$ (pentane/Et₂O=9:1). ¹H NMR (400 MHz, CDCl₃) δ 6.37 (t, ³/=4.4 Hz, 1H, H-3), 4.77 (s, 1H, H-9), 3.98 (s, 2H, H-12), 2.21–1.69 (m, 6H, H-4, H-5, and H-6), 1.69 (s, 3H, H-8), 1.41 (s, 3H, H-8). ¹³C NMR (100 MHz, CDCl₃) δ 135.4 (C-3), 124.2 (C-2), 110.8 (C-7), 84.0 (C-1), 81.9 (C-11), 81.5 (C-10), 75.6 (C-9), 40.2 (C-12), 38.4 (C-6), 27.6 (C-4), 26.5 (C-8), 26.5 (C-8), 19.9 (C-5). IR (neat) ν (cm⁻¹)=2985, 2939, 2865, 2096, 1634, 1456, 1378, 1248, 1209, 1165, 1079, 1066, 1038, 989, 907, 891, 850, 709, 631, 521. HRMS (ESI, 120 eV) calculated for C₁₃H₁₆BrN₃O [M⁺•] 325.04259, found 325.04291 (Diff: 0.98 ppm).

The azide (169 mg, 0.52 mmol, 1.0 equiv) was diluted in t-BuOH (10.0 mL), H₂O (2.0 mL) and H₂O (2.0 mL). TBS protected hexynol (110 mg, 0.52 mmol, 1.0 equiv) was added followed by aqueous solutions of CuSO₄ (0.50 mL, 1 M, 1.0 equiv) and sodium ascorbate (0.50 mL, 1 M, 1.0 equiv). The mixture was stirred for 10 min at room temperature and quenched with brine. The aqueous phase was extracted with EtOAc. The combined organic phases were washed with brine, dried over MgSO₄, filtered, and the solvent was removed under reduced pressure. The crude yellow residue was purified by flash chromatography over silica gel (elution: DCM/MeOH=9:1) to afford 269 mg (96%) of the triazole **1e** as colorless oil. $R_f=0.63$ (DCM/ MeOH=9:1). ¹H NMR (400 MHz, CDCl₃) δ (ppm)=7.63 (s, 1H, H-13), 6.28 (t, ³*J*=3.8 Hz, 1H, H-3), 5.23 (dd, ²*J*=17.8 Hz, ⁵*J*=1.8 Hz, 1H, H-12), 5.17 (dd, ²*J*=17.8 Hz, ⁵*J*=1.8 Hz, 1H, H-12), 4.73 (t, ⁵*J*=1.8 Hz, 1H, H-9), 3.63 (t, ³*J*=6.4 Hz, 2H, H-15 or H-18), 2.74 (t, ³*J*=7.6 Hz, 2H, H-15 or H-18), 2.19-1.53 (m, 10H, H-4, H-5, H-6, H-16, and H-17), 1.68 (s, 3H, H-8), 1.40 (s, 3H, H-8), 0.88 (s, 9H, TBS), 0.03 (s, 6H, TBS). ¹³C NMR (100 MHz, CDCl₃) δ (ppm)=148.7 (C-14), 135.4 (C-3), 124.3 (C-2),

120.8 (C-13), 111.0 (C-7), 83.8 (C-1), 81.8 (C-10), 80.9 (C-11), 75.5 (C-9), 62.9 (C-18), 40.1 (C-12), 38.4 (C-6), 32.5 (C-15), 27.6 (C-4), 26.4 (C-8), 26.4 (C-8), 26.1 (TBS), 25.9 (C-16 or C-17), 25.6 (C-16 or C-17), 19.7 (C-5), 18.5 (TBS), -5.2 (TBS). IR (neat) ν (cm⁻¹)=2933, 2857, 1734, 1634, 1550, 1461, 1379, 1252, 1210, 1100, 1066, 10,339, 903, 834, 774. HRMS (ESI, 120 eV) calculated for C₂₅H₄₀BrN₃O₃Si [M⁺•] 537.20223, found 537.20220 (Diff: 0.06 ppm).

4.4.2. [(2Z)-2-[(3aS*,8aR*)-2,2-Dimethyl-7,8-dihydro-3aH-benzo [1,4]cyclobuta[1,2-d][1,3]dioxol-4(6H)-ylidene]-4-(trimethylsilyl)but-3-yn-1-yl] phenylamine (**35**).

The general procedure I was followed using: phenylamine 1b (240 mg, 0.64 mmol, 1.0 equiv), diisopropylamine (14 mL), Pd(OAc)₂ (7.20 mg, 0.03 mmol, 0.05 equiv), CuI (12.2 mg, 0.06 mmol, 0.10 equiv), PPh₃ (16.8 mg, 0.06 mmol, 0.10 equiv), and TMS–acetylene (140 μL , 0.96 mmol, 1.5 equiv). The crude brown residue was purified by flash chromatography over silica gel (elution: pentane/Et₂O=8:2 to pentane/Et₂O=6:4) to afford 206 mg (83%) of the desired product **35** as a yellow oil. R_t =0.90 (pentane/ $Et_2O=8:2$). ¹H NMR (300 MHz, CDCl₃) δ 7.18 and 6.70 (m, 5H, H_{arom}), 6.25 (t, ³*I*=3.8 Hz, 1H, H-3), 4.83 (s, 1H, H-9), 4.28 (br s, 1H, NH), 3.93 (d, ²J=6.1 Hz, 2H, H-12), 2.42 (m, 1H, H-4), 1.99 (m, 4H, H-4, H-5, and H-6), 1.55 (m, 1H, H-6), 1.53 (s, 3H, H-8), 1.44 (s, 3H, H-8), 0.20 (s, 9H, TMS). ¹³C NMR (100 MHz, CDCl₃) δ 150.5 (C-10), 148.0 (C-2), 137.9 (C-15), 129.3 (C-17 or C-16), 125.7 (C-3), 117.7 (C-18), 117.5 (C-11), 114.4 (C-7), 113.3 (C-17 or C-16), 103.1 (C-13 or C-14), 102.6 (C-13 or C-14), 86.6 (C-1), 81.7 (C-9), 45.2 (C-12), 29.5 (C-6), 28.9 (C-8), 28.5 (C-8), 25.8 (C-4), 19.2 (C-5), 0.1 (TMS). GC-MS (CI-NH₄, positive ion): 394.4 [MH⁺•].

4.4.3. Benzyl[(2Z)-2-[(3aS*,8aR*)-2,2-dimethyl-7,8-dihydro-3aHbenzo[1,4]cyclobuta[1,2-d][1,3]dioxol-4(6H)-ylidene]-4-(trimethylsilyl)but-3-yn-1-yl]amine (**36**).

Benzylamine 1c (110 mg, 0.28 mmol, 1.0 equiv), diisopropylamine (6 mL), Pd(OAc)₂ (3.2 mg, 0.01 mmol, 0.05 equiv), CuI (5.4 mg, 0.03 mmol, 0.10 equiv), PPh₃ (7.40 mg, 0.03 mmol, 0.10 equiv), and TMS-acetylene (60 µL, 0.42 mmol, 1.5 equiv). The crude brown residue was purified by flash chromatography over silica gel (elution: pentane/Et₂O=8:2 to pentane/Et₂O=6:4) to afford 106 mg (92%) of the desired product **36** as a yellow oil. R_{f} =0.55 (pentane/Et₂O=8:2). ¹H NMR (300 MHz, CDCl₃) δ 7.34 (m, 5H, H_{arom}), 6.28 (t, ³J=3.8 Hz, 1H, H-3), 4.86 (s, 1H, H-9), 3.79 (s, 2H, H-15), 3.45 (d, ²*J*=14.0 Hz, 1H, H-12), 3.39 (d, ²*J*=14.0 Hz, 1H, H-12), 2.46-1.40 (m, 7H, H-4, H-5, H-6, and NH), 1.49 (s, 3H, H-8), 1.41 (s, 3H, H-8), 0.21 (s, 9H, TMS). ¹³C NMR (100 MHz, CDCl₃) δ 151.0 (C-10), 140.6 (C-16), 138.1 (C-2), 128.5 (C-18 or C-17), 128.4 (C-18 or C-17), 127.0 (C-19), 125.6 (C-3), 117.1 (C-11), 114.3 (C-7), 103.6 (C-13 or C-14), 102.3 (C-13 or C-14), 86.4 (C-1), 81.6 (C-9), 52.8 (C-12), 49.6 (C-15), 29.6 (C-6), 28.9 (C-8), 28.4 (C-8), 25.8 (C-4), 19.2 (C-5), 0.2 (TMS). IR (neat) ν (cm⁻¹)=3028, 2938, 2360, 2342, 2132, 1654, 1495, 1454, 1378, 1368, 1249, 1193, 1147, 1092, 1038, 999, 840, 758, 733, 697, 635. HRMS (ESI, 120 eV): calculated for $C_{25}H_{33}NO_2Si$ [M⁺•] 407.22806, found 407.22948 (Diff.: 3.49 ppm).

4.4.4. tert-Butyl [(2Z)-2-[(3aS*,8aR*)-2,2-dimethyl-7,8-dihydro-3aHbenzo[1,4]cyclobuta[1,2-d][1,3]dioxol-4(6H)-ylidene]-4-(trimethylsilyl)but-3-yn-1-yl]carbamate (**37**).

The general procedure I was followed, but 30 min irradiation at 110 °C were necessary for total conversion: Boc-protected amine 1d (100 mg, 0.25 mmol, 1.0 equiv), diisopropylamine (5 mL), Pd(OAc)₂ (2.80 mg, 0.01 mmol, 0.05 equiv), CuI (6.60 mg, 0.03 mmol, 0.10 equiv), PPh₃ (4.80 mg, 0.03 mmol, 0.10 equiv), and TMS-acetylene (53 µL, 0.38 mmol, 1.5 equiv). The crude brown residue was purified by flash chromatography over silica gel (elution: pentane/ $Et_2O=9:1$ to pentane/ $Et_2O=8:2$) to afford 98 mg (94%) **37** as a yellow oil. $R_f=0.34$ (pentane/Et₂O=8:2). ¹H NMR $(300 \text{ MHz, CDCl}_3) \delta 6.23 \text{ (t, }^{3}J = 4.0 \text{ Hz, 1H, H-3}\text{), } 4.97 \text{ (br s, 1H, NH),}$ 4.90 (s, 1H, H-9), 3.88 (m, 2H, H-12), 2.45-1.39 (m, 6H, H-4, H-5, and H-6), 1.48 (s, 3H, H-8), 1.44 (s, 9H, H-17), 1.39 (s, 3H, H-8), 0.18 (s, 9H, TMS). 13 C NMR (100 MHz, CDCl₃) δ 155.7 (C-15), 150.7 (C-10), 137.8 (C-2), 125.9 (C-3), 114.7 (C-11), 114.3 (C-7), 102.7 (C-13 or C-14), 102.1 (C-13 or C-14), 86.4 (C-1), 81.4 (C-9), 79.3 (C-16), 41.7 (C-12), 29.4 (C-6), 28.7 (C-8), 28.4 (C-17), 28.3 (C-8), 25.8 (C-4), 19.1 (C-5), 0.0 (TMS). IR (neat) ν (cm⁻¹)=3364, 2936, 2362, 2133, 1901, 1717, 1503, 1366, 1247, 1038, 839, 759. HRMS (ESI, 120 eV): calculated for C23H35NO4Si [M+•] 417.23354, found 417.23380 (Diff.: 0.64 ppm).

4.4.5. 4-(4-{[tert-Butyl(dimethyl)silyl]oxy}butyl)-1-[(2Z)-2-[(3aS*,8aR*)-2,2-dimethyl-7,8-dihydro-3aH-benzo[1,4]cyclobuta[1,2d][1,3]dioxol-4(6H)-ylidene]-4-(trimethylsilyl)but-3-yn-1-yl]-1H-1,2,3-triazole (**38**).

The general procedure I was followed using: triazole 1e (161 mg, 0.30 mmol, 1.0 equiv), diisopropylamine (5 mL), Pd(OAc)₂ (3.40 mg, 0.02 mmol, 0.05 equiv), CuI (5.70 mg, 0.03 mmol, 0.10 equiv), PPh₃ (7.86 mg, 0.03 mmol, 0.10 equiv), and TMS-acetylene (63 µL, 0.45 mmol, 1.5 equiv). The crude brown residue was purified by flash chromatography over silica gel (elution: pentane/Et₂O=7:3 to pentane/Et₂O=5:5) to afford 100 mg (62%) of **38** as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.43 (s, 1H, H-15), 6.33 (t, ³*J*=4.0 Hz, 1H, H-3), 4.99 (d, ²*J*=13.8 Hz, 1H, H-12), 4.91 (d, ²*J*=13.8 Hz, 1H, H-12), 4.79 (s, 1H, H-9), 3.63 (t, ³*J*=6.4 Hz, 2H, H-17 or H-20), 2.73 (t, ³J=7.60 Hz, 2H, H-17 or H-20), 2.45-1.40 (m, 10H, H-4, H-5, H-6, H-18, and H-19), 1.51 (s, 3H, H-8), 1.43 (s, 3H, H-8), 0.89 (s, 9H, H-OTBS), 0.14 (s, 9H, TMS), 0.03 (s, 6H, H-OTBS). ¹³C NMR (100 MHz, CDCl₃) δ 153.6 (C-10), 148.3 (C-11), 137.5 (C-2), 128.2 (C-3), 121.0 (C-15), 114.9 (C-7), 110.8 (C-16), 103.5 (C-13 or C-14), 101.7 (C-13 or C-14), 86.4 (C-1), 81.3 (C-9), 63.0 (C-20), 50.6 (C-12), 32.5 (C-17, C-18 or C-19), 29.5 (C-6), 28.8 (C-8), 28.3 (C-8), 26.1 (C-OTBS), 26.0 (C-17, C-18 or C-19), 25.9 (C-17, C-18 or C-19), 25.7 (C-4), 19.1 (C-5), 18.5 (C-OTBS), -0.1 (TMS), -5.1 (C-OTBS).

To a solution of acetylene (1.0 equiv) in MeOH (c=0.15 M) was added K₂CO₃ (1.0 equiv) at room temperature. The reaction mixture was stirred for 30 min and guenched with an aqueous, saturated solution of NH₄Cl. The phases were separated and the aqueous phase was extracted with Et₂O. The combined organic phases were washed with water, brine, dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The intermediate product risks polymerization if dried completely. In order to keep the compound in solution, the solvent of the second step, MeCN (c=0.10 M) was added before the evaporation of the Et₂O was completed. The residual Et₂O was then evaporated and the remaining solution put in a Schlenk flask for the Sonogashira coupling. To the solution was added-under argon and at room temperature—the vinyl iodide (1.20 equiv), $Pd(PPh_3)_4$ (0.05 equiv), CuI (0.15 equiv), and Et₃N (c=0.39 M, MeCN/Et₃N=8:2). The yellow solution turned to brown-red. After 10 min, ethanolamine (10 equiv/CuI) was added; the solution was stirred for additional 2 h and then guenched with an agueous, saturated solution of NaHCO₃. The phases were separated and the aqueous phase was extracted with Et₂O. The combined organic phases were washed with water, brine, dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography over silica gel, treated with 5% of Et₃N.

4.5.1. (3E,7Z)-8-Anilino-7-[(3aS*,8aR*)-2,2-di-methyl-7,8-dihydro-3aH-benzo[1,4]cyclobuta[1,2-d][1,3]dioxol-4(6H)-ylidene]-2methyloct-3-en-5-yn-2-ol (**2h**).

The general procedure II was followed using: dienvne 35 (100 mg, 0.25 mmol, 1.0 equiv), K₂CO₃ (35.1 mg, 0.25 mmol, 1.0 equiv), (E)-4-iodo-2-methylbut-3-en-2-ol³¹ (64.6 mg, 0.31 mmol, 1.20 equiv), Pd(PPh₃)₄ (14.7 mg, 0.01 mmol, 0.05 equiv), and CuI (7.20 mg, 0.04 mmol, 0.15 equiv). The crude product was purified by flash chromatography over silica gel, treated with 5% of Et₃N (elution: pentane/Et₂O=8:2 to pentane/Et₂O=4:6) and 73.8 mg (70%) of the desired product **2h** were isolated as an orange oil. $R_f=0.22$ (pentane/ Et₂O=7:3). ¹H NMR (300 MHz, CDCl₃) δ 7.17 (m, 2H, H_{arom}), 6.69 (m, 3H, H_{arom}), 6.22 (m, 2H, H-3 and H-16), 5.89 (d, ³*J*=15.7 Hz, 1H, H-15), 4.86 (s, 1H, H-9), 4.26 (br s, 1H, NH), 3.95 (s, 2H, H-12), 2.41 (m, 1H, H-4a), 2.15 (m, 1H, H-4b), 2.51 (m, 4H, H-5 and H-6), 1.53 (s, 3H, H-8), 1.44 (s, 3H, H-8), 1.33 (s, 6H, H-18). ¹³C NMR (100 MHz, CDCl₃) δ 151.0 (C-16), 149.4 (C-10), 147.9 (C-19), 138.1 (C-2), 129.3 (C-20), 125.2 (C-3), 117.7 (C-22), 115.6 (C-11), 114.3 (C-7), 113.3 (C-21), 107.0 (C-15), 95.0 (C-14), 88.4 (C-13), 86.4 (C-1), 81.6 (C-9), 71.1 (C-17), 45.4 (C-12), 31.2 (2× C-18), 29.6 (C-6), 28.9 (C-8), 28.5 (C-8), 25.8 (C-4), 19.0 (C-5). GC-MS (CI-NH₄, positive ion): 406.4 [M+H⁺•].

4.5.2. (5E,9Z)-10-Anilino-9-[(3aS*,8aR*)-2,2-di-methyl-7,8-dihydro-3aH-benzo[1,4]cyclobuta[1,2-d][1,3]dioxol-4(6H)-ylidene]-4isobutyl-2-methyl-dec-5-en-7-yn-4-ol (**2i**).

The general procedure II was followed using: dienvne 35 (102 mg, 0.26 mmol, 1.0 equiv), K₂CO₃ (36.0 mg, 0.26 mmol, 1.0 equiv), $4-[(E)-2-iodovinyl]-2,6-dimethylheptan-4-ol^{19a}$ (92.0 mg, 0.31 mmol, 1.20 equiv), Pd(PPh₃)₄ (15.0 mg, 0.01 mmol, 0.05 equiv), and CuI (7.40 mg, 0.04 mmol, 0.15 equiv). The crude product was purified by flash chromatography over silica gel. treated with 5% of Et₃N (elution: pentane/Et₂O=85:15 to pentane/ $Et_2O=7:3$) and 86 mg (68%) of the desired product **2i** were isolated as an orange oil. $R_{f}=0.23$ (pentane/Et₂O=8:2). ¹H NMR (300 MHz, CDCl₃) δ 7.18 (m, 2H, H_{arom}), 6.70 (m, 3H, H_{arom}), 6.21 (br t, 1H, H-3), 6.09 (d, ³/=16.0 Hz, 1H, H-16), 5.92 (d, ³/=16.0 Hz, 1H, H-15), 4.86 (s, 1H, H-9), 4.27 (br s, 1H, NH), 3.96 (s, 2H, H-12), 2.41 (m, 1H, H-4a), 2.12 (m, 1H, H-4b), 1.72 (m, 6H, H-23, H-5, and H-6), 1.54 (s, 3H, H-8), 1.46 (s, 2H, H-18), 1.44 (s, 5H, H-8 and H-18), 0.96-0.90 (4s, 12H, H-24). ¹³C NMR (100 MHz, CDCl₃) δ 150.2 (C-16), 149.1 (C-10), 148.0 (C-19), 138.1 (C-2), 129.3 (C-20), 125.2 (C-3), 117.7 (C-22), 115.9 (C-11), 114.3 (C-7), 113.3 (C-21), 107.8 (C-15), 95.7 (C-14), 88.1 (C-13), 86.5 (C-1), 81.7 (C-9), 77.0 (C-17), 51.1 (2× C-18), 45.4 (C-12), 29.5 (C-6), 29.0 (C-8), 28.5 (C-8), 25.8 (C-4), 24.8-24.6 (4× C-24), 24.5 (C-23), 24.1 (C-23), 19.1 (C-5). IR (neat) v (cm⁻¹)=3541, 3396, 2951, 2867, 2360, 2241, 1602, 1505, 1466, 1380, 1368, 1254, 1191, 1147, 1062, 1037, 994, 961, 908, 862, 730, 691, 507. HRMS (ESI, 120 eV): calculated for C₃₂H₄₄NO₃ [M+H⁺•] 489.32429, found 489.32517 (Diff.: 1.78 ppm).

4.5.3. (5E,9Z)-10-(Benzylamino)-9-[(3aS*,8aR*)-2,2-dimethyl-7,8dihydro-3aH-benzo[1,4]cyclobuta [1,2-d][1,3]dioxol-4(6H)-ylidene]-4-isobutyl-2-methyldec-5-en-7-yn-4-ol (**2***j*).

The general procedure II was followed using: dienyne 36 (130 mg, 0.32 mmol, 1.0 equiv), K₂CO₃ (44.0 mg, 0.32 mmol, 1.0 equiv), 4-[(E)-2-iodovinyl]-2,6-dimethylheptan-4-ol^{19a} (114 mg, 0.38 mmol, 1.20 equiv), Pd(PPh₃)₄ (18.0 mg, 0.02 mmol, 0.05 equiv), and CuI (9.10 mg, 0.05 mmol, 0.15 equiv). The crude product was purified by flash chromatography over silica gel, treated with 5% of Et₃N (elution: pentane/EtOAc=9:1 to pentane/EtOAc=7:3) and 117 mg (72%) of the desired product 2j were isolated as an orange oil. *R*_f=0.28 (pentane/EtOAc=7:3). ¹H NMR (300 MHz, CDCl₃) δ 7.31 (m, 5H, H_{arom}), 6.23 (br t, 1H, H-3), 6.11 (d, ³*J*=16.0 Hz, 1H, H-16), 5.93 (d, ³*J*=16.0 Hz, 1H, H-15), 4.88 (s, 1H, H-9), 3.82 (s, 2H, H-12), 3.46 (AB system, 2H, J_{AB} =13.7 Hz, $\Delta \nu$ =18.7 Hz, H-19), 2.43 (m, 1H, H-4a), 2.13 (m, 1H, H-4b), 1.72 (m, 7H, H-24, H-6, H-5, and NH), 1.50 (s, 3H, H-8), 1.47 (s, 2H, H-18), 1.45 (s, 2H, H-18), 1.41 (s, 3H, H-8), 0.96–0.91 (4s, 12H, H-25). 13 C NMR (100 MHz, CDCl₃) δ 150.0 (C-16), 149.7 (C-10), 140.7 (C-20), 138.5 (C-2), 128.5 (C-22/C-21), 128.4 (C-

22/C-21), 127.0 (C-23), 124.9 (C-3), 117.5 (C-11), 114.3 (C-7), 107.9 (C-15), 95.5 (C-14), 88.5 (C-13), 86.3 (C-1), 81.6 (C-9), 77.1 (C-17), 53.0 (C-12), 51.3 (C-18), 51.2 (C-18), 49.9 (C-19), 29.6 (C-6), 29.0 (C-8), 28.6 (C-8), 25.8 (C-4), 24.8 – 24.6 (4 × C-25), 24.1 (2 × C-24), 19.2 (C-5). IR (neat) ν (cm⁻¹)=3488, 3305, 3028, 2950, 2867, 2360, 2341, 1653, 149, 1455, 1379, 1368, 1254, 1193, 1147, 1091, 1037, 997, 962, 862, 744, 699, 529. HRMS (ESI, 120 eV): calculated for C₃₃H₄₆NO₃ [M+H⁺] 503.33994, found 503.34096 (Diff.: 2.01 ppm).

4.5.4. (2Z,5Z)-2-((3aS,8aR)-2,2-Dimethyl-7,8-dihydro-3aH-benzo [1,4]cyclobuta[1,2-d][1,3] dioxol-4(6H)-ylidene)-7-isobutyl-9-methyldec-5-en-3-yne-1,7-diol (**2k**).

The general procedure II was followed using: dienyne 37 (193 mg, 0.46 mmol, 1.0 equiv), K₂CO₃ (64.0 mg, 0.46 mmol, 1.0 equiv), $4-[(E)-2-iodovinyl]-2,6-dimethylheptan-4-ol^{19a}$ (164) mg, 0.55 mmol, 1.20 equiv), Pd(PPh₃)₄ (27.0 mg, 0.02 mmol, 0.05 equiv), and CuI (13.0 mg, 0.07 mmol, 0.15 equiv). The crude product was purified by flash chromatography over silica gel, treated with 5% of Et₃N (elution: pentane/Et₂O=85:15 to pentane/Et₂O=7:3) and 171 mg (72%) of the desired product 2k were isolated as a yellow oil. $R_f=0.31$ (pentane/Et₂O=8:2). ¹H NMR (300 MHz, CDCl₃) δ 6.20 (br s, 1H, H-3), 6.10 (d, ³*J*=15.6 Hz, 1H, H-16), 5.90 (d, ³*J*=15.6 Hz, 1H, H-15), 4.98 (br s, 1H, NH), 4.93 (s, 1H, H-9), 3.91 (m, 2H, H-12), 2.41 (m, 1H, H-4a), 2.11 (m, 1H, H-4b), 2.03-1.15 (m, 11H, OH, H-5, H-6, H-18, and H-19), 1.50 (s, 3H, H-8), 1.46 (s, 9H, H-23), 1.41 (s, 3H, H-8), 0.94-0.88 (4s, 12H, H-20). ¹³C NMR (100 MHz, CDCl₃) δ 155.8 (C-21), 150.1 (C-16), 149.4 (C-10), 138.1 (C-2), 125.4 (C-3), 115.2 (C-11), 114.3 (C-7), 107.8 (C-15), 95.4 (C-14), 87.7 (C-13), 86.4 (C-1), 81.5 (C-9), 79.3 (C-22), 77.0 (C-17), 51.2 (2× C-18), 41.1 (C-12), 29.5 (C-6), 28.9 (C-8), 28.6 (C-23), 28.5 (C-8), 25.8 (C-4), 24.8-24.6 (4× C-20), 24.1 (2× C-19), 19.2 (C-5).

4.5.5. (5E,9Z)-10-[4-(4-{[tert-Butyl(dimethyl) silyl]oxy}butyl)-1H-1,2,3-triazol-1-yl]-9-[(3aS*,8aR*)-2,2-dimethyl-7,8-dihydro-3aHbenzo[1,4] cyclobuta[1,2-d][1,3]dioxol-4(6H)-ylidene]-4-iso-butyl-2methyldec-5-en-7-yn-4-ol (**2l**).

The **general procedure II** was followed using: Dienyne **38** (100 mg, 0.19 mmol, 1.0 equiv), K_2CO_3 (26.0 mg, 0.19 mmol, 1.0 equiv), $4-[(E)-2-iodovinyl]-2,6-dimethylheptan-4-ol^{19a}$ (66.0 mg, 0.22 mmol, 1.20 equiv), Pd(PPh₃)₄ (11.0 mg, 0.01 mmol, 0.05 equiv), and CuI (5.30 mg, 0.03 mmol, 0.15 equiv). The crude product was purified by flash chromatography over silica gel, treated with 5% of Et₃N (elution: pentane/Et₂O 6:4 to pentane/Et₂O=4:6) and 80.0 mg (66%) of the desired product **2I** were isolated as a yellow oil. R_{f} =0.24 (pentane/Et₂O=6:4). ¹H NMR (300 MHz, CDCl₃) δ 7.42 (s, 1H, H-21), 6.28 (t, ³*J*=3.60 Hz, 1H, H-3), 6.03 (d, ³*J*=16.0 Hz, 1H, H-16), 5.82 (d, ³*J*=16.0 Hz, 1H, H-15), 5.14 (d, ³*J*=14.4 Hz, 1H, H-12a), 4.99 (s,

1H, H-9), 4.90 (d, ${}^{3}J$ =14.4 Hz, 1H, H-12b), 3.60 (t, 2H, ${}^{3}J$ =6.40 Hz, H-26), 2.70 (t, 2H, ${}^{3}J$ =7.60 Hz, H-23), 2.40 (m, 1H, H-4a), 2.15 (m, 1H, H-4b), 2.05–1.35 (m, 15H, OH, H-5, H-6, H-18, H-19, H-24, and H-25), 1.49 (s, 3H, H-8), 1.41 (s, 3H, H-8), 0.90–0.85 (4s, 12H, H-20), 0.85 (s, 9H, TBS), 0.01 (s, 6H, TBS). ${}^{13}C$ NMR (100 MHz, CDCl₃) δ 152.1 (C-10), 150.9 (C-16), 148.3 (C-11), 137.6 (C-2), 127.6 (C-3), 120.8 (C-21), 114.8 (C-22), 111.2 (C-7), 107.3 (C-15), 96.2 (C-14), 86.6 (C-13), 86.2 (C-1), 81.2 (C-9), 76.9 (C-17), 63.0 (C-12), 51.0 (C-23), 50.6 (C-26), 32.4 (C-6), 29.4 (C-4), 28.8 (C-8), 28.2 (C-8), 26.1 (TBS), 25.9 (C-18/C-24/C-25), 25.8 (C-18/C-24/C-25), 25.6 (C-18/C-24/C-25), 24.7–24.6 (4× C-20), 24.0 (2× C-19), 19.0 (C-5), 18.4 (TBS), -5.2 (TBS). IR (neat) ν (cm⁻¹)=3370, 2950, 2865, 2182, 1657, 1552, 1462, 1380, 1254, 1098, 1038, 963, 835, 775, 731, 661, 528.

4.6. Experimental data for the first generation of compounds: fenestradienes 3, fenestranes 7, and cyclooctatrienes 8

The syntheses of the following starting materials and obtained products were described in earlier publications: **2a**–**g**, **3a**–**g**, **7a**–**g**, and **8a**.¹⁹

4.7. General procedure III for the synthesis of fenestradienes 3

To a solution of Ni(OAc)₂·4H₂O (1.0 equiv) in EtOH (c=0.40 M) at room temperature and under argon—was added a solution of NaBH₄ (1.0 equiv) in EtOH (c=1.22 M). The turquoise solution turned black and the formation of a gas was observed. In order to create the catalytic species in situ, the mixture was stirred for 1 h under H₂. A solution of the trienyne (1.0 equiv) and ethylenediamine (3.5 equiv) in EtOH (c=0.48 M) was then added. After the appropriate reaction time while stirring under H₂, the reaction mixture was filtered through a patch of Celite and the solvent was removed under reduced pressure. In some cases, the crude product was purified by flash chromatography over with 5% of Et₃N treated silica gel.

4.7.1. 2-[(1R*,4aR*,7aS*,12R*)-8-(Anilinomethyl)-6,6-dimethyl-1,2,3,4,7a,11-hexahydro-1,11-methanodibenzo[1,4:3,4]cyclobuta[1,2d][1,3]dioxol-12-yl]propan-2-olol (**3h**).

The general procedure III was followed using: Ni(OAc)₂.4H₂O (39.9 mg, 0.16 mmol, 1.0 equiv), NaBH₄ (6.0 mg, 0.16 mmol, 1.0 equiv), trienyne 2h (65.0 mg, 0.16 mmol, 1.0 equiv), and ethylenediamine (0.06 mL, 0.56 mmol, 3.50 equiv). The reaction was repeated two times in order to achieve a complete conversion of the starting material. The crude product was purified by flash chromatography over silica gel, treated with 5% of Et₃N (elution: pentane/Et₂O=8:2). 23.1 mg (51%) of the desired product **3h** were isolated as colorless oil, next to some traces of the starting material and the corresponding cyclooctatriene. $R_f=0.13$ (pentane/ Et₂O=7:3). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (m, 2H, H_{arom}), 6.70 (m, 3H, Harom), 6.02 (m, 2H, H-14 and H-13), 5.05 (s, 1H, H-9), 4.42 (br s, 1H, NH), 3.89 (d, ²*J*=16.1 Hz, 2H, H-12), 3.29 (m, 1H, H-15), 3.02 (m, 1H, H-3), 2.60 (t, ³*J*=9.58 Hz, 1H, H-16), 2.00–1.76 (m, 4H, H-6, H-5a, and H-4a), 1.46 (s, 3H, H-8), 1.39 (s, 3H, H-18), 1.28 (s, 3H, H-8), 1.25 (m, 2H, H-5b and H-4b), 1.09 (s, 3H, H-18). ¹³C NMR (100 MHz, CDCl₃) & 148.4 (C-19), 135.8 (C-10), 129.7 (C-14), 129.3 (C-20), 127.6 (C-11), 126.7 (C-13), 117.5 (C-22), 115.5 (C-7), 113.1 (C-21), 89.7 (C-1),

84.1 (C-9), 72.5 (C-17), 62.3 (C-16), 45.4 (C-12), 43.5 (C-2), 39.2 (C-3), 35.1 (C-15), 33.1 (C-6), 30.7 (C-4), 29.9 (C-8), 29.3 (C-8), 28.4 (C-18), 28.3 (C-18), 22.2 (C-5). IR (neat) ν (cm⁻¹)=3382, 2971, 2932, 2861, 2361, 1689, 1602, 1508, 1443, 1379, 1351, 1202, 1076, 1015, 870, 770, 693, 509. HRMS (ESI, 120 eV): calculated for C₂₆H₃₃NO₃ [M⁺•] 407.24604, found 407.24715 (Diff.: 2.73 ppm).

4.7.2. 4-[(1R*,4aR*,7aS*,12R*)-8-(Anilinomethyl)-6,6-dimethyl-1,2,3,4,7a,11-hexa-hydro-1,11-metha-nodibenzo[1,4:3,4]cyclobuta [1,2-d][1,3]dioxol-12-yl]-2,6-dimethylheptan-4-ol (**3i**).

The general procedure III was followed using: Ni(OAc)₂.4H₂O (38.1 mg, 0.15 mmol, 1.0 equiv), NaBH₄ (5.80 mg, 0.15 mmol, 1.0 equiv), trienyne 2i (75.0 mg, 0.15 mmol, 1.0 equiv), and ethylenediamine (0.36 mL, 0.54 mmol, 3.50 equiv). The reaction was stirred for 3 d in order to achieve a complete conversion of the starting material. The crude product was purified by flash chromatography over silica gel, treated with 5% of Et₃N (elution: pentane/Et₂O=9:1 to pentane/Et₂O=8:2) and 27.1 mg (36%) of the desired product 3i were isolated as colorless oil. A fraction with \sim 7.5 mg (10%) of the corresponding cyclooctatriene mixed with impurities was also isolated. $R_f=0.36$ (pentane/Et₂O=8:2). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta$ 7.19 (m, 2H, H_{arom}), 6.64 (m, 3H, H_{arom}), 6.02 (m, 2H, H-14 and H-13), 5.04 (s, 1H, H-9), 4.39 (br s, 1H, NH), 3.87 (d, ^{2}J =15.8 Hz, 1H, H-12), 3.71 (d, ^{2}J =16.1 Hz, 1H, H-12), 3.27 (m, 1H, H-15), 3.06 (m, 1H, H-3), 2.72 (t, ^{3}J =9.30 Hz, 1H, H-16), 2.05–1.58 (m, 8H, H-23, H-18a, H-6, H-5a, and H-4a), 1.46 (s, 3H, H-8), 1.37 (s, 3H, H-8), 1.47-1.08 (m, 5H, OH, H-18a, H-5b, and H-4b), 0.94 (m, 12H, H-24), ¹³C NMR (100 MHz, CDCl₃) δ 148.4 (C-19), 136.0 (C-10), 129.8 (C-14), 129.3 (C-20), 127.5 (C-11), 126.6 (C-13), 117.5 (C-22), 115.5 (C-7), 113.1 (C-21), 89.8 (C-1), 84.1 (C-9), 77.9 (C-17), 61.1 (C-16), 47.7 (C-18), 45.9 (C-12), 45.4 (C-18), 43.6 (C-2), 39.1 (C-3), 35.7 (C-15), 33.1 (C-6), 31.1 (C-4), 30.0 (C-8), 28.4 (C-8), 25.4 (C-23/C-24), 25.2 (C-23/C-24), 24.8 (C-23/C-24), 24.7 (C-23/C-24), 24.3 (C-23/C-24), 24.1 (C-23/C-24), 22.3 (C-5). IR (neat) v (cm⁻¹)=3566, 3375, 29,360, 2866, 2356, 1602, 1505, 1456, 1367, 1314, 1235, 1200, 1136, 1099, 1076, 908, 853, 730, 691, 506. HRMS (ESI, 120 eV): not stable, degradation.

4.7.3. 4-{(1R*,4aR*,7aS*,12R*)-8-[(Benzylamino) methyl]-6,6dimethyl-1,2,3,4,7a,11-hexahydro-1,11-methanodibenzo[1,4:3,4]cyclobuta[1,2-d][1,3]di-oxol-12-yl}-2,6-dimethylheptan-4-ol (**3***j*).

The **general procedure III** was followed using: Ni(OAc)₂.4H₂O (23.8 mg, 0.10 mmol, 1.0 equiv), NaBH₄ (3.60 mg, 0.10 mmol,

1.0 equiv), trienyne 2j (48.0 mg, 0.10 mmol, 1.0 equiv), and ethylenediamine (0.05 mL, 0.19 mmol, 3.50 equiv). The crude product was purified by flash chromatography over silica gel, treated with 5% of Et₃N (elution: pentane/EtOAc=9:1 to pentane/ EtOAc=7:3) and 19.7 mg (41%) of the desired product 3j were isolated as colorless oil, next to some traces of the corresponding ^{1}H cvclooctatriene. $R_{f=0.20}$ (pentane/EtOAc=7:3). NMR (400 MHz, CDCl₃) δ 7.29 (m, 5H, H_{arom}), 5.98 (m, 2H, H-14 and H-13), 5.16 (s, 1H, H-9), 3.82 (AB system, 2H, J_{AB}=13.3 Hz, $\Delta \nu = 28.8$ Hz, H-12), 3.27 (AB system, 2H, $J_{AB} = 15.3$ Hz, $\Delta \nu = 48.4$ Hz, H-19), 3.26 (m, 1H, H-15), 3.08 (m, 1H, H-3), 2.60 (t, ³*I*=9.40 Hz, 1H, H-16), 2.02–1.63 (m, 8H, H-24, H-18, H-6, H-5a, and H-4a), 1.42 (s, 3H, H-8), 1.30 (s, 3H, H-8), 1.24 (m, 4H, H-18, H-5b and H-4b), 0.98-0.86 (m, 12H, H-25). ¹³C NMR (100 MHz, CDCl₃) δ 140.5 (C-20), 135.8 (C-10), 129.1 (C-14), 128.8 (C-11), 128.5 (C-22/C-21), 128.2 (C-22/C-21), 127.5 (C-13), 127.0 (C-23), 115.4 (C-7), 89.9 (C-1), 84.3 (C-9), 77.3 (C-17), 61.1 (C-16), 53.7 (C-19/C-12), 50.2 (C-19/C-12), 47.7 (C-18), 45.8 (C-18), 43.7 (C-2), 39.2 (C-3), 35.7 (C-15), 33.2 (C-6), 31.3 (C-4), 30.0 (C-8), 28.4 (C-8), 25.4–24.1 (6C, C-25 and C-24), 22.2 (C-5). IR (neat) ν (cm⁻¹)= 3548, 2950, 2865, 2363, 1665, 1453, 1367, 1234, 1200, 1135, 1099, 1078, 1047, 1028, 1001, 854, 735, 698. HRMS (ESI, 120 eV): calculated for C₃₃H₄₈NO₃ [M+H⁺•] 505.35559, found 505.35773 (Diff.: 4.23 ppm).

4.7.4. tert-Butyl{[(1R,4aR,7aS,11R,12R)-12-(1-hydroxy-1-isobutyl-3-methylbutyl)-6,6-dimethyl-1,2,3,4,7a,11-hexahydro-1,11-methanodibenzo [1,4:3,4]cyclobuta[1,2-d][1,3]dioxol-8-yl]methyl} car bamate (**3k**).

The general procedure III was followed using: Ni(OAc)₂.4H₂O (100 mg, 0.40 mmol, 3.0 equiv), NaBH₄ (15.2 mg, 0.40 mmol, 3.0 equiv), trienyne 2k (69.0 mg, 0.13 mmol, 1.0 equiv), and ethylenediamine (0.09 mL, 1.37 mmol, 10.5 equiv). The reaction was stirred for 16 h. The crude product was purified by flash chromatography over silica gel, treated with 5% of Et₃N (elution: pentane/ $Et_2O=9:1$ to pentane/ $Et_2O=8:2$) and 36.7 mg (53%) of the desired product **3k** were isolated as colorless oil. A fraction with \sim 7.5 mg (11%) of the starting material was also isolated. $R_f=0.42$ (pentane/ Et₂O=8:2). ¹H NMR (400 MHz, CDCl₃) δ 5.89 (m, 2H, H-14, H-13), 5.06 (s, 1H, H-9), 5.04 (br s, 1H, NH), 3.90 (m, 1H, H-12a), 3.56 (m, 1H, H-12b), 3.18 (m, 1H, H-15), 3.00 (m, 1H, H-3), 2.64 (t, ³*J*=9.60 Hz, 1H, H-16), 2.00–1.54 (m, 7H, OH, H-19, H-6, H-5a, H-4a), 1.38 (s, 9H, H-23), 1.37 (s, 3H, H-8), 1.27 (s, 3H, H-8), 1.47-1.05 (m, 6H, H-18, H-5a, H-4a), 0.90–0.81 (m, 12H, H-20). ¹³C NMR (100 MHz, CDCl₃) δ 156.9 (C-21), 135.9 (C-10), 130.0 (C-14), 127.7 (C-11), 126.3 (C-13), 115.7 (C-7), 89.9 (C-1), 83.9 (C-9), 79.3 (C-17), 77.8 (C-22), 61.2 (C-16), 47.7 (C-18), 46.2 (C-18), 45.9 (C-12), 43.6 (C-2), 39.1 (C-3), 35.6 (C-15), 33.2 (C-6), 31.3 (C-4), 29.9 (C-8), 28.5 (C-23), 28.4 (C-8), 25.4–24.0 (C-20 and C-19), 22.4 (C-5). IR (neat) v $(cm^{-1})=3565, 3367, 2930, 2360, 1704, 1506, 1456, 1366, 1237, 1165,$ 1099, 1078, 1042, 919, 854, 733, 647, 510. HRMS (ESI, 120 eV): calculated for C₃₁H₄₉NO₅ [M⁺•] 515.36107, found 515.36022 (Diff.: 1.65 ppm).

4.7.5. 4-((1R*,4aR*,7aS*,12R*)-8-{[4-(4-{[tert-Butyl(dimethyl)silyl] oxy}butyl)-1H-1,2,3-triazol-1-yl]methyl}-6,6-dimethyl-1,2,3,4,7a,11-hexahydro-1,11-methanodibenzo-[1,4:3,4]cyclobuta[1,2-d][1,3]dioxol-12-yl)-2,6-dimethylheptan-4-ol (**3l**).

The general procedure III was followed using: Ni(OAc)₂·4H₂O (30.2 mg, 0.12 mmol, 1.0 equiv), NaBH₄ (4.60 mg, 0.12 mmol, 1.0 equiv), trienyne 21 (79.0 mg, 0.12 mmol, 1.0 equiv), and ethylenediamine (0.28 mL, 0.42 mmol, 3.50 equiv). The reaction was stirred for 72 h. The crude product was purified by flash chromatography over silica gel, treated with 5% of Et₃N (elution: pentane/ Et₂O=6:4 to pentane/Et₂O=2:8). 21.8 mg (28%) of the desired product 3l and 37.9 mg (50%) of the starting material 2l were isolated. The two products were not separable, significant peaks could however be identified in the ¹H NMR spectrum. $R_{f}=0.22$ (pentane/ Et₂O=6:4). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H, H-21), 6.03 (m, 1H, H-14 or H-13), 5.84 (m, 1H, H-14 or H-13), 5.12 (m, 1H, H-12a), 4.98 (s, 1H, H-9), 3.87 (m, 1H, H-12b), 3.62 (t, 2H, H-26), 3.23 (m, 1H, H-15), 3.10 (m, 1H, H-3), 2.72 (m, 3H, H-23, H-16), 2.05-1.58 (m, 17H, OH, H-25, H-24, H-19, H-18, H-6, H-5 and H-4), 1.43 (s, 3H, H-8), 1.33 (s, 3H, H-8), 0.95-0.90 (4s, 12H, H-20), 0.87 (s, 9H, TBS), 0.03 (s, 6H, TBS). HRMS (ESI, 120 eV): calculated for C₂₈H₆₃N₃O₄Si [M⁺•] 653.4588, found 653.46042 (Diff.: 2.50 ppm).

4.8. General procedure IV for the transformation of fenestradienes 3h and 3j to access cyclooctatrienes 8

The fenestradienes **3** were dissolved in benzene (c=0.042 M) in an appropriate microwave vial. The vial was sealed with a Teflon cap and degassed with two freeze–pump–thaw cycles. Then, the vial was irradiated in the microwave for 50 min at 110 °C. The reaction mixture was then filtered through Celite and then concentrated under vacuum. The crude product was purified by flash column chromatography.

4.8.1. 2-[(3aR*,4S*,5R*,9bS*)-9-(Anilinomethyl)-2,2-dimethyl-4,9bdihydro-5H-3a,4-propanocyclo-octa[3,4]cyclobuta[1,2-d][1,3]dioxol-5-yl]propan-2-ol (**8h**).

The **general procedure IV** was followed using: fenestradiene **3h** (23.0 mg, 0.06 mmol, 1.0 equiv). The crude product was purified by flash chromatography over silica gel, treated with 5% of Et₃N (elution: pentane/Et₂O=8:2 to pentane/Et₂O=6:4) and 21.7 mg (94%) of the desired product **8h** were isolated as a yellow oil. R_{f} =0.24 (pentane/EtOAc=8:2). ¹H NMR (400 MHz, CDCl₃) δ 7.17 (m, 2H, H_{arom}), 6.68 (m, 3H, H_{arom}), 6.05 (d, ³J=4.50 Hz, 1H, H-13), 5.95 (dd, ³J=11.2 Hz, ³J=4.50 Hz, 1H, H-14), 5.85 (m, 1H, H-15), 4.88 (s, 1H, H-9), 3.92 (AB

system, 2H, J_{AB} =14.3 Hz, $\Delta \nu$ =49.1 Hz, H-12), 3.86 (br s, 1H, NH), 2.62 (m, 1H, H-3), 2.40 (t, ${}^{3}J$ =10.1 Hz, 1H, H-16), 2.05 (m, 2H, H-6a and H-4a), 1.67 (m, 3H, H-6b and H-5), 1.40 (s, 3H, H-8), 1.38 (s, 3H, H-8), 1.25 (s, 3H, H-18), 1.11 (s, 3H, H-18), 1.08 (m, 1H, H-4b). ${}^{13}C$ NMR (100 MHz, CDCl₃) δ 157.6 (C-2), 148.0 (C-19), 140.4 (C-15), 137.4 (C-10), 132.2 (C-11), 129.3 (C-20), 127.8 (C-13), 127.3 (C-14), 117.8 (C-22), 114.8 (C-7), 113.9 (C-21), 85.2 (C-1), 84.1 (C-9), 72.8 (C-17), 52.0 (C-16), 48.6 (C-12), 41.1 (C-3), 34.1 (C-4), 33.5 (C-6), 30.9 (C-18), 29.8 (C-8), 28.8 (C-8), 24.2 (C-18), 23.9 (C-5). HRMS (ESI, 120 eV): calculated for C₂₆H₃₃NO₃ [M]⁺ 407.24765, found 407.24604 (Diff.: 3.95 ppm).

4.8.2. 4-{(3aR*,4S*,5R*,9bS*)-9-[(Benzylamino) methyl]-2,2dimethyl-4,9b-dihydro-5H-3a,4-propa-nocycloocta[3,4]cyclobuta [1,2-d][1,3]dioxol-5-yl}-2,6-dimethylheptan-4-ol (**8***j*).

The general procedure IV was followed using: fenestradiene 3j (20.0 mg, 0.04 mmol, 1.0 equiv). The crude product was purified by flash chromatography over silica gel, treated with 5% of Et₃N (elution: pentane/ $Et_2O=9:1$ to pentane/ $Et_2O=7:3$), and 13.0 mg (60%) of the desired product **8***j* were isolated as a yellow oil. $R_{f}=0.43$ (pentane/EtOAc=8:2). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (m, 5H, H_{arom}), 5.97 (m, 2H, H-14 and H-13), 5.63 (t, ³/=9.70 Hz, 1H, H-15), 4.94 (s, 1H, H-9), 3.79 (AB system, 2H, J_{AB} =13.5 Hz, $\Delta \nu$ =19.7 Hz, H-12), 3.44 (AB system, 2H, J_{AB} =13.5 Hz, $\Delta \nu$ =69.9 Hz, H-19), 2.81 (t, ³*J*=9.70 Hz, 1H, H-16), 2.70 (m, 1H, H-3), 1.51 (m, 8H, H-24, H-6, H-5, and H-4), 1.39 (s, 3H, H-8), 1.36 (s, 3H, H-8), 0.98 (s, 2H, H-18), 0.96-0.94 (m, 12H, H-25), 0.84 (s, 2H, H-18). ¹³C NMR (100 MHz, CDCl₃) § 157.3 (C-2), 140.6 (C-20), 140.0 (C-15), 138.1 (C-10), 134.0 (C-11), 128.4 (C-22/C-21), 128.3 (C-22/C-21), 127.6 (C-13), 127.5 (C-14), 127 (C-23), 114.6 (C-7), 85.2 (C-1), 84.1 (C-9), 77.9 (C-17), 53.0 (C-12), 52.6 (C-12), 49.2 (C-19), 47.7 (C-18), 43.9 (C-18), 40.7 (C-3), 34.1 (C-6), 33.5 (C-4), 29.8 (C-8), 28.8 (C-8), 25.6 (C-24), 25.5 (C-24), 25.0–23.1 (4× C-25), 24.0 (C-5). IR (neat) ν (cm⁻¹)=2928, 2866, 2359, 1726, 1435, 1366, 1259, 1232, 1203, 1184, 1142, 1028, 870, 840, 735, 698, 653. HRMS (ESI, 120 eV): calculated for C₃₃H₄₇NO₃ [M⁺•] 505.3559, found 505.35447 (Diff.: 2.23 ppm).

4.9. Experimental data for fenestradienes 4 (cyclooctatrienes 12 and trienynes 2 as a byproducts)

The syntheses of the fenestradienes **4a–b**, **4g–i**, **4m–n**, **4p–t**, **4v–w**, cyclooctatrienes **12a–b**, **12g–i**, **12m–n**, **12p–t** and **12v–w**, trienynes **2a–d** and **9m–n**, **9r–s** and **9w** were described in earlier publications.^{19,21,22}

4.10. General procedure V for fenestradienes 4 and cyclooctatrienes 12

In a 2–5 mL microwave vial were added the corresponding compound **1** (50 mg, 1 equiv), $Pd(OAc)_2$ (0.05 equiv), copper iodide (0.1 equiv), and PPh₃ (0.1 equiv). The vial was sealed with a Teflon cap and the reaction mixture was then dissolved in diisopropylamine (0.05 M). The reaction mixture was placed under argon, frozen in liquid nitrogen and put under vacuum. The O₂ liberation proceeds when the temperature rises back to rt. The operation was repeated three times. Then, the enyne (3.0 equiv) was added to the reaction mixture. The vial was irradiated in the microwave (MW), the time and temperature of each example being indicated in the following procedures. The reaction mixture was then filtered

through Celite to eliminate the metal traces and then concentrated under reduced pressure. The crude product was purified by flash column chromatography over silica gel.

4.10.1. (3E)-6-[(1R*,4aR*,7aS*,11S*,12R*)-8-(Hydroxymethyl)-12-(1hydroxy-1-methylethyl)-6,6-dimethyl-1,2,3,4,7a,11-hexahydro-1,11methano dibenzo[1,4:3,4]cyclobuta[1,2-d][1,3]dioxol-10-yl]-2methylhex-3-en-5-yn-2-ol (**4***j*).

The general procedure V was followed using alcohol 1a, Pd(OAc)₂ (2 mg, 0.01 mmol, 0.05 equiv), PPh₃ (4 mg, 0.02 mmol), CuI (3 mg, 0.02 mmol, 0.1 equiv) in diisopropyl-amine (3.1 mL), and envne 22 (55 mg, 0.50 mmol, 3 equiv) After a microwave irradiation of 1 h at 100 °C, the crude product was purified by flash column chromatography over silica gel (elution: pentane/AcOEt=9:1 to 5:5) and the desired product **4***i* was isolated (23 mg, 32%, estimated yield) with inseparable, non-identified products, along with a second fraction with the corresponding cyclooctatriene 12i (25 mg, 34%) and a third fraction with the trienyne **9**_j (18 mg, 32%) as orange oils; R_{f} =0.12 (pentane/AcOEt=6:4). ¹H NMR (500 MHz, CDCl₃) δ 6.25 (d, ³*J*=16.0 Hz, 1H, H-20), 6.22 (s, 1H, H-13), 5.86 (d, ³*J*=16.0 Hz, 1H, H-19), 4.22 (s, 1H, H-9), 4.29–4.15 (m, 2H, H-12), 3.43 (d, ³J=10.8 Hz, 1H, H-15), 2.82 (dd, ³*J*=15.6 Hz, ³*J*=10.8 Hz, 1H, H-3), 2.71 (dd, ³*J*=10.8 Hz, ³*J*=10.8 Hz, 1H, H-16), 2.00–1.78 (m, 5H, CH₂), 1.42 (s, 3H, H-8), 1.35 (s, 3H, H-8), 1.25 (s, 6H, H-22), 1.21 (s, 6H, H-24), 0.89-0.81 (m, 1H, CH₂). ^{13}C NMR (100 MHz, CDCl_3) δ 151.3 (C-20), 137.3 (C-10), 132.6 (C-11), 131.2 (C-13), 122.1 (C-14), 116.3 (C-7), 106.4 (C-19), 92.9 (C-18), 91.7 (C-1), 90.3 (C-17), 83.8 (C-9), 72.8 (C-21 or 23), 71.2 (C-21 or 23), 63.1 (C-12), 63.0 (C-3), 44.5 (C-2), 41.1 (C-22), 38.8 (C-24), 32.7 (C-6), 30.8 (C-4), 29.8 (C-8), 29.2 (C-8), 28.1 (C-22), 26.5 (C-24), 22.1 (C-5). IR (CDCl₃) ν (cm⁻¹)=2929, 2251, 1670, 1452, 1371, 1223, 1141, 1075, 905, 725, 648.

4.10.2. (3E)-6-[(3aR*,4S*,5R*,9bS*)-9-(Hydroxy-methyl)-5-(1hydroxy-1-methylethyl)-2,2-dimethyl-4,9b-dihydro-5H-3a,4propanocycloocta[3,4]cyclo-buta[1,2-d][1,3]dioxol-7-yl]-2methylhex-3-en-5-yn-2-ol (**12j**).

R_f=0.05 (pentane/AcOEt=6:4). ¹H NMR (500 MHz, CDCl₃) δ 6.22 (d, ³*J*=16.0 Hz, 1H, H-20), 6.02 (s, 1H, H-13), 5.98 (d, ³*J*=9.5 Hz, 1H, H-15), 5.80 (d, ³*J*=16.0 Hz, 1H, H-19), 4.92 (s, 1H, H-9), 4.29 (AB system, *J*_{AB}=16.0 Hz, $\Delta \nu$ =12.0 Hz, 2H, H-12), 2.64–2.63 (m, 2H, H-3, H-16), 2.23–2.20 (m, 1H, H-6a), 2.10–2.07 (m, 1H, H-4a), 1.79–1.66 (m, 3H, H-4b, H-5), 1.40 (s, 3H, H-8), 1.32 (s, 3H, H-8), 1.32–1.17 (m, 1H, H-6b), 1.27 (s, 6H, H-22), 1.16 (s, 6H, H-24). ¹³C NMR (100 MHz, CDCl₃) δ 158.2 (C-2), 150.3 (C-20), 145.6 (C-15), 136.9 (C-14), 135.6 (C-10), 126.3 (C-13), 121.9 (C-11), 115.1 (C-7), 106.9 (C-19), 89.9 (C-18), 86.3 (C-17), 85.3 (C-1), 84.1 (C-9), 73.0 (C-23), 71.2 (C-21), 65.0 (C-12), 52.3 (C-16), 41.0 (C-3), 34.0 (C-6), 33.4 (C-4), 31.2 (C-22), 29.82 (C-8), 28.82 (C-8), 24.32 (C-24), 23.8 (C-5). IR (CDCl₃) ν (cm⁻¹)=3383, 2929, 2856, 2359, 2246, 1461, 1370, 1143, 1019, 905, 728, 648. HRMS (ESI, 120 eV) calculated C₂₇H₃₆O₅ [M]⁺ 440.25627, found 440.25613 (Diff.: 0.33 ppm).

4.10.3. {(1R*,4aR*,7aS*,11S*,12R*)-12-(Methoxy-methyl)-10-[(3E)-5methoxy-3-methylpent-3-en-1yn-1-yl]-6,6,11-trimethyl-1,2,3,4,7a,11-hexahydro-1,11-methanodibenzo[1,4:3,4]cyclobuta[1,2d][1,3] dioxol-8-yl}methanol (**4**).

The general procedure V was followed using alcohol 1a, Pd(OAc)₂ (2 mg, 0.01 mmol, 0.05 equiv), PPh₃ (4 mg, 0.02 mmol), CuI (3 mg, 0.02 mmol, 0.1 equiv) in diisopropylamine (3.1 mL), and envne 24 (55 mg, 0.5 mmol, 3 equiv). After 1 h of microwave irradiation at 100 °C, the crude product was purified by flash column chromatography over silica gel (elution: pentane/EtOAc=9:1) and the desired product **4I** was isolated as an orange oil (23 mg, 32%) along with a second fraction with the corresponding trienyne 91 (31 mg, 57%, NMR estimated yield) as an orange oil and 20% (NMR estimated yield) of the starting material **1a**; $R_{f}=0.27$ (pentane/ Et₂O=6:4). ¹H NMR (400 MHz, CDCl₃) δ 6.08 (s, 1H, H-13), 5.92 (td, ³/=8.8 Hz, ⁴/=1.2 Hz, 1H, H-21), 5.14 (s, 1H, H-9), 4.23 (sl, 2H, H-12), 4.01 (d, ³J=8.8 Hz, 2H, H-22), 3.83 (d, ²J=10.7 Hz, 1H, H-25a), 3.68-3.64 (m, 1H, H-25b), 3.37-3.31 (m, 1H, H-16), 3.36 (s, 3H, H-23 or H-26), 3.31 (s, 3H, H-23 or H-26), 3.12-3.02 (m, 1H, H-16), 2.40-0.88 (m, 6H, H-4, H-5, H-6), 1.84 (s, 3H, H-20), 1.51 (s, 3H, H-24), 1.41 (s, 3H, H-8), 1.39 (s, 3H, H-8).

4.10.4. (2Z,5E)-2-((3aS*,8aR*)-2,2-Dimethyl-7,8-dihydro-3aH-benzo [1,4]cyclobuta[1,2-d][1,3]dioxol-4(6H)-ylidene)-7-methoxy-5-methylhept-5-en-3-yn-1-ol (**9l**).

 R_f =0.18 (pentane/Et₂O=6:4). ¹H NMR (300 MHz, CDCl₃) δ 6.22 (t, ³*J*=3.3 Hz, 1H, H-3), 5.96 (td, ³*J*=6.3 Hz, ⁴*J*=1.6 Hz, 1H, H-17), 4.99 (s, 1H, H-9), 4.27 (d, ³*J*=4.4 Hz, 2H, H-12), 4.26 (d, ³*J*=6.3 Hz, 2H, H-18), 3.33 (s, 3H, H-19), 2.45–2.38 (m, 1H, H-4a), 2.22–2.09 (m, 1H, H-4b), 2.01–1.95 (m, 1H, H-6a), 1.96–1.86 (m, 2H, H-5), 1.86 (d, ⁴*J*=1.6 Hz, 3H, H-16), 1.64–1.58 (m, 1H, H-6b), 1.52 (s, 3H, H-8), 1.41 (s, 3H, H-8).

The **general procedure V** was followed using: propargylic alcohol **1a** (53.0 mg, 0.18 mmol, 1.0 equiv), $Pd(OAc)_2$ (2.0 mg, 0.01 mmol, 0.05 equiv), PPh_3 (4.70 mg, 0.02 mmol, 0.10 equiv), Cul (3.40 mg, 0.02 mmol, 0.10 equiv), and enyne **27** (106 mg, 0.54 mmol, 3.0 equiv). The mixture was irradiated in the microwave for 60 min at 100 °C. The crude residue was purified by flash chromatography over silica gel (elution: pentane/Et₂O=7:3 to pentane/Et₂O=5:5) to afford 12.4 mg (23%) of **1a**, 19.7 mg (18%) of the desired fenestradiene **4o** and 15.2 mg (14%) of the cyclo-octatriene **12o** as impure yellow oils. However, the significant signals could be identified in the ¹H NMR spectra. R_f =0.33 (pentane/Et₂O=7:3). ¹H NMR (400 MHz, CDCl₃) δ 6.04 (s, 1H, H-13), 5.57 (br s, 1H, H-20a), 5.37 (br s, 1H, H-20b), 5.09 (s, 1H, H-9), 4.16 (m, 6H, H-22, H-21, H-12), 2.55 (m, 1H, H-3), 2.25 (m, 2H, H-16), 2.21–1.15 (m, OH, H-4, H-5, and H-6), 1.38 (s, 3H, H-8), 1.37 (s, 3H, H-8), 0.95 (s, TBS), 0.90 (s, TBS), 0.10 (s, TBS), 0.07 (s, TBS).

4.10.6. {(3aR*,4S*,9bS*)-6-({[tert-Butyl(dimethyl)silyl]oxy}methyl)-7-[3-({[tert-butyl(dimethyl)silyl]oxy}methyl)but-3-en-1-yn-1-yl]-2,2-dimethyl-4,9b-dihydro-5H-3a,4-propanocycloocta[3,4]cyclobuta [1,2-d][1,3]dioxol-9-yl}methanol (**120**).

 $R_{\rm f}$ =0.27 (pentane/Et₂O=7:3). ¹H NMR (400 MHz, CDCl₃) δ 5.99 (s, 1H, H-13), 5.57 (br s, 1H, H-20a), 5.41 (br s, 1H, H-20b), 5.00 (s, 1H, H-9), 4.78 (d, J=12.2 Hz, 1H, H-22, H-21 or H-12), 4.53 (d, J=12.2 Hz, 1H, H-22, H-21 or H-12), 4.29 (s, 2H, H-22, H-21 or H-12), 4.15 (s, 2H, H-22, H-21 or H-12), 2.65 (m, 1H, H-3), 2.45 (m, 1H, H-16a), 2.11 (m, 2H, H-4a and H-16b), 1.87 (m, 1H, OH, H-4b, H-5 or H-6), 1.72 (m, 4H, OH, H-4b, H-5 or H-6), 1.40 (s, 3H, H-8), 1.34 (s, 3H, H-8), 1.05 (m, 1H, OH, H-4b, H-5 or H-6), 0.91 (s, 18H, TBS), 0.09 (s, 12H, TBS). ¹³C NMR (100 MHz, CDCl₃) δ 156.8 (C-2), 151.9 (C-15), 136.9 (C-10), 133.1 (C-11), 131.1 (C-14), 127.1 (C-13), 118.9 (C-20), 116.9 (C-19), 115.1 (C-7), 91.9 (C-18), 88.5 (C-17), 84.7 (C-1), 84.5 (C-9), 66.1 (C-12/C-21/C-22), 65.5 (C-12/C-21/C-22), 65.1 (C-12/C-21/ C-22), 38.6 (C-3), 34.1 (C-16/C-4/C-6), 33.4 (C-16/C-4/C-6), 33.1 (C-16/C-4/C-6), 29.6 (C-8), 29.0 (C-8), 26.0 (2× TBS), 23.3 (C-5), 18.5 $(2 \times \text{TBS})$, -5.2 $(2 \times \text{TBS})$. IR (neat) ν (cm⁻¹)=3455, 2929, 2856, 2360, 1619, 1462, 1378, 1253, 1205, 1146, 1074, 1035, 939, 902, 834, 774, 738, 669, 515. HRMS (ESI, 120 eV): calculated for C₃₅H₅₆O₅Si₂ [M]⁺ 612.36663, found 612.36541 (Diff.: 1.98 ppm).

4.10.7. Benzyl{[(3aR*,4S*,5S*,9bS*)-5-([[tert-butyl (dimethyl)silyl]oxy} methyl)-7-((3E)-5-{[tert-butyl (dimethyl)silyl]oxy}-3-methylpent-3en-1-yn-1-yl)-2,2,6-trimethyl-4,9b-dihydro-5H-3a,4-propano-cycloocta[3,4]cyclobuta[1,2-d][1,3]dioxol-9-yl] methyl}amine (**12u**).

The **general procedure V** was followed using: benzylamine **1c** (40.0 mg, 0.10 mmol, 1.0 equiv), $Pd(OAc)_2$ (1.15 mg, 0.005 mmol, 0.05 equiv), PPh_3 (3.0 mg, 0.01 mmol, 0.10 equiv), Cul (2.0 mg, 0.01 mmol, 0.10 equiv), and enyne **25** (65.0 mg, 0.31 mmol, 3.0 equiv). The mixture was irradiated in the microwave for 60 min at 100 °C. The crude residue was purified by flash chromatography over silica gel (elution: pentane/Et₂O=8:2 to pentane/Et₂O=6:4). A mixture of 58.0 mg (77%) containing both the desired fenestradiene **4u** and the corresponding cyclooctatriene **12u** was isolated as a yellow oil. Those two products could not be separated (**4u**/**12u**~2:1), however, cyclooctatriene **12u** can be described. $R_{f=}$ 0.45

(pentane/EtOAc=8:2). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (m, 5H, H_{arom}), 5.96 (s, 1H, H-13), 5.87 (t, ³*J*=6.20 Hz, 1H, H-21), 4.99 (s, 1H, H-9), 4.24 (d, ³*J*=6.20 Hz, 2H, H-28), 3.78 (m, 2H, H-23), 3.63 (s, 2H, H-32), 3.45 (m, 2H, H-12), 2.69 (m, 1H, H-3), 2.49 (m, 1H, H-16), 2.12 (m, 1H, H-6a), 1.99 (s, 3H, H-22), 1.83 (m, 1H, H-4a), 1.79 (s, 3H, H-20), 1.69 (m, 3H, H-6b and H-5), 1.39 (s, 3H, H-8), 1.32 (s, 3H, H-8), 1.05 (m, 1H, H-4b), 0.90 (s, 9H, H-31), 0.85 (s, 9H, H-31), 0.07 (s, 6H, H-29), 0.02 (s, 6H, H-29). ¹³C NMR (100 MHz, CDCl₃) δ 156.4 (C-2), 152.0 (C-15), 140.6 (C-10), 138.0 (C-24), 135.7 (C-21), 132.0 (C-11), 128.5 (C-26/C-25), 128.4 (C-26/C-25), 128.3 (C-13), 127.0 (C-27), 119.5 (C-14), 118.4 (C-19), 114.7 (C-7), 95.5 (C-18), 86.9 (C-1), 84.5 (C-17), 84.3 (C-9), 62.0 (C-32), 60.2 (C-28), 53.3 (C-12), 52.7 (C-23), 46.4 (C-3), 39.3 (C-16), 33.5 (C-6), 31.8 (C-4), 29.7 (C-8), 28.6 (C-8), 26.1 (6 × C-31), 23.5 (C-5), 18.5 (C-30), 18.2 (C-30), 18.0 (C-22), 17.7 (C-20), -5.25 (4 × C-29). HRMS (ESI, 120 eV): calculated for C₄₄H₆₇NO₄Si₂ [M]⁺ 729.46086, found 729.46279 (Diff.: 2.65 ppm).

The general procedure V was followed using: Boc-protected amine 1d (52.0 mg, 0.13 mmol, 1.0 equiv), Pd(OAc)₂ (1.5 mg, 0.01 mmol, 0.05 equiv), PPh3 (3.40 mg, 0.01 mmol, 0.10 equiv), CuI (2.50 mg, 0.01 mmol, 0.10 equiv), and enyne 25 (82 mg, 0.39 mmol, 3.0 equiv). The mixture was irradiated in the microwave for 60 min at 100 °C. The crude residue was purified by flash chromatography over silica gel (elution: pentane/EtOAc=9:1 to pentane/EtOAc=8:2). The following products were isolated: an impure mixture of the trienyne with another product, probably the cyclooctatriene (14 mg), 30.9 mg (45%) of the trienyne **9z** as a yellow oil and 13.2 mg (13%) of the fenestradiene 4z mixed with impurities. $R_{f}=0.54$ (pentane/Et₂O=8:2). ¹H NMR (400 MHz, CDCl₃) δ 6.12 (s, 1H, H-13), 5.87 (t, ³*J*=4.80 Hz, 1H, H-21), 5.26 (br s, 1H, NH), 5.06 (s, 1H, H-9), 4.25 (d, ${}^{3}J=6.0$ Hz, 2H, H-26), 3.98 (m, 2H, H-30a and H-12a), 3.67 (m, 1H, H-12b), 3.52 (m, 1H, H-30b), 2.25 (m, 2H, H-16 and H-3), 2.01-1.15 (m, 6H, H-6, H-5, and H-4), 1.80 (s, 3H, H-20), 1.46 (s, 9H, H-25), 1.43 (s, 3H, H-22), 1.41 (s, 3H, H-8), 1.35 (s, 3H, H-8), 0.90 (s, 9H, H-29), 0.86 (s, 9H, H-29), 0.07 (s, 6H, H-27), 0.01 (s, 6H, H-27).

4.10.9. tert-butyl{(2Z,5E)-7-{[tert-Butyl(dimethyl)silyl]oxy}-2-[(3aS*,8aR*)-2,2-dimethyl-7,8-dihydro-3aH-benzo[1,4]cyclobuta[1,2d][1,3]dioxol-4(6H)-ylidene]hept-5-en-3-yn-1-yl}carbamate (**9z**).

 R_{f} =0.46 (pentane/Et₂O=82). ¹H NMR (400 MHz, CDCl₃) δ 6.21 (t, ³*J*=3.70 Hz, 1H, H-3), 5.93 (t, ³*J*=6.10 Hz, 1H, H-16), 4.96 (br s, 1H, NH), 4.92 (s, 1H, H-9), 4.26 (d, ³*J*=6.10 Hz, 2H, H-21), 3.92 (m, 2H, H-

12), 2.41 (m, 1H, H-4a), 2.14 (m, 1H, H-4b), 2.02–1.73 (m, 3H, H-6a and H-5), 1.81 (s, 3H, H-17), 1.58 (m, 1H, H-6b), 1.49 (s, 3H, H-8), 1.45 (s, 9H, H-20), 1.41 (s, 3H, H-8), 0.90 (s, 9H, H-24), 0.07 (s, 6H, H-22). ¹³C NMR (100 MHz, CDCl₃) δ 155.8 (C-18), 149.4 (C-10), 138.1 (C-2), 137.8 (C-16), 125.4 (C-3), 118.9 (C-15), 115.0 (C-11), 114.3 (C-7), 99.1 (C-14), 86.5 (C-1), 85.1 (C-19), 81.5 (C-9), 79.4 (C-13), 60.2 (C-21), 41.8 (C-12), 29.5 (C-6), 2 8.9 (C-8), 28.6 (C-20), 28.5 (C-8), 26.1 (C-24), 25.8 (C-4), 19.2 (C-5), 18.5 (C-23), 17.7 (C-17), -5.00 (C-22). IR (neat) ν (cm⁻¹)=3367, 2930, 2857, 1718, 1502, 1456, 1367, 1247, 1168, 1092, 1062, 833, 775, 666, 527. HRMS (ESI, 120 eV): calculated for C₃₀H₄₇NO₅Si [M]⁺ 529.3224, found 529.3235 (Diff.: 2.16 ppm).

4.10.10. {(3aR*,4S*,5R*,9bS*)-7-[(3E)-Dec-3-en-1-yn-1-yl]-5-hexyl-2,2-dimethyl-4,9b-dihydro-5H-3a,4-propanocycloocta[3,4]cyclobuta [1,2-d][1,3] dioxol-9-yl}methanol (**12c**).

The general procedure V was followed using alcohol 1a, Pd(OAc)₂ (2 mg, 0.01 mmol, 0.05 equiv), PPh₃ (4 mg, 0.02 mmol), CuI (3 mg, 0.02 mmol, 0.1 equiv) in diiso-propylamine (3.1 mL), and enyne 15 (68 mg, 0.50 mmol, 3 equiv). After a microwave irradiation of 3 h at 100 °C, the crude product was purified by flash column chromatography over silica gel (elution: pentane/AcOEt=9:1) and the cyclooctatriene **12c** was isolated as orange oil (59 mg, 72%); $R_{f}=0.34$ (pentane/Et₂O=7:3). ¹H NMR (400 MHz, CDCl₃) δ 6.14–6.07 (m, 1H, H-20), 5.99 (s, 1H, H-13), 5.98 (d, ³J=8.8 Hz, 1H, H-15), 5.55 (dt, ³*J*=16.0 Hz, ⁴*J*=1.6 Hz, 1H, H-19), 4.93 (s, 1H, H-9), 4.31 (AB system, ${}^{2}J$ =13.1 Hz, $\Delta \nu$ =15.6 Hz, 2H, H-12), 2.39–2.36 (m, 2H, H-16, H-3), 2.13-2.10 (m, 3H, H-21, H-6a), 2.09 (m, 1H, H-4a), 2.07-1.13 (m, 25H, H-5, H-6b, 8× CH₂ non assign., H-32, H-26), 1.42 (s, 3H, H-8), 1.10 (s, 3H, H-8), 0.92-0.85 (m, 3H, H-4b, H-27). ¹³C NMR (100 MHz, CDCl₃) δ 158.3 (C-2), 149.6 (C-15), 144.8 (C-20), 137.1 (C-10), 134.3 (C-11), 127.1 (C-13), 121.6 (C-14), 115.0 (C-7), 109.6 (C-19), 88.3 (C-18), 86.4 (C-17), 85.0 (C-1), 84.3 (C-9), 65.6 (C-12), 42.4 (C-3), 42.3 (C-16), 33.4 (C-6), 33.3 (C-21), 31.9 (CH₂, non assig.), 31.8 (CH₂, non assig.), 31.4 (CH₂, non assig.), 29.7 (CH₂, non assig.), 29.6 (CH₂, non assig.), 29.0 (CH₂, non assig.), 28.9 (CH₂, non assig.), 28.9 (CH₂, non assig.), 28.9 (CH₂, non assig.), 27.3 (CH₂, non assig.), 23.4 (C-5), 22.8 (CH₂, non assig.), 14.2 (2C, C-26, C-32). IR (CDCl₃) v (cm⁻¹) 2927, 1855, 2246, 1722, 1460, 1379, 1258, 1143, 1024, 906, 728. HRMS (ESI, 120 eV) calculated C₃₃H₄₈O₃ [M]⁺ 492.36035, found 492.36104 (Diff.: 1.4 ppm).

4.10.11. [(7bS*,10aR*,11S*,11aS*)-5-(Cyclohex-1-en-1-ylethynyl)-9,9dimethyl-1,3,4,7b,11,11a-hexa-hydro-2H-10a,11-propanobenzo[4',5'] cycloocta[1',2':3,4]cyclobuta[1,2-d][1,3]dioxol-7-yl] methanol (**12d**).

The **general procedure V** was followed using alcohol **1a**, Pd(OAc)₂, (2 mg, 0.01 mmol, 0.05 equiv), PPh₃ (4 mg, 0.02 mmol), Cul (3 mg, 0.02 mmol, 0.1 equiv) in diisopropylamine (3.1 mL), and

envne 16 (59 µL, 0.50 mmol, 3 equiv). The vial was irradiated in the microwave for 2 h at 100 °C and the crude product was purified by flash column chromatography over silica gel (elution: pentane/ Et₂O=6:4). The cyclooctatriene 12d was isolated (55 mg, 77%), along with a second fraction with the corresponding trienyne 9d (11 mg, 20%), both as orange oils. $R_f=0.15$ (pentane/Et₂O=7:3). ¹H NMR (400 MHz, CDCl₃) δ 6.07 (s. 1H, H-13), 6.05–6.03 (m, 1H, H-20), 5.00 (s, 1H, H-9), 4.22 (AB system, *J*_{AB}=12.4 Hz, Δ*ν*=26.4 Hz, 2H, H-12), 2.65 (ddd, ${}^{3}J$ =10.6 Hz, ${}^{3}J$ =10.6 Hz, ${}^{3}J$ =5.4 Hz, 1H, H-3), 2.55-2.51 (m, 1H, H-16), 2.13-1.24 (m, 21H, CH2 non assign., H-5, H-6, H-4a), 1.37 (s, 3H, H-8), 1.28 (s, 3H, H-8), 0.92-0.87 (m, 1H, H-4b). ¹³C NMR (100 MHz, CDCl₃) δ 157.7 (C-2), 155.5 (C-15), 136.9 (C-10), 134.0 (C-20), 132.5 (C-11), 128.2 (C-13), 121.2 (C-14), 115.3 (C-7), 114.7 (C-19), 94.9 (C-18), 85.9 (C-1), 84.7 (C-17), 84.5 (C-9), 65.9 (C-12), 40.2 (C-16), 38.5 (C-3), 33.4 (C-6), 31.5 (C-4), 30.4 (CH₂, non assign.), 29.6 (C-8), 29.5 (CH₂, non assign.), 28.7 (C-8), 26.5 (CH₂, non assign.), 26.4 (CH₂, non assign.), 25.8 (CH₂, non assign.), 23.4 (C-5), 22.5 (CH₂, non assign.), 21.7 (CH₂, non assign.), 20.6 (CH₂, non assign.). IR (neat) v (cm⁻¹) 3335, 2972, 2931, 1659, 1446, 1379, 1186, 1143, 1087, 1045, 879, 629. HRMS (ESI, 120 eV) calculated C₂₉H₃₆O₃ [M]⁺ 432.26645, found 432.26537 (Diff.: 2.49 ppm).

4.10.12. (Z)-4-(Cyclohex-1-en-1-yl)-2-((3aS*,8aR*)-2,2-dimethyl-7,8dihydro-3aH-benzo[1,4]cyclobuta [1,2-d][1,3]dioxol-4(6H)-ylidene)but-3-yn-1-ol (**9d**).

*R*_f=0.42 (pentane/Et₂O=7:3). ¹H NMR (400 MHz, CDCl₃) δ 6.22 (t, ³*J*=3.6 Hz, 1H, H-3), 6.13 (m, 1H, H-16), 4.99 (s, 1H, H-9), 4.27 (sl, 2H, H-12), 2.45–2.39 (m, 1H, H-4a), 2.17–2.10 (m, 5H, H-4b, CH₂, non assign.), 2.00–1.86 (m, 3H, H-5, H-6a), 1.68–1.56 (m, 5H, H-6b, CH₂, non assign.), 1.52 (s, 3H, H-8), 1.42 (s, 3H, H-8). ¹³C NMR (100 MHz, CDCl₃) δ 148.2 (C-10), 137.9 (C-2), 136.0 (C-16), 125.1 (C-3), 120.9 (C-15), 117.7 (C-11), 114.5 (C-7), 98.9 (C-14), 86.6 (C-1), 84.3 (C-13), 81.6 (C-9), 63.4 (C-12), 29.5 (C-17), 29.3 (C-6), 28.9 (C-8), 28.9 (C-8), 25.9 (CH₂, non assign.), 25.9 (CH₂, non assign.), 22.4 (CH₂, non assign.), 21.6 (CH₂, non assign.), 19.1 (C-5). IR (neat) ν (cm⁻¹) 3392, 2976, 2933, 2861, 2360, 2341, 1724, 1438, 1381, 1266, 1193, 1149, 1116, 1073, 1038, 844, 735, 542. HRMS (ESI, 120 eV) calculated for C₂₁H₂₆O₃ [M]⁺ 326.07316 found 326.07093 (Diff.: 6.84 ppm).

4.10.13. {(3aR*,4S*,5R*,9bS*)-2,2-Dimethyl-5-phenyl-7-[(3E)-4-phenylbut-3-en-1-yn-1-yl]-4,9b-dihydro-5H-3a,4-propanocycloocta [3,4]cyclobuta [1,2-d][1,3]dioxol-9-yl}methanol (**12f**).

The **general procedure V** was followed using alcohol **1a**, $Pd(OAc)_2$, (2 mg, 0.01 mmol, 0.05 equiv), PPh_3 (4 mg, 0.02 mmol), Cul (3 mg, 0.02 mmol, 0.1 equiv) in diiso-propylamine (3.1 mL), and enyne **18** (64 mg, 0.50 mmol, 3 equiv). The vial was irradiated in the

microwave for 3 h at 100 °C the crude product was purified by flash column chromatography over silica gel (elution: pentane/ Et₂O=6:4). The cyclooctatriene **12f** was isolated as an orange oil (54 mg, 68%); R_f=0.13 (pentane/Et₂O=7:3). ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.22 (m, 8H, H_{arom}), 7.18 (d, ³J=7.0 Hz, 2H, H-26), 6.88 (d, ${}^{3}J=16.0$ Hz, 1H, H-20), 6.46 (d, ${}^{3}J=9.5$ Hz, 1H, H-15), 6.22 (d, ³*J*=16.0 Hz, 1H, H-19), 6.11 (s, 1H, H-13), 5.02 (s, 1H, H-9), 4.38 (sl, 2H, H-12), 3.54 (dd, ³*J*=10.5 Hz, ³*J*=10.5 Hz, 1H, H-16), 2.91 (td, ³*J*=10.5 Hz, ³*J*=4.7 Hz, 1H, H-3), 2.12–2.10 (m, 1H, H-6a), 1.70–1.61 (m, 3H, H-6b, H-5), 1.50 (s, 3H, H-8), 1.44 (s, 3H, H-8), 1.33-1.30 (m, 1H, H-4a), 0.76–0.74 (m, 1H, H-4b). ¹³C NMR (100 MHz, CDCl₃) δ 158.3 (C-2), 148.5 (C-15), 141.5 (C-25), 141.1 (C-20), 137.0 (C-10). 137.5 (C-11), 134.9 (C-21), 129.0 (Carom), 128.8 (Carom), 128.7 (Carom), 127.9 (Carom), 126.9 (Carom), 126.4 (Carom), 126.4 (C-13), 120.9 (C-14), 115.4 (C-7), 108.2 (C-19), 92.1 (C-18), 87.5 (C-17), 85.1 (C-1), 84.5 (C-9), 65.6 (C-12), 50.0 (C-16), 43.9 (C-3), 33.5 (C-6), 32.8 (C-4), 29.7 (C-8), 29.3 (C-8), 23.3 (C-5). IR (neat) ν (cm⁻¹)=3435, 2937, 2856, 2358, 1727, 1600, 1493, 1449, 1380, 1368, 1348, 1314, 1284, 1258, 1229, 1207, 1184, 1143, 1125, 1078, 1026, 950, 763, 750, 704, 691. HRMS (ESI, 120 eV) calculated C₃₃H₃₂O₃ [M]⁺ 476.23514, found 476.23637 (Diff.: 2.57 ppm).

4.10.14. (5E)-8-[(3aR*,4S*,5R*,9bS*)-5-(1-Hydroxy-1-isobutyl-3methylbutyl)-9-(hydroxymethyl)-2,2-dimethyl-4,9b-dihydro-5H-3a,4-propanocycloocta[3,4]cyclobuta[1,2-d][1,3]dioxol-7-yl]-4isobutyl-2-methyloct-5-en-7-yn-4-ol (**12k**).

The **general procedure V** was followed using alcohol **1a**, Pd(OAc)₂, (2 mg, 0.01 mmol, 0.05 equiv), PPh₃ (4 mg, 0.02 mmol), Cul (3 mg, 0.02 mmol, 0.1 equiv) in diisopropyl-amine (3.1 mL), and enyne **23** (97 mg, 0.50 mmol, 3 equiv). The vial was irradiated in the microwave for 1 h at 100 °C and the crude product was purified by flash column chromatography over silica gel (elution: pentane/AcOEt=8:2 to 5:5). The trienyne **2k** was isolated (65 mg, 94%), along with a second fraction with the corresponding cyclooctatriene **12k** (6 mg, 6%), both as orange oils; R_f =0.11 (pentane/Et₂O=7:3). ¹H NMR (400 MHz, CDCl₃) δ 6.06 (d, ³*J*=16.0 Hz, 1H, H-20), 6.02 (s, 1H, H-13), 5.97 (d, ³*J*=10.4 Hz, 1H, H-15), 5.80 (d, ³*J*=16.0 Hz, 1H, H-19), 4.91 (s, 1H, H-9), 4.30 (s, 2H, H-12), 2.83 (dd, ³*J*=10.2 Hz, ³*J*=10.2 Hz, 1H, H-16), 2.39 (ddd, ³*J*=10.5 Hz, ³*J*=10.5 Hz, ³*J*=4.9 Hz, 1H, H-3), 2.17–0.82 (m, 18H, H-4, H-5, H-6, H-22, H-23, H-26, H-27), 1.39 (s, 6H, H-8), 0.89 (s, 3H, H-24 or H-28), 0.88 (s, 3H, H-24 or H-28), 0.87 (s, 3H, H-24 or H-28).

4.11. Experimental data for cyclooctatrienes 12 (fenestradienes 4 and trienynes 2 as byproducts)

The used procedure is the same than for the fenestradienes **4** (**general procedure V**), only irradiation times and temperatures differ. Thus cyclooctatrienes already described before are not mentioned here again: cyclooctatrienes **12a**–**f**, **12h**–**q**, and **12u–w**.

4.11.1. (2E)-5-[(3aR*,4S*,5S*,9bS*)-5,9-Bis (hydroxymethyl)-2,2,6trimethyl-4,9b-dihydro-5H-3a,4-propanocycloocta[3,4]cyclobuta[1,2d][1,3]dioxol-7-yl]-3-methylpent-2-en-4-yn-1-ol (**12g**).

The general procedure V was followed using alcohol 1a, Pd(OAc)₂, (2 mg, 0.01 mmol, 0.05 equiv), PPh₃ (4 mg, 0.02 mmol), CuI (3 mg, 0.02 mmol, 0.1 equiv) in diisopropyl-amine (3.1 mL), and enyne 19 (51 µL, 0.5 mmol, 3 equiv). After 2 h of irradiation at 130 °C, the crude product was purified by automatic flash column chromatography. (Run: 140 min, elution: CH₂Cl₂/MeOH=100:0 to 97:3 for 120 min and then CH₂Cl₂/MeOH=97:3 for 20 min) and the desired product **12g** was isolated as an orange oil (55 mg, 80%); ¹H NMR (400 MHz, CDCl₃) δ 6.0 (s, 1H, H-13), 5.92 (t, ³*J*=12.4 Hz, 1H, H-21), 4.97 (s, 1H, H-9), 4.32–4.18 (m, 4H, H-12, H-22), 3.69 (dd, ²/=10.4 Hz, ³*J*=5.2 Hz, 1H, H-24a), 3.62 (dd, ²*J*=10.4 Hz, ³*J*=10.4 Hz, 1H, H-24b), 3.46 (ddd, ³*J*=10.4 Hz, ³*J*=5.2 Hz, ³*J*=5.2 Hz, 1H, H-16), 2.82 (td, ³*J*=5.2 Hz, ³*J*=10.4 Hz, 1H, H-3), 2.15–2.11 (m, 1H, H-6a), 1.81 (s, 3H, H-20), 1.79–1.65 (m, 4H, H-6b, H-4a, H-5), 1.49 (d, ⁴*J*=6.4 Hz, 3H, H-23), 1.36 (s, 3H, H-8), 1.28 (s, 3H, H-8), 1.12–1.03 (m, 1H, H-4b). ¹³C NMR (100 MHz, CDCl₃) δ 156.6 (C-2), 151.2 (C-15), 137.2 (C-10), 134.9 (C-21), 133.5 (C-11), 127.5 (C-13), 121.1 (C-19), 119.5 (C-15), 114.9 (C-7), 95.7 (C-18), 87.0 (C-17), 84.6 (C-1), 84.3 (C-9), 65.2 (C-12), 61.5 (C-24), 59.1 (C-22), 48.0 (C-16), 46.6 (C-3), 33.3 (C-6), 31.6 (C-4), 29.6 (C-8), 28.6 (C-8), 23.3 (C-5), 19.3 (C-23), 17.8 (C-20). IR (CDCl₃) ν (cm⁻¹)= 2937, 2360, 2253, 1381, 1025, 904, 723, 647. HRMS (ESI, 120 eV) calculated C₂₅H₃₂O₅ [M]⁺ 412.225, found 412.2257 (Diff.: -1.86 ppm).

4.11.2. Benzyl{[(3aR*,4S*,9bS*)-2,2,6-trimethyl-7-(3-methylbut-3en-1-yn-1-yl)-4,9b-dihydro-5H-3a,4-propanocycloocta[3,4]cyclobuta [1,2-d][1,3]dioxol-9-yl]methyl}amine(**12t**).

The general procedure V was followed using: benzylamine 1c (57.0 mg, 0.15 mmol, 1.0 equiv), Pd(OAc)₂ (1.60 mg, 7.30 mmol, 0.05 equiv), PPh₃ (3.90 mg, 15.0 mmol, 0.10 equiv), CuI (2.90 mg, 15.0 mmol, 0.10 equiv), and envne **13** (43.0 µL, 0.45 mmol, 3.0 equiv). The crude residue was purified by flash chromatography over silica gel (elution: pentane/ $Et_2O=7:3$ to pentane/ $Et_2O=6:4$) to afford 43.5 mg (66%) of the desired cyclooctatriene 12t as a yellow oil. R_f =0.46 (pentane/EtOAc=6:4). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (m, 5H, H_{arom}), 5.93 (s, 1H, H-13), 5.22 (d, 2H, ²*J*=27.0 Hz, H-21), 5.03 (s, 1H, H-9), 3.78 (s, 2H, H-23), 3.45 (m, 2H, H-12), 2.53 (m, 1H, H-3), 2.28 (t, ³*J*=11.4 Hz, 1H, H-16a), 2.13 (m, 1H, H-4a), 2.03 (s, 3H, H-22), 1.92 (s, 3H, H-20), 1.73 (m, 5H, H-16b, H-6a, H-5, and H-4b), 1.40 (s, 3H, H-8), 1.35 (s, 3H, H-8), 1.02 (m, 1H, H-6b). ¹³C NMR (100 MHz, CDCl₃) & 156.7 (C-2), 149.7 (C-15), 140.6 (C-10), 138.2 (C-24), 131.2 (C-11), 128.5 (C-26/C-25), 128.4 (C-26/C-25), 128.2 (C-13), 127.4 (C-19), 127.0 (C-27), 120.8 (C-21), 117.4 (C-14), 114.8 (C-7), 93.6 (C-18), 88.5 (C-1), 84.6 (C-9), 84.2 (C-17), 53.7 (C-12), 52.6 (C-23), 38.9 (C-16), 38.1 (C-3), 34.2 (C-6), 33.4 (C-4), 29.5 (C-8), 28.9 (C-8), 23.8 (C-22), 23.4 (C-5), 23.3 (C-20). IR (neat) v (cm⁻¹)=3350, 2927, 2854, 2359, 1605, 1452, 1378, 1308, 1257, 1199, 1142, 1074, 1033, 891, 873, 841, 737, 698, 518. HRMS (ESI, 120 eV): calculated for $C_{30}H_{35}NO_2$ [M]⁺• 441.26678, found 441.26543 (Diff.: 3.06 ppm).

4.12. General procedure VI for cyclooctatrienes 30

In a 2–5 mL microwave vial were added the compound **29** (50 mg, 0.159 mmol, 1 equiv), Pd(OAc)₂ (2 mg, 0.01 mmol, 0.05 equiv), copper iodide (3 mg, 0.02 mmol, 0.1 equiv), and PPh₃ (4 mg, 0.02 mmol, 0.1 equiv). The vial was sealed with a Teflon cap and the reaction mixture was then dissolved in diisopropylamine (3.2 mL, 0.05 M). The reaction mixture was placed under argon, frozen in liquid nitrogen and put under vacuum. The O₂ liberation proceeds when the temperature rises back to rt. The operation was repeated three times. Then, the enyne (3.0 equiv) was added to the reaction mixture. The vial was irradiated in the microwave, the time and temperature of each example being indicated in the following paragraphs. The reaction mixture was then filtered through Celite to eliminate the metal traces and then concentrated under reduced pressure. The crude product was purified by flash column chromatography over silica gel.

4.12.1. [(3aR*,4S*,9bS*)-2,2,6-Trimethyl-7-(3-methylbut-3-en-1-yn-1-yl)-4,9b-dihydro-5H-3a,4-butanocycloocta[3,4]cyclobuta[1,2-d] [1,3]dioxol-9-yl]methanol (**30a**).

The general procedure VI was followed using enyne 13 (45 µL, 0.48 mmol, 3 equiv). After 30 min of irradiation at 130 °C, the crude product was purified by flash column chromatography over silica gel (elution: pentane/Et₂O=6:4) and the cyclooctatriene **30a** was isolated as an orange oil (50 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 6.00 (s, 1H, H-14), 5.21 (m, 1H, H-22a), 5.17–5.15 (m, 1H, H-22b), 4.86 (s, 1H, H-10), 4.29 (AB system, J_{AB}=12.8 Hz, Δν=14.3 Hz, 2H, H-13), 2.57 (dd, ³*J*=11.5 Hz, ²*J*=11.5 Hz, 2H, H-17a), 2.47 (m, 1H, H-3), 2.19-2.13 (m, 1H, H-4a), 2.03 (s, 3H, H-23), 1.98-1.92 (m, 2H, H-17b, CH₂), 1.88 (s, 3H, H-21), 1.85-1.73 (m, 4H, H-4b, CH₂), 1.37 (s, 3H, H-9), 1.40-1.33 (m, 1H, CH₂), 1.31 (s, 3H, H-9), 1.20-1.08 (m, 1H, CH₂). ^{13}C NMR (100 MHz, CDCl_3) δ 157.5 (C-2), 149.4 (C-16), 141.8 (C-12), 135.0 (C-11), 127.6 (C-14), 127.3 (C-20), 120.8 (C-22), 117.9 (C-15), 114.2 (C-8), 94.3 (C-19), 90.7 (C-1), 87.5 (C-18), 82.7 (C-10), 65.5 (C-13), 40.1 (C-17), 38.8 (C-7), 37.4 (C-3), 35.2 (C-4), 30.1 (C-9), 29.7 (C-6), 28.4 (C-9), 25.1 (C-5), 23.8 (C-21), 22.5 (C-23). IR (CDCl₃) v $(cm^{-1})=3436, 2923, 2850, 2247, 1724, 1611, 1435, 1369, 1317, 1279,$ 1208, 1099, 1025, 906, 855, 728, 694, 518. HRMS (EI+) calculated C₂₄H₃₀O₃ [M]⁺ 366.21949, found 366.21927 (Diff.: 0.62 ppm).

4.12.2. {(3aR*,4S*,9bS*)-2,2-Dimethyl-5-(2-phenyl ethyl)-7-[(3E)-6-phenylhex-3-en-1-yn-1-yl]-4,9b-dihydro-5H-3a,4-butanocycloocta [3,4]cyclobuta[1,2-d][1,3]dioxol-9-yl}methanol (**30b**).

The **general procedure VI** was followed using enyne 14 (75 mg, 0.48 mmol, 3 equiv). After 3 h of irradiation at 100 °C, the crude product

was purified by flash column chromatography over silica gel (elution: pentane/Et₂O=6:4) and the cyclooctatriene **30b** was isolated as an orange oil (77 mg, 89%); ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.24 (m, 6H, H-26, H-27, H-31, H-32, H-33), 7.21-712 (m, 4H, H-25, H-31), 6.14 (d, ³*I*=9.3 Hz, 1H, H-16), 6.16–6.09 (m, 1H, H-21), 6.04 (s, 1H, H-14), 5.60 (d, ³*I*=15.9 Hz, 1H, H-20), 4.83 (s, 1H, H-10), 4.27 (AB system, *J*_{AB}=13.0 Hz, $\Delta \nu = 13.1$ Hz, 2H, H-13), 2.73–2.65 (m, 3H, H-27a, H-23), 2.49–2.36 (m, 4H, H-17, H-22, H-27b), 2.23-1.19 (m, 9H, H-3, H-4a, H-5, H-6, H-7a, H-28), 1.39 (s, 6H, H-9), 1.11–1.01 (m, 1H, H-4b), 0.90–0.81 (m, 1H, H-7b). ^{13}C NMR (100 MHz, CDCl_3) δ 158.4 (C-2), 147.3 (C-16), 143.3 (C-21), 142.3 (C-30), 141.8 (C-24), 141.3 (C-11), 137.2 (C-12), 128.5 (4C, Carom), 128.4 (2C, Carom), 126.6 (C-14), 126.1 (Carom), 125.9 (Carom), 122.9 (C-16), 114.6 (C-8), 110.4 (C-20), 91.0 (C-19), 88.1 (C-1), 87.2 (C-18), 82.1 (C-10), 65.8 (C-13), 42.9 (C-17), 42.2 (C-3), 36.5 (C-7), 35.3 (CH₂, non assig.), 35.3 (CH₂, non assig.), 35.2 (CH₂, non assig.), 35.0 (CH₂, non assig.), 33.4 (CH₂, non assig.), 30.2 (C-9), 29.8 (CH₂, non assig.), 28.8 (C-9), 25.0 (C-5). IR (CDCl₃) ν (cm⁻¹)=3443, 3025, 2924, 2851, 2360, 2341, 1603, 1496, 1453, 1378, 1368, 1032, 908, 729, 698. GC-MS (ESI, 120 eV) calculated C₃₈H₄₂O₃ [M]⁺ 546,3134, found 546.29846.

4.12.3. {(3aR*,4S*,5R*,9bS*)-7-[(3E)-Dec-3-en-1-yn-1-yl]-5-hexyl-2,2-dimethyl-4,9b-dihydro-5H-3a,4-butanocycloocta[3,4]cyclobuta [1,2-d][1,3]di-oxol-9-yl}methanol (**30c**).

The general procedure VI was followed using envne 15 (65 mg. 0.48 mmol, 3 equiv). After 3 h of irradiation at 100 °C, the crude product was purified by flash column chromatography over silica gel (elution: pentane/AcOEt=9:1) and the cyclooctatriene **30c** was isolated as an orange oil (47 mg, 58%), along with a second fraction with the corresponding trienyne **31c** in mixture with an unknown product; ¹H NMR (400 MHz, CDCl₃) δ 6.10–6.03 (m, 3H, H-21, H-14, H-16), 5.53 (d, ³*J*=15.9 Hz, ⁴*J*=1.2 Hz, 1H, H-20), 4.83 (s, 1H, H-10), 4.30 (AB system, J_{AB}=13.2 Hz,=13.9 Hz, 2H, H-13), 2.41 (AB system, $J_{Ax}=2.8$ Hz, $J_{Bx}=3.0$ Hz, $\Delta \nu = 30.2$ Hz, 2H, H-17, H-3), 2.17–1.96 (m, 6H, CH₂, non assig.), 1.81-1.51 (m, 7H, CH₂, non assig.), 1.38 (s, 6H, H-9), 1.33-1.06 (m, 15H, CH₂, non assig.), 0.89-0.85 (m, 6H, H-27, H-33). ¹³C NMR (100 MHz, CDCl₃) δ 158.7 (C-2), 147.8 (C-16), 144.6 (C-21), 141.7 (C-11), 136.9 (C-12), 127.0 (C-14), 122.3 (C-15), 114.8 (C-8), 109.7 (C-20), 91.0 (C-18), 87.8 (C-19), 87.2 (C-1), 82.2 (C-10), 65.1 (C-13), 43.3 (C-17), 42.3 (C-3), 36.7 (CH₂, non assig.), 35.4 (CH₂, non assig.), 33.3 (CH₂, non assig.), 31.9 (CH₂, non assig.), 31.8 (CH₂, non assig.), 30.2 (C-9), 30.0 (CH₂, non assig.), 29.5 (CH₂, non assig.), 28.9 (3C, CH₂, non assig.), 28.8 (C-9), 26.9 (CH2, non assig.), 25.1 (CH₂, non assig.), 22.8 (CH₂, non assig.), 22.7 (CH₂, non assig.), 14.2 (2C, C-27, C-33). IR (CDCl₃) ν (cm⁻¹)=3458, 2922, 2853, 1446, 1372, 1346, 1206, 1142, 1031, 955, 854, 825, 776, 544, HRMS (EI+) calculated C₃₄H₅₀O₃ [M]⁺ 506.37599, found 506.37710 (Diff.: 1.10 ppm).

4.12.4. [(7bS*,10aR*,11S*,11aS*)-5-(Cyclohex-1-en-1-ylethynyl)-9,9dimethyl-1,3,4,7b,11,11a-hexa-hydro-2H-10a,11-butanobenzo[4',5'] cycloocta [1',2':3,4]cyclobuta[1,2-d][1,3]dioxol-7-yl] methanol (**30d**).

The general procedure VI was followed using envne 16 (56 µL, 0.48 mmol, 3 equiv). The vial was irradiated in the microwave for 3 h at 100 °C and the crude product was purified by flash column chromatography over silica gel (elution: pentane/Et₂O=6:4). The desired cyclooctatriene 30d (23 mg, 32%) was isolated as an orange oil along with a second fraction with the corresponding trienyne **31d** (37 mg, 68%); ¹H NMR (400 MHz, CDCl₃) δ 6.07 (s, 1H, H-14), 6.02-6.00 (m, 1H, H-21), 4.85 (s, 1H, H-10), 4.35-4.24 (AB system, *I*_{AB}=12.8 Hz, Δ*ν*=29.8 Hz, 2H, H-13), 2.79–2.75 (m, 1H, H-17), 2.54 $(ddd, {}^{3}J=11.0 Hz, {}^{3}J=11.0 Hz, {}^{3}J=4.0 Hz, 1H, H-3), 2.20-1.27 (m, 22H, 1)$ CH₂, non assig.), 2.11–2.00 (m, 1H, H-4a), 1.25 (s, 6H, H-9), 0.92–0.86 (m, 1H, H-4b). ¹³C NMR (100 MHz, CDCl₃) δ 157.8 (C-2), 155.4 (C-16), 142.1 (C-12), 135.1 (C-11), 133.8 (C-21), 128.1 (C-14), 121.3 (C-20), 115.6 (C-15), 114.4 (C-8), 95.3 (C-19), 90.9 (C-1), 85.3 (C-18), 82.4 (C-10), 65.3 (C-13), 42.1 (C-17), 37.5 (C-3), 36.3 (CH₂, non assig.), 35.6 (C-4), 30.2 (CH₂, non assig.), 29.9 (C-9), 29.8 (C-9), 29.6 (CH₂, non assig.), 28.3 (CH₂, non assig.), 28.2 (CH₂, non assig.), 26.9 (CH₂, non assig.), 25.8 (CH₂, non assig.), 25.3 (CH₂, non assig.), 22.5 (CH₂, non assig.), 21.7 (CH₂, non assig.), 20.2 (CH₂, non assig.). IR (CDCl₃) ν (cm⁻¹)=3336, 2971, 2926, 2859, 2359, 1717, 1448, 1378, 1278, 1237, 1208, 1144, 1087, 1045, 880. HRMS (ESI, 120 eV) calculated C₃₀H₃₈O₃ [M]⁺ 446.2821, found 446.28133 (Diff.: 1.71 ppm).

4.12.5. (*Z*)-4-(*Cyclohex-1-en-1-yl*)-2-((3aS*,9aR*)-2,2-dimethyl-6,7,8,9-tetrahydrocyclohepta[1,4]cyclobuta[1,2-d][1,3]dioxol-4(3aH)ylidene)but-3-yn-1-ol (**31d**).

¹H NMR (400 MHz, CDCl₃) δ 6.60 (dd, ${}^{3}J$ =7.7 Hz, ${}^{3}J$ =4.4 Hz, 1H, H-3), 6.16 (m, 1H, H-17), 4.86 (s, 1H, H-10), 4.32–4.21 (m, 2H, H-13), 2.47–2.40 (m, 1H, H-4a), 2.30–2.23 (m, 1H, H-4b), 2.19–2.11 (m, 4H, CH₂, non assig.), 1.97–1.87 (m, 4H, H-7a, CH₂), 1.78–1.71 (m, 1H, H-7b), 1.68–1.56 (m, 5H, CH₂, non assig.), 1.47 (s, 3H, H-9), 1.42 (s, 3H, H-9). ¹³C NMR (100 MHz, CDCl₃) δ 144.9 (C-11), 144.8 (C-2), 136.3 (C-17), 130.3 (C-3), 120.0 (C-16), 117.8 (C-12), 114.6 (C-8), 100.6 (C-15), 90.2 (C-1), 85.0 (C-14), 81.9 (C-10), 63.4 (C-13), 34.7 (C-7), 34.7 (C-4), 29.7 (CH₂, non assig.), 29.3 (CH₂, non assig.), 29.0 (C-9), 28.9 (C-9), 27.9 (CH₂, non assig.), 26.9 (CH₂, non assig.), 26.0 (CH₂, non assig.), 22.4 (CH₂, non assig.), 21.6 (CH₂, non assig.). IR (CDCl₃) ν (cm⁻¹)=3419, 2927, 2857, 2177, 1715, 1651, 1435, 1379, 1369, 1260, 1191, 1147, 1093, 1052, 1006, 918, 842, 734, 539. HRMS (ESI, 120 eV) calculated C₂₂H₂₈O₃ [M]⁺ 340.20384, found 340.20312 (Diff.: 2.14 ppm).

4.12.6. {(3aR*,4S*,5R*,9bS*)-2,2-Dimethyl-5-phenyl-7-[(3E)-4-phenylbut-3-en-1-yn-1-yl]-4,9b-dihydro-5H-3a,4-butanocycloocta [3,4]cyclobuta[1,2-d][1,3] dioxol-9-yl}methanol (**30e**).

The **general procedure VI** was followed using enyne **18** (61 mg, 0.48 mmol, 3 equiv). The vial was irradiated in the microwave for 1 h at 130 °C and the crude product was purified by flash column chromatography over silica gel (elution: pentane/Et₂O=7:3). The desired cyclooctatriene **30e** (39 mg, 50%) was isolated as an orange

oil along with a second fraction with the corresponding trienyne **31e** (26 mg, 45%); R_{f} =0.31 (pentane/Et₂O 7:3). ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.21 (m, 8H, H_{arom}), 7.18–7.16 (m, 2H, H_{arom}), 6.84 (d, ${}^{3}J=16.4$ Hz, 1H, H-21), 6.43 (d, ${}^{3}J=9.8$ Hz, 1H, H-16), 6.19 (d, ³*I*=16.4 Hz, 1H, H-20), 6.15 (s, 1H, H-14), 4.92 (s, 1H, H-10), 4.41 (AB system, J_{AB} =13.3 Hz, $\Delta \nu$ =15.2 Hz, 2H, H-13), 3.66 (dd, ³J=10.6 Hz, ³*J*=10.6 Hz, 1H, H-17), 2.70 (td, ³*J*=10.6 Hz, ³*J*=3.6 Hz, 1H, H-3), 2.22-2.17 (m, 1H, H-7a), 1.83-1.74 (m, 3H, H-7b, H-6a, H-5a), 1.49-1.43 (m, 1H, H-4a), 1.46 (s, 3H, H-9), 1.42 (s, 3H, H-9), 1.17-1.03 (m, 2H, H-5b, H-6b), 0.94–0.81 (m, 1H, H-4b). ¹³C NMR (400 MHz, CDCl₃) § 158.3 (C-2), 147.2 (C-16), 143.2 (C-26), 142.1 (C-22), 141.0 (C-21). 137.5 (C-11), 136.5 (C-12), 129.1 (Carom), 128.8 (Carom), 128.6 (Carom), 127.9 (Carom), 126.9 (Carom), 126.4 (Carom), 126.4 (C-14), 121.7 (C-15), 114.9 (C-8), 108.2 (C-20), 91.5 (C-19), 91.3 (C-1), 98.3 (C-18), 82.2 (C-10), 65.0 (C-13), 51.5 (C-17), 43.4 (C-3), 37.8 (C-7), 35.4 (C-4), 30.2 (C-9), 29.8 (C-6), 28.9 (C-9), 25.2 (C-5). HRMS (ESI, 120 eV) calculated C₃₄H₃₄O₃ [M]⁺ 490.25079, found 490.25141 (Diff.: 1.25 ppm).

4.12.7. (2Z,5E)-2-((3aS*,9aR*)-2,2-Dimethyl-6,7,8,9-tetra-hydro-cyclohepta[1,4]cyclobuta[1,2-d][1,3]dioxol-4(3aH)-ylidene)-6-phenylhex-5-en-3-yn-1-ol (**31e**).

¹H NMR (400 MHz, CDCl₃) δ 7.42–7.27 (m, 5H, H_{arom}), 6.97 (d, ³*J*=16.2 Hz, 1H, H-17), 6.68 Hz (d, ³*J*=8.0 Hz, ³*J*=4.5 Hz, 1H, H-3), 6.38 (d, ³*J*=16.2 Hz, 1H, H-16), 4.89 (s, 1H, H-10), 4.38–4.26 (m, 2H, H-13), 2.51–2.44 (m, 1H, H-4a), 2.35–2.28 (m, 1H, H-4b), 2.00–1.89 (m, 5H, H-7a, H-5, H-6), 1.81–1.74 (m, 1H, H-7b), 1.50 (s, 3H, H-9), 1.44 (s, 3H, H-9). ¹³C NMR (400 MHz, CDCl₃) δ 146.1 (C-11), 144.7 (C-2), 141.9 (C-17), 136.3 (C-18), 131.1 (C-3), 129.0 (C_{arom}), 128.9 (C_{arom}), 127.0 (C_{arom}), 117.4 (C-12), 114.8 (C-8), 108.1 (C-16), 98.0 (C-15), 90.2 (C-1), 90.0 (C-14), 81.9 (C-10), 63.4 (C-13), 34.8 (C-7), 29.8 (C-4), 29.0 (C-9), 29.0 (C-9), 27.9 (C-6), 26.9 (C-5). HRMS (ESI, 120 eV) calculated C₂₄H₂₆O₃ [M]⁺ 362.18819, found 362.18631 (Diff.: 5.21 ppm).

4.12.8. (2E)-5-[(3aR*,4S*,5S*,9bS*)-5,9-Bis(hydroxymethyl)-2,2,6trimethyl-4,9b-dihydro-5H-3a,4-butanocycloocta[3,4]cyclobuta[1,2d][1,3]dioxol-7-yl]-3-methylpent-2-en-4-yn-1-ol (**30f**).

The **general procedure VI** was followed using enyne **19** (49 µL, 0.48 mmol, 3 equiv). After 3 h of irradiation at 100 °C, the crude product was purified by automatic flash column chromatography (Run: 60 min, elution: CH₂Cl₂/MeOH=99:1 to 95:5) and the desired product **30f** was isolated (41 mg, 60%), along with a second fraction with the corresponding trienyne **31f** (19 mg, 35%) as an orange oils; R_{f} =0.18 (CH₂Cl₂/MeOH=97:3). ¹H NMR (400 MHz, CDCl₃) δ 6.09 (s, 1H, H-14), 5.89 (td, ³*J*=6.8 Hz, ⁴*J*=0.7 Hz, 1H, H-22), 4.84 (s, 1H, H-10), 4.28 (AB system, J_{AB} =13.2 Hz, $\Delta \nu$ =24.3 Hz, 2H, H-13), 4.19 (d, ³*J*=6.8 Hz, 2H, H-23), 3.72 (dd, ²*J*=10.8 Hz, ³*J*=4.8 Hz, 1H, H-25a), 3.57 (dd, ²*J*=10.8 Hz, ³*J*=10 Hz,

1H, H-25b), 3.01 (td, ${}^{3}J$ =4.8 Hz, ${}^{3}J$ =4.4 Hz, 1H, H-17), 2.30 (td, ${}^{3}J$ =4.4 Hz, ${}^{3}J$ =10.8 Hz, 1H, H-3), 2.18–1.66 (m, 7H, H-4a, H-5, H-6, H-7), 1.99 (s, 3H, H-21), 1.79 (s, 3H, H-24), 1.34 (s, 3H, H-9), 1.25 (s, 3H, H-9), 1.08–0.98 (m, 1H, H-4b). ${}^{13}C$ NMR (100 MHz, CDCl₃) δ 156.8 (C-2), 150.7 (C-16), 142.6 (C-11), 136.3 (C-12), 134.8 (C-22), 127.4 (C-14), 121.1 (C-20), 120.2 (C-15), 114.6 (C-8), 96.4 (C-19), 91.1 (C-1), 86.4 (C-18), 82.2 (C-10), 64.7 (C-13), 62.7 (C-25), 59.2 (C-23), 48.1 (C-17), 38.8 (C-3), 36.1 (C-7), 35.5 (C-4), 30.2 (C-6), 30.2 (C-9), 28.2 (C-9), 25.2 (C-5), 17.8 (C-24), 16.6 (C-21). IR (CDCl₃) ν (cm⁻¹)=3385, 2929, 2361, 2250, 1448, 1380, 1317, 1279, 1239, 1208, 1140, 1022, 905, 725, 648. HRMS (ESI, 120 eV) calculated C₂₆H₃₄O₅ [M]⁺ 426.24062, found 426.24066 (Diff.: 0.08 ppm).

4.12.9. (2E,6Z)-6-((3aS*,9aR*)-2,2-Dimethyl-6,7,8,9-tetra-hydrocyclohepta[1,4]cyclobuta[1,2-d][1,3]dioxol-4(3aH)-ylidene)-3methylhept-2-en-4-yne-1,7-diol (**31f**).

*R*_{*f*}=0.19 (Et₂O/pentane=7:3). ¹H NMR (400 MHz, CDCl₃) δ 6.60 (dd, ³*J*=7.6 Hz, ³*J*=4.4 Hz, 1H, H-3), 6.03 (td, ³*J*=6.8 Hz, ⁴*J*=1.2 Hz, 1H, H-18), 4.87 (s, 1H, H-10), 4.33−4.22 (m, 4H, H-19, H-13), 2.50−1.60 (m, 8H, H-4, H-5, H-6, H-7), 1.88 (s, 3H, H-17), 1.48 (s, 3H, H-9), 1.43 (s, 3H, H-9). ¹³C NMR (100 MHz, CDCl₃) δ 146.0 (C-11), 144.7 (C-2), 136.5 (C-18), 130.9 (C-3), 120.9 (C-16), 117.3 (C-12), 114.7 (C-8), 100.4 (C-15), 90.2 (C-1), 85.9 (C-14), 81.8 (C-10), 63.4 (C-13), 59.4 (C-19), 34.7 (C-7), 29.7 (C-4), 29.0 (C-9), 27.9 (C-6), 26.8 (C-5), 17.7 (C-17). IR (CDCl₃) ν (cm⁻¹)=3392, 2925, 3854, 2247, 1717, 1650, 1438, 1370, 1191, 1054, 1006, 909, 728, 541. HRMS (ESI, 120 eV) calculated C₂₀H₂₆O₄ [M]⁺ 330.18311, found 330.18283 (Diff.: 0.85 ppm).

4.12.10. (2E)-5-[(3aR*,4S*,5S*,9bS*)-5,9-Bis(hydroxymethyl)-2,2,6trimethyl-4,9b-dihydro-5H-3a,4-butanocycloocta[3,4]cyclobuta[1,2d][1,3]dioxol-7-yl]-3-methylpent-2-en-4-yn-1-ol (**30**g).

The general procedure VI was followed using envne 20 (65 mg. 0.48 mmol, 3 equiv). After 3 h of irradiation at 100 °C, the crude product was purified by flash column chromatography over silica gel (elution: CH₂Cl₂/MeOH=99:1 to CH₂Cl₂/MeOH=95:5) and the cyclooctatriene 30g was isolated as an orange oil (36 mg, 45%), along with a second fraction with the corresponding trienyne **31g** (24 mg, 40%) as an orange foam; ¹H NMR (400 MHz, CDCl₃) δ 6.20 (s, 1H, H-16), 6.19 (d, ³*J*=15.8 Hz, 1H, H-21), 6.06 (s, 1H, H-14), 5.84 (d, ³J=15.8 Hz, 1H, H-20), 4.81 (s, 1H, H-10), 4.29 (AB system, J_{AB} =13.2 Hz, $\Delta \nu$ =15.0 Hz, 2H, H-13), 2.67 (dd, ²J=10.4 Hz, ³J=10.4 Hz, 1H, H-17), 2.61 (ddd, ³J=10.4 Hz, ³J=10.4 Hz, ³J=3.4 Hz, 1H, H-3), 2.39–2.36 (m, 1H, H-7a), 2.13–0.98 (m, 23H, H-7b, CH₂, non assig.), 1.36 (s, 3H, H-9), 1.35 (s, 3H, H-9). ¹³C NMR (100 MHz, CDCl₃) & 159.2 (C-2), 148.8 (C-21), 145.1 (C-16), 141.3 (C-11), 137.4 (C-12), 126.4 (C-14), 121.4 (C-15), 115.2 (C-8), 107.2 (C-20), 91.2 (C-1), 89.7 (C-19), 87.0 (C-22), 84.2 (C-25), 82.2 (C-18), 82.1 (C-10), 64.6 (C-13), 52.2 (C-17), 41.9 (CH₂, non assig.), 40.9 (C-3), 40.7 (CH₂, non assig.), 39.2 (CH₂, non assig.), 36.8 (CH₂, non assig.), 35.2 (CH₂, non assig.), 30.3 (C-9), 28.8 (C-9), 24.8 (CH₂, non assig.), 24.4 (CH₂, non assig.), 23.0 (CH₂, non assig.). IR (CDCl₃) ν (cm⁻¹)=3353, 2917, 2850, 1738, 1448, 1379, 1179, 1027, 990, 956, 910, 851, 828, 730. HRMS (ESI, 120 eV) calculated C₃₂H₄₂O₅ [M]⁺ 506.30322, found 506.30213 (Diff.: 2.16 ppm).

4.12.11. 1-((1E,5Z)-5-((3aS*,9aR*)-2,2-Dimethyl-6,7,8,9-tetrahydrocyclohepta[1,4]cyclobuta[1,2-d][1,3]dioxol-4(3aH)-yli-dene)-6-hydroxyhex-1-en-3-yn-1-yl)cyclopentanol (**31g**).

¹H NMR (400 MHz, CDCl₃) δ 6.61 (dd, ³*J*=7.8 Hz, 4.3 Hz, 1H, H-3), 6.32 (d, ³*J*=15.8 Hz, 1H, H-17), 6.02 (d, ³*J*=15.8 Hz, 1H, H-16), 4.86 (s, 1H, H-10), 4.27 (AB system, J_{AB} =13.6 Hz, $\Delta \nu$ =28.8 Hz, 2H, H-13), 2.48-2.40 (m, 1H, H-4a), 2.31-2.24 (m, 1H, H-4b), 1.97-1.85 (m, 6H, H-7a, CH₂, non assig.), 1.78-1.66 (m, 8H, H-7b, CH₂, non assig.), 1.47 (s, 3H, H-9), 1.42 (s, 3H, H-9). ¹³C NMR (100 MHz, CDCl₃) δ 150.1 (C-17), 145.7 (C-11), 144.6 (C-2), 130.8 (C-3), 117.4 (C-12), 114.7 (C-8), 107.2 (C-16), 96.8 (C-14), 90.2 (C-1), 88.0 (C-15), 82.3 (C-18), 81.8 (C-10), 63.3 (C-13), 40.8 (C-4), 34.7 (C-7), 29.7 (CH₂, non assig.), 29.0 (C-9), 28.9 (C-9), 27.9 (CH₂, non assig.), 26.8 (CH₂, non assig.), 23.9 (CH₂, non assig.). IR (CDCl₃) ν (cm⁻¹)=3290, 2922, 2852, 2184, 1730, 1639, 1616, 1449, 1368, 1258, 1193, 1147, 1051, 1004, 958, 844, 729, 687, 645, 537. IR (CDCl₃) ν (cm⁻¹)=3290, 2922, 2852, 2184, 1730, 1639, 1616, 1449, 1368, 1193, 1087, 1004, 958, 844, 729, 534. HRMS (ESI, 120 eV) calculated C₂₃H₃₀O₄ [M]⁺ 370.21441, found 370.21424 (Diff.: 0.45 ppm).

4.12.12. 1-((1E,5Z)-5-((3aS*,9aR*)-2,2-Dimethyl-6,7,8,9-tetrahydrocyclohepta[1,4]cyclobuta[1,2-d][1,3]dioxol-4(3aH)-yli-dene)-6-hydroxyhex-1-en-3-yn-1-yl)cyclohexanol (**31h**).

The general procedure VI was followed using enyne 21 (72 mg, 0.48 mmol, 3 equiv). After 1 h of irradiation at 100 °C, the crude product was purified by flash column chromatography over silica gel (elution: CH₂Cl₂/MeOH=99:1 to CH₂Cl₂/MeOH=98:2) and the trienyne **31h** was isolated as an orange oil (58 mg, 95%); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 6.60 \text{ (dd, }^{3}J=7.8 \text{ Hz}, \,^{3}J=4.3 \text{ Hz}, 1\text{H}, \text{H}-3), 6.28 \text{ (d,}$ ³*J*=15.9 Hz, 1H, H-17), 5.97 (d, ³*J*=15.9 Hz, 1H, H-16), 4.85 (s, 1H, H-10), 4.20 (AB system, J_{AB} =13.2 Hz, $\Delta \nu$ =22.9 Hz, 2H, H-13), 2.46–2.39 (m, 1H, H-4a), 2.30-2.22 (m, 1H, H-4b), 1.97-1.86 (m, 4H, H-7a, CH₂, non assig.), 1.77-1.70 (m, 1H, H-7b), 1.65-1.39 (m, 10H, H-5a, CH₂, non assig.), 1.46 (s, 3H, H-9), 1.41 (s, 3H, H-9), 1.31-1.25 (m, 3H, H-5b, CH₂, non assig.). ¹³C NMR (100 MHz, CDCl₃) δ 151.3 (C-17), 145.7 (C-11), 144.6 (C-2), 130.8 (C-3), 117.4 (C-12), 114.6 (C-8), 107.4 (C-16), 96.9 (C-15), 90.1 (C-1), 88.1 (C-14), 81.8 (C-10), 72.1 (C-18), 63.2 (C-13), 37.6 (C-4), 34.7 (C-7), 29.6 (CH₂, non assig.), 28.9 (C-9), 28.9 (C-9), 27.9 (CH₂, non assig.), 26.8 (CH₂, non assig.), 25.4 (C-5),

21.9 (CH₂, non assig.). IR (CDCl₃) ν (cm⁻¹)=3391, 2930, 2854, 1713, 1651, 1447, 1370, 1191, 1149, 1053, 1005, 957, 908, 845, 729, 541. HRMS (ESI, 120 eV) calculated C₂₄H₃₂O₄ [M]⁺ 384.23006, found 384.23046 (Diff.: 1.04 ppm).

4.12.13. [(3aR*,4S*,5S*,9bS*)-5-({[tert-Butyl(di-methyl)silyl]oxy} methyl)-7-((3E)-5-{[tert-butyl (dimethyl)silyl]oxy}-3-methylpent-3en-1-yn-1-yl)-2,2,6-trimethyl-4,9b-dihydro-5H-3a,4-butanocycloocta[3,4]cyclobuta[1,2-d][1,3]dioxol-9-yl] methanol (**30i**).

The general procedure VI was followed using enyne 25 (100 mg, 0.48 mmol, 3 equiv). After 1 h of irradiation at 100 °C, the crude product was purified by flash column chromatography (elution: pentane/Et₂O=7:3) and the desired product **30i** was isolated (67 mg, 64%, NMR determined yield) in an inseparable mixture with trienyne 31i (21 mg, 29%, NMR determined yield), both as orange oils; ¹H NMR (400 MHz, CDCl₃) δ 6.05 (s, 1H, H-14), 5.82 (td, ³*J*=6.3 Hz, ⁴*J*=1.3 Hz, 1H, H-22), 4.86 (s, 1H, H-10), 4.30 (AB system, J_{AB} =12.3 Hz, $\Delta \nu$ =26.9 Hz, 2H, H-13), 4.23 (dd, ³J=6.3 Hz, ⁵J=0.6 Hz, 2H, H-23), 3.61-3.60 (m, 2H, H-28), 2.89-2.84 (m, 1H, H-17), 2.46 (ddd, ${}^{3}J$ =11.1 Hz, ${}^{3}J$ =11.1 Hz, ${}^{3}J$ =4.0 Hz, 1H, H-3), 2.19–2.14 (m, 1H, H-7a), 2.01 (d, ${}^{4}J$ =1.1 Hz, 3H, H-27), 2.01–1.94 (m, 1H, H-4a), 1.84–1.65 (m, 5H, H-7b, H-6, H-5), 1.77 (d, ⁴/=1.3 Hz, 3H, H-21), 1.36 (s, 3H, H-9), 1.25 (s, 3H, H-9), 1.11-1.01 (m, 1H, H-4b), 0.89 (s, 9H, H-26), 0.86 (s, 9H, H-31), 0.06 (s, 6H, H-24), 0.00 (d, ⁴*J*=4.9 Hz, 6H, H-29). ¹³C NMR (100 MHz, CDCl₃) δ 157.4 (C-2), 152.8 (C-16), 142.4 (C-11), 135.8 (C-12), 135.7 (C-22), 127.9 (C-14), 119.4 (C-20), 118.5 (C-15), 114.5 (C-8), 96.1 (C-19), 91.1 (C-18), 86.0 (C-1), 82.2 (C-10), 65.2 (C-13), 62.7 (C-28), 60.2 (C-23), 47.6 (C-17), 37.9 (C-3), 36.3 (C-7), 35.5 (C-4), 30.2 (C-9), 28.8 (C-6), 28.2 (C-9), 26.1 (C-26), 25.9 (C-31), 25.4 (C-5), 18.7 (C-25), 18.2 (C-30), 17.9 (C-21), 17.4 (C-27), -5.04 (C-24), -5.4 (C-24), -5.6 (C-29). HRMS (ESI, 120 eV) calculated C₃₈H₆₂O₅Si₂ [M]⁺ 654.41358, found 654.41323 (Diff.: 0.54 ppm).

4.12.14. (Z)-2-((1R*,5S*,Z)-7-Benzylidene-3,3-di-methyl-2,4-dioxabicyclo[3.2.0]heptan-6-ylidene)-4-(cyclohex-1-en-1-yl)but-3-yn-1-ol (**34c**).

In a 2–5 mL microwave vial were added the compound **32** (50 mg, 0.148 mmol, 1 equiv), $Pd(OAc)_2$ (2 mg, 0.01 mmol, 0.05 equiv), copper iodide (3 mg, 0.02 mmol, 0.1 equiv), and PPh₃ (4 mg, 0.02 mmol, 0.1 equiv). The vial was sealed with a Teflon cap and the reaction mixture was then dissolved in diisopropylamine (3.0 mL, 0.05 M). The reaction mixture was placed under argon, frozen in liquid nitrogen and put under vacuum. The O₂ liberation proceeds when the temperature rises back to rt. The operation was repeated three times. Then, the enyne **16** (52 μ L, 0.44 mmol, 3 equiv) was added to the reaction mixture. The vial was irradiated

in the microwave for 5 min at 100 °C. The reaction mixture was then filtered through Celite to eliminate the metal traces and then concentrated under reduced pressure. The crude product was purified by flash column chromatography over silica gel (elution: pentane/AcOEt=8:2) and the trienyne **34c** was isolated (54 mg, quantitative yield) as an orange oil; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, ⁴J=2.0 Hz, 2H, H-2), 7.40-7.27 (m, 4H, H-1, H-4), 6.28-6.26 (m, 1H, H-16), 5.35-5.32 (m, 2H, H-6, H-7), 4.37-4.32 (m, 2H, H-12), 2.29–2.16 (m, 4H, CH₂, non assig.), 1.74–1.60 (m, 4H, CH₂, non assig.), 1.54 (s, 3H, H-9), 1.48 (s, 3H, H-9). ¹³C NMR (100 MHz, CDCl₃) § 146.5 (C-10), 140.1 (C-5), 136.7 (C-16), 136.2 (C-3), 128.9 (C-4), 128.8 (3C, C-1, C-2), 128.3 (2C, C-2), 120.9 (C-15), 118.6 (C-11), 115.1 (C-8), 102.2 (C-14), 85.5 (C-13), 79.8 (C-6 or C-7), 78.8 (C-6 or C-7), 63.4 (C-12), 29.1 (C-17), 28.6 (C-9), 27.8 (C-9), 26.0 (CH₂, non assig.), 22.3 (CH₂, non assig.), 21.4 (CH₂, non assig.). IR (CDCl₃) ν (cm⁻¹)=3428, 2933, 2248, 2177, 1605, 1381, 1371, 1253, 1206, 1144, 1078, 907, 727, 693. HRMS (ESI, 120 eV) calculated C₂₄H₂₆O₃ [M]+ 362.18819, found 362.18861 (Diff.: 1.16 ppm).

Acknowledgements

M.C. and C.H. would like to thank the Ministére de l'Enseignement Supérieur et de la Recherche for a PhD fellowship. A.B. would like to thank Prestwick Chemical and the CNRS for a CIFRE grant.

References and notes

- Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993, 32, 131; De Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379; Heumann, A.; Réglier, M. Tetrahedron 1996, 52, 9289; Malacria, M. Chem. Rev. 1996, 96, 289; Negishi, E.; Copéret, C.; Ma, S.; Liou, S.-Y.; Liu, F. Chem. Rev. 1996, 96, 365; De Meijere, A.; Bräse, S. J. Organomet. Chem. 1999, 576, 88; Grigg, R.; Sridharan, V. J. Organomet. Chem. 1999, 576, 65; Poli, G.; Giambastiani, G.; Heumann, A. Tetrahedron 2000, 56, 5959; Tietze, L. F.; IIa, H.; Bell, H. P. Chem. Rev. 2004, 104, 3453; Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134; Yamamoto, Y. Chem. Rev. 2012, 112, 4736.
- Trost, B. M. Science 1991, 254, 1471; Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259; Wender, P. A.; Handy, S. T.; Wright, D. L. Chem. Ind. 1997, Sheldon, R. A. Pure Appl. Chem. 2000, 72; Wender, P. A.; Miller, B. L. Nature 2009, 460.
- Lauer, U.; Anke, T.; Sheldrick, W. S.; Scherer, A.; Steglich, W. J. Antibiot. 1989, 42, 875.
- Sugawara, F.; Takahashi, N.; Strobel, G.; Yun, C. H.; George, G.; Fu, Y.; Clardy, J. J. Org. Chem. **1988**, 53, 2170; Au, T. K.; Chick, W. S. H.; Leung, P. C. Life Sci. **2000**, 67, 733; Hanson, J. R. Nat. Prod. Rep. **1986**, 3, 123; Hanson, J. R. Nat. Prod. Rep. **1992**, 9, 481.
- Shen, X.; Krasnoff, S. B.; Lu, S. W.; Dunbar, C. D.; O'Neal, J.; Turgeon, B. G.; Yoder, O. C.; Gibson, D. M.; Hamann, M. T. J. Nat. Prod. 1999, 62, 895.
- Nozoe, S.; Morisaki, M.; Tsuda, K.; Iitaka, Y.; Takahashi, N.; Tamura, S.; Ishibashi, K.; Shirasaka, M. J. Am. Chem. Soc. **1965**, 87, 4968; Li, E.; Clark, A. M.; Hufford, C. D. J. Nat. Prod. **1995**, 58, 57.
- Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. J. Am. Chem. Soc. 1971, 93, 2325.
- Coates, R. M.; Muskopf, J. W.; Senter, P. A. J. Org. Chem. **1985**, 50, 3541; Rowley, M.; Tsukamoto, M.; Kishi, Y. J. Am. Chem. Soc. **1989**, 111, 2735; Paquette, L. A.; Liang, S.; Galatsis, P. Synlett **1990**, 663; Snider, B. B.; Yang, K. J. Org. Chem. **1992**, 57, 3615; Wender, P. A.; Nuss, J. M.; Smith, D. B.; Suarez-Sobrino, A.; Vagberg, J.; Decosta, D.; Bordner, J. J. Org. Chem. **1997**, 62, 4908; Lo, P. C. K.; Snapper, M. L. Org. Lett. **2001**, 3, 2819; Ruprah, P. K.; Cros, J.-P.; Pease, J. E.; Whittingham, W. G.; Williams, J. M. J. Eur. J. Org. Chem. **2002**, 2002, 3145.
- 9. Oonishi, Y.; Hosotani, A.; Sato, Y. Angew. Chem., Int. Ed. 2012, 51, 11548.
- Snyder, S. A.; Brucks, A. P.; Treitler, D. S.; Moga, I. J. Am. Chem. Soc. 2012, 134, 17714.
- Salem, B.; Suffert, J. Angew. Chem., Int. Ed. 2004, 43, 2826; Bour, C.; Blond, G.; Salem, B.; Suffert, J. Tetrahedron 2006, 62, 10567.
- Cope, A. C.; Haven, A. C.; Ramp, F. L.; Trumbull, E. R. J. Am. Chem. Soc. 1952, 74, 4867; Huisgen, R.; Boche, G.; Dahmen, A.; Hechtl, W. Tetrahedron Lett. 1968, 9, 5215; Fry, A. J. Tetrahedron 2008, 64, 2101.
- For references on endiandric acids syntheses, see Nicolaou, K. C.; Petasis, N. A.; Uenishi, J.; Zipkin, R. E. J. Am. Chem. Soc. **1982**, *104*, 5557; Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. J. Am. Chem. Soc. **1982**, *104*, 5560; Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E.; Uenishi, J. J. Am. Chem. Soc. **1982**, *104*, 5555; Nicolaou, K. C.; Zipkin, R. E.; Petasis, N. A. J. Am. Chem. Soc. **1982**, *104*, 5555; Nicolaou, K. C.; Zipkin, R. E.; Petasis, N. A. J. Am. Chem. Soc. **1982**, *104*, 5558; For references on SNF4435C and D syntheses, see Kurosawa, K.; Takahashi, K.; Tsuda, E. J. Antibiot. **2001**, *54*, 541; Takahashi, K.; Tsuda, E.; Kurosawa, K. J. Antibiot. **2001**, *54*, 543; Beaudry, C. M.; Trauner, D. Org. Lett. **2002**, *4*, 2221; Kurosawa, K.; Takahashi, K.; Fujise, N.; Yamashita, Y.; Washida, N.; Tsuda, E. J. Antibiot. **2002**, *55*, 71; Moses, J. E.; Baldwin, J. E.; Marquez, R.; Adlington, R. M.; Cowley, A. R. Org. Lett. **2002**, *4*, 3731; Parker, K. A.; Lim, Y. H. J. Am. Chem. Soc. **2004**, *126*, 15968; Barbarow, J. E.;

Miller, A. K.; Trauner, D. Org. Lett. 2005, 7, 2901; Beaudry, C. M.; Trauner, D. Org. Lett. 2005, 7, 4475; Jacobsen, M. F.; Moses, J. E.; Adlington, R. M.; Baldwin, J. E. Org. Lett. 2005, 7, 2473; For references on ocellapyrones syntheses, see Manzo, E.; Ciavatta, M. L.; Gavagnin, M.; Mollo, E.; Wahidulla, S.; Cimino, G. Tetrahedron Lett. 2005, 46, 465; Miller, A. K.; Trauner, D. Angew. Chem., Int. Ed. 2005, 44, 4602: Moses, J. E.; Adlington, R. M.; Rodriguez, R.; Eade, S. J.; Baldwin, J. E. *Chem. Commun.* **2005**, 1687; For references on elysiapyrones syntheses, see Barbarow, J. E.; Miller, A. K.; Trauner, D. *Org. Lett.* **2005**, 7, 2901; Cueto, M.; D'Croz, L.; Mate, J. L.; San-Martin, A.; Darias, J. Org. Lett. 2005, 7, 415.
 Beck, J. J.; Merrril, G. B.; Palumbo, J. D.; O'Keffe, T. L. J. Agric. Food Chem. 2008, 56,

- 11382.
- 15. Beaudry, C. M.; Malerich, J. P.; Trauner, D. Chem. Rev. 2005, 105, 4757.
- Corbett, R. E.; Couldwell, C. M.; Lauren, D. R.; Weavers, R. T. J. Chem. Soc., Perkin Trans. 1 1979, 1791; Corbett, R. E.; Lauren, D. R.; Weavers, R. T. J. Chem. Soc., Perkin Trans. 1 1979, 1774; Corbett, R. E.; Guild, J. R.; Lauren, D. R.; Weavers, R. T. Aust. J. Chem. 1991, 44, 1139.
- Mass. J. Chen, Bor, F. H., Bor, Y. H., Shim, S. H.; Gloer, J. B.; Wicklow, D. T. J. Nat. Prod. **2006**, 69, 1601; Shim, S. H.; Swenson, D. C.; Gloer, J. B.; Dowd, P. F.; Wicklow, D. T. Org. Lett. **2006**, 8, 1225; 17 Gaich, T.; Mulzer, J. J. Am. Chem. Soc. 2009, 131, 452; Gaich, T.; Mulzer, J. Org. Lett. 2010, 12, 272; Ingavat, N.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. J. Nat. Prod.
 2011, 74, 1650; Mehta, G.; Khan, T. B. Tetrahedron Lett. 2012, 53, 4558.

- 18. Venepalli, B. R.; Agosta, W. C. Chem. Rev. 1987, 87, 399; Keese, R. Chem. Rev. 2006, 106, 4787.
- 19 (a) Hulot, C.; Blond, G.; Suffert, J. J. Am. Chem. Soc. 2008, 130, 5046; (b) Hulot, C.; Amiri, S.; Blond, G.; Schreiner, P.; Suffert, J. J. Am. Chem. Soc. 2009, 131, 13387.
- 20. Blond, G.; Bour, C.; Salem, B.; Suffert, J. Org. Lett. 2008, 10, 1075. 21. Charpenay, M.; Boudhar, A.; Siby, A.; Schigand, S.; Blond, G.; Suffert, J. Adv.
- Synth. Catal. 2011, 353, 3151.
- 22. Charpenay, M.; Boudhar, A.; Blond, G.; Suffert, J. Angew. Chem., Int. Ed. 2012, 51, 4379
- 23. Ghandi, M.; Ghomi, A.-T.; Kubicki, M. J. Org. Chem. 2013, http://dx.doi.org/10. 1021/io302790v
- 24. Gevorgyan, V.; Rubina, M. J. Am. Chem. Soc. 2001, 123, 11107.
- Trost, B. M.; Sorum, M. T.; Chan, C.; Harms, A. E.; Ruhter, G. J. Am. Chem. Soc. 25. 1997, 119, 698.
- Tsukada, N.; Ninomiya, S.; Aoyama, Y.; Inoue, Y. Org. Lett. 2007, 9, 2919. 26.
- 27. Lecea, B.; Arrieta, A.; Cossio, F. P. J. Org. Chem. **2005**, 70, 1035.
- 28. Hesse, M.; Meier, H.; Zeeh, B. Spectroscopic Methods in Organic Chemistry; Thieme: 2007.
- Lehrich, F.; Hopf, H.; Grunenberg, J. Eur. J. Org. Chem. 2011, 2705.
 Yang, H.; Li, Y.; Jiang, M.; Wang, J.; Fu, H. Chem.—Eur. J. 2011, 17, 5652.
 Morril, C.; Grubbs, R. H. J. Org. Chem. 2003, 68, 6031.