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Abstract: The decalin derivatives 2 (92% ee) and 18¢ (92% ee) were synthesized from the corresponding
prochiral substrates 7b and 17a by an asymmetric Heck reaction.

A lot of successful studies on catalytic asymmetric epoxidation,! hydrogenation,? and their synthetic
application have been reported. However, there are only a few excellent catalytic asymmetric C-C bond-forming
reactions.3 We recently reported the first example of an asymmetric Heck reaction, in which the decalin derivative

2 was constructed in up to 80% ee starting with the prochiral
OTBDMS OTBDMS . e , . . .
alkenyl iodide 1.43 In ofder to achieve an asymmetric synthesis
\ e —— of other decalin derivatives, which would find immediate
i H application in the synthesis of bioactive molecules, as well as to
2

1

. improve the above-mentioned decalin formation to synthetically
TBDMS=tert-butyldimethyisily!

useful levels, we have further studied on a catalytic asymmetric
synthesis of decalin derivatives. In this communication, we report an improved catalytic asymmetric synthesis of
2 (92% ee) and a catalytic asymmetric synthesis of the more complex decalin derivative 18c (92% ee).

In the previous paper,4 the decalin derivative 2 with 80% ee was constructed from the alkenyl iodide 1 by
treatment with PdCI2{(R)-BINAP] (10 mol %), AgaPO4 (2 molar equiv) and CaCO3 (2.2 molar equiv) in 1-
methyl-2-pyrrolidinone (NMP) at 60 °C for 84 hr. There are several reasons why AgaPO4 was used as a base.
First, a silver salt enhances the reaction rate and prevents deactivation of the palladium catalyst. Second, a silver
salt prevents isomerization of the product. Third, a silver salt produces the 16-electron Pd* intermediate, leading
to the product with high ee. Among a variety of silver salts examined, Ag3PO4 gave the highest ee. We thought
that use of the alkenyl triflate 7 instead of 1 would afford 2 with high ee even in the absence of a silver salit,
because 9 was expected to produce the 16-electron Pd* intermediate 9' spontaneously. The requisite cis-alkenyl
triflates 7a ~ 7d were first prepared as follows. Treatment of the lithium ester enolate generated from 3 (LDA, O
°C, THF) with the iodide 47 (1.1 equiv) at 0 °C furnished the coupling product § in 76% yield. After deprotection
of an agetal functionality (TsOH, acetone, r.t., 100%), the resultant aldehyde 6 was converted to the alkenyl
triflate’ 7a in 63% yield together with the corresponding trans-isomer (12%) on exposure to
trifluoromethanesulfonic anhydride (1.2 equiv) and 2,6-di-tert-butylpyridine (1.8 equiv) in 1,2-dichloroethane
(reflux, 20 min).8 The more polar alkenyl triflate 7a was readily separated by silica gel column chromatography
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(hexane-Et;0, 9:1) and reduced with lithium aluminum hydride in ether at -78 °C to give the alcohol 8 (85%).
The alcohol 8 was further converted to the silyl ether 7b (95%), the acetate 7¢ (96%) and the pivaloyl ester 7d
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Scheme 1. a. LDA, THF, 0 °C (76%); b. TsOH, acetone, r.t. (100%); c. Tf;0,
2,6-di-tert-butyipyridine, 1,2-dichloroethane, reflux (63%); d. LiAlH,, Et,0,
-78 °C (85%); e. TBDMSCI, imidazole, DMF (95%); f. Ac,0, pyridine, DMAP,
CH,Cl, (96%); g. PvCl, pyridine, DMAP, CH,Cl, (98%).

With the prochiral alkenyl triflates 7a~7d available, first of all, a catalytic asymmetric synthesis of 10a using
Pd(OAC)3 (5 mol %), (R)-BINAP (5.5 mol %) and N,N-diisopropylethylamine (2 equiv) was investigated.
Table 1. Catalytic Asymmetric Synthesis of 2 and Although the opticaily active decalin derivative 10a with

10a~10d from 7a-7d 82% ee was formed in toluene (60 °C, 31 hr, 20%),
g;‘;‘;’:ir;at'e product {j/:';d :,Z) deac.tivation of the c.atalyst occurred gradually, the

7 Toa " ye starting material 7a being recovered (39%). After seve'ral

78 2 as5 92 attempts, it was found that treatment of 7a with

7c 10¢ 44 89 Pd(OAc)2 (5 mol %), (R)-BINAP (10 mol %) and

id lod 60 9 K»CO3 (2 molar equiv) in toluene at 60 °C for S5 hr gave

? A trace amount of 7a was recovered. 10a with 91% ee in 54% yield together with the recovery

of 7a (trace).9 Furthermore, reaction of 7d under the same conditions as described above (27 hr) afforded 10d
with 91% ee in 60% yield. The results are summarized in Table 1. The enantiomeric excess {(ee) was
unequivocally determined by the HPLC analysis (DAICEL CHIRALCEL OJ, hexane-2-propanoi, 9:1) of 11
obtainable from 2, 10a, 10c, and 10d, respectivély. Thus, a catalytic asymmetric synthesis of the decalin
derivatives 2 and 10a~d has been greatly improved on two points. That is, addition of a silver salt is not
necessary anymore to acquire high ee and higher ee (>90%) has been realized,

Next we became interested in a catalytic asymmetric synthesis of more functionalized decalin derivatives,
which would find immediate application in the synthesis of bioactive natural products. Herein, a catalytic
asymmetric synthesis of the decalin derivatives 18a, 18b and 18c¢ is described. Treatment of the lithium ester
enolate generated from 3 (LDA, -78 °C, THE-HMPA, 7.5:1) with 4-iodo-1-butyne at 0 °C gave 12 in 74% yield,
which underwent reduction by lithium aluminum hydride in ether at -40 °C to afford 13 in quantitative yield.
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Protection of 13 as a silyl ether (tert;butyldimethylsilyl chloride, imidazole, DMF) furnished 14 in nearly
quantitative yield. Reaction of 14 with EtMgBr in THF, followed by treatment with DMF (3 equiv) at -30 °C,
gave the aldehyde, which was immediately reduced with NaBH4 in MeOH at O °C to furnish the acetylenic alcohol
15 in 83% yield. Hydroalumination of 15 (n-BuLi-diisobutylaluminum hydride, 35 °C, 36 hr),!0 followed by
being quenched with I, provided the alkenyl iodide 16 stereospecifically in 61% yield. Silylation (tert-
butyldimethylsilyl chloride, imidazole) and acetylation (Ac;0, pyridine) gave 17a and 17b in 89% and 85%

yields, respectively. OTBDMS
COOMe OTBDMS COOMe
3 ——"——’ ——» -——--
l C |I il
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Scheme 2. a. LDA, THF-HMPA, -78 °C then 0 °C (74%); b. LIAIH,, Et,0, -40 °C (100%); P“"
¢. TBDMSCI, imidazole, DMF (100%); d. | ) EtMgBr, THF then DMF, -30 °C il ) NaBH,,
MeOH, 0 °C (83%, 2 steps); e. n-BuLi, DIBAH, Et,0, 35 °C then Iy, -78 °C (61%); \;/

. TBDMSCI, imidazole, DMF (89%); g¢. Acz0, pyridine, DMAP, CHCl; (85%).

With the prochiral substrates having a trisubstituted double bond available,!! a catalytic asymmetric synthesis of
18a and 18b was examined. It was found that treatment of 17a with PdCl,[(R)-BINAP] (10 mol %), Ag3PO4

Table 2. Catalytic Asymmetric Synthesis ot 18b from (2 molar equiv) and CaCO3 (2.2 molar equiv)
17b under Various Conditions® in NMP at 60 °C for 41 hr gave the expected

silver salt CaCO; time yield ee recovery product 18a with 83% ee in 63% yield
(hr) (%) (%) of SM (%)

accompanied with the allylic alcohol 18¢ with
92% ee (35% yield).12 The enantiomeric excess

Ag3PO, 22moleq 100 67 87

Ag,0 — % 68 70 - . .

AgyC0, - 140 33 65 — was unequivocally determined by the HPLC

AgOAc  22moleq 191 47 23 48 analysis (DAICEL CHIRALCEL OJ, hexane—
* 10 mol % PACl,[(R)-BINAP], NMP. 2-propanol, 9:1) of the diol 19 obtainable from

18a and 18c¢, respectively, on exposure to HF in aqueous CH3CN at 0 °C and assignment of the absolute
configuration was achieved by application of the CD exciton chirality method to 20.13 In order to understand the
mechanism of the formation of 18¢ with 92% ee, the following experiments were carried out. First, the prochiral
allylic alcohol 16 underwent cyclization under the similar conditions as described above to furnish 18c with
lower ee (71% ee), revealing that 18c¢ (92% ee) was not produced from 16.14 Second, treatment of 18a with
PACI2[(R)-BINAP], Ag3P0Oy, CaCO3 and 1.5 equiv of n-BugNOAc in NMP at 60 °C for 44 hr afforded none of
18b, ruling out a possibility of the formation of the n-allylpalladium complex from 18a.14 These results appear
to suggest that transmetalation between silicon and (BINAP)Pd*H (18a—21) plays a key role in the above-
mentioned kinetic resolution. Next, a catalytic asymmetric cyclization of the prochiral alkenyl iodide 17b was also
investigated. Exposure of 17b to PdCly[(R)-BINAP] (10 mol %), Ag3PO4 (2 molar equiv) and CaCO3 (2.2
molar equiv) in NMP at 60 °C for 100 hr produced 18b with 87% ee in 67% yield. In this case, none of the
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allylic alcohol 18c was formed. It is interesting to note that there is a similar tendency for silver salts to effect on
enantiomeric excess as observed previously.# The results are summarized in Table 2. The cis-decalin derivatives
18b and 18c should be more valuable intermediates for the synthesis of bioactive molecules.!’

In conclusion, we have succeeded in improving a catalytic asymmetric synthesis of 2 and 10a~d greatly as
well as achieving an efficient catalytic asymmetric synthesis of the more functionalized decalin derivative 18a~c.
Further studies along this line are under investigation.
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