amido-3'-deoxyisoguanosine (TLC) 60 mg. Evaporation of the water layer from the reaction mixture gave a solid residue which was triturated with methanol (2 \times 25 ml). Evaporation of the methanol gave a solid which was chromatographed on a silica gel column using CHCl3-MeOH (9:1) as eluent: yield of white solid 81 mg (17%); mp 248–250° dec; $\lambda_{\rm max}$ in nm (ϵ \times 10⁻³) 0.1 N HCl 262 (20.1), 268 sh; λ_{max} in nm ($\epsilon \times 10^{-3}$) pH 7 buffer and 0.1 N NaOH 262 (22.2), 268 sh; 1 H NMR (DMSO- d_{6}) δ 1.95 (s, Me of Ac), 3.65 (m, $H_{5'}$), 4.0 (m, $H_{4'}$), 4.45 (m, $H_{3'}$ and $H_{2'}$), 5.05 (t, OH at $C_{5'}$), 5.9 $(d, J_{1'2'} = 2.3 \text{ Hz}, H_{1'}), 5.95 (d, OH at C_{2'}), 7.8 (br s, NH₂), 7.9 (d,$ NH), 8.4 ppm (s, H₈). Anal. ($C_{12}H_{15}FN_6O_4 \cdot 0.25~H_2O$) C, H, N.

Acknowledgments. This investigation was supported by Contract NO1-CM-43762 from the Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Department of Health, Education and Welfare. The authors wish to thank Dr. W. C. Coburn, Jr., and members of the Molecular Spectroscopy Section of Southern Research Institute for the analytical and spectral data reported and Mrs. Martha Thorpe for her help in the interpretation of the NMR spectra. They also wish to thank Dr. L. L. Bennett, Jr., and Miss Jean Carpenter for the cytotoxicity data reported.

References and Notes

- (1) R. J. Suhadolnik, "Nucleoside Antibiotics", Wiley-Interscience, New York, N.Y., 1970, p 86.
- (2) W. Sowa, Can. J. Chem., 46, 1586 (1968).
- (3) A. K. M. Anisuzzaman and R. L. Whistler, J. Org. Chem., 37, 3187 (1972).
- (4) J. A. Montgomery and H. J. Thomas, J. Carbohydr., Nucleosides, Nucleotides, in press.
- (5) J. A. Montgomery, K. Hewson, A. G. Laseter, and M. C. Thorpe, J. Am. Chem. Soc., 94, 7176 (1972).
- (6) N. Yamaoka, K. Aso, and K. Matsuda, J. Org. Chem., 30, 149
- (7) F. Keller, I. J. Botviniek, and J. E. Bunker, J. Org. Chem., 32, 1644 (1967).
- (8) B. R. Baker, Ciba Found. Symp., Chem. Biol. Purines, 120 (1957)
- (9) L. Goldman, J. W. Marsico, and M. J. Weiss, J. Med. Chem., 6,410 (1963).
- (10) J. A. Montgomery and K. Hewson, J. Org. Chem., 33, 432 (1968).
- (11) J. A. Montgomery and K. Hewson, J. Med. Chem., 12, 498
- (12) L. L. Bennett, Jr., M. H. Vail, S. Chumley, and J. A. Montgomery, Biochem. Pharmacol., 15, 1719 (1966).
- L. L. Bennett, Jr., H. P. Schnebli, M. H. Vail, P. W. Allan, and J. A. Montgomery, Mol. Pharmacol., 2, 432 (1966).
- (14) J. A. Montgomery, Prog. Med. Chem., 7, 69 (1970).

2-Aryloxymethyl-2,3,5,6-tetrahydro-1,4-oxazines, a New Class of Antidepressants

David T. Greenwood, Keith B. Mallion, Alexander H. Todd, and Ralph W. Turner*

Pharmaceuticals Division, Imperial Chemical Industries Limited, Alderley Park, Cheshire, England. Received November 25, 1974

Some 2-aryloxymethyl-2,3,5,6-tetrahydro-1,4-oxazines have been shown to possess marked antidepressant activity. The 1,4-oxazines were synthesized by lithium aluminum hydride reduction of the readily available 6-aryloxymethyl-2,3,5,6-tetrahydro-1,4-oxazin-3-ones. High antidepressant activity was associated with ortho substitution of the 2phenoxymethyl group and with 1,4-oxazines devoid of 4-substituents.

Effects on the central nervous system have been reported to be produced by the β -receptor blocking drug propranolol (I).^{1,2} During a research program investigating the central nervous system properties of chemical structures related to the aryloxypropanolamines III, a number of 2-(naphthoxymethyl)-2,3,5,6-tetrahydro-1,4-oxazines II were synthesized and shown to possess potent antidepressant properties. This observation led us to synthesize a wide variety of 2-aryloxymethyl-2,3,5,6-tetrahydro-1,4-oxazines and evaluate more fully their biological activity.3

Syntheses. The tetrahydrooxazines (VI) were conveniently synthesized from the propanolamines III.5-7 Treatment of III with chloroacetyl chloride under basic conditions gave the amides IV, which were readily cyclized utilizing sodium methoxide to produce the lactams V. The 1,4oxazin-3-ones when crystalline were isolated and the compounds characterized are listed in Table II. The yields of the 1,4-oxazinones based on the propanolamines were in the 40-60% range. Lithium aluminum hydride reduction of these lactams gave the required tetrahydrooxazines in 30-60% yield. The chloroacetylation stage also produced some O-acylated product, but the ester was readily removed by acid treatment. The secondary amines VI (R = H) could also be prepared in this way starting with the primary amines III (R = H), but better yields (20% overall based on propanolamine) were obtained by preparing the N-benzylated compound VI (R = $PhCH_{2-}$) and then removing the benzyl group by hydrogenolysis. The N-benzylated propanolamines III (R = PhCH₂-) were conveniently prepared from benzylamine and 3-aryloxypropylene oxides. The

OCH₂CHOHCH₂NH·
$$i$$
-Pr

OCH₂CHOHCH₂NH· i -Pr

OCH₂CHOHCH₂NHR

III

OH

ArOCH₂CHCH₂NHR

CICH₂COCI

Et ,N

ArOCH₂CHCH₂

IV

NHRCOCH₂CI

IV

NaOMe

R

NaOMe

R

NaOMe

amines when crystalline were characterized and are listed in Table III. As an alternative to hydrogenolysis the benzyl group could be removed by treatment with ethyl chloroformate followed by alkaline hydrolysis of the N-ethoxycarbonyl derivative. 4 The o-allylphenoxymethyl compound VI (Ar = o-allylphenyl; R = H) was prepared via the N-benzylated derivative using the ethyl chloroformate-alkali fis-

۰	
	1
_	•
	ċ
7	
r	٠,

3010	The second secon								
				Arocre	27.		Reserpinc	Redu in locomotive act., min effective dose	Anti- convulsant
pduo	A_{1}	2	Salt	Mp. °C	Empirical formula	Analyses	mg/kg po	mg/kg po	mg/kg po
-	1-Naphthyl	/-Pr	Hydrogen	143 145	C ₁₈ H ₂₃ NO ₂ ·C ₂ H ₂ O ₁	С, Н, N	10 30	10	100
7	5-Tetralinyl	/-Pr	Oxalate Hydrogen	166168	$\mathrm{C_{18}H_{27}O_2N \cdot C_2H_2O_1}$	C, H, N	10	30	
က	4-Indanyl	/ -Pr	oxalate Hydrogen	134 - 138	$\mathrm{C_{17}H_{25}O_2N \cdot C_2H_2O_5}$	C, H, N	30-100	100	
4	Phenyl	/ -Pr	Hydrogen	141 142	$\mathrm{C}_{11}\mathrm{H}_{21}\mathrm{O}_{2}\mathrm{N}\!\cdot\!\mathrm{C}_{2}\mathrm{H}_{2}\mathrm{O}_{3}$	C, H, N	10		
വ	2-Ethoxyphenyl	/ -Pr	oxalate Hydro-	158-160	$C_{16}H_{25}O_3N \cdot HC1$	C, H, N, CI	10		
9	2-Allyloxyphenyl	/-Pr	chloriae Hydrogen	132134	$\mathrm{C_{IT}H_{25}O_{3}N {\boldsymbol \cdot} \mathrm{C_{2}H_{2}O_{1}}}$	С, Н, N	ဇ	3 - 10	100
7	2-Chlorophenyi	/-Pr	oxalate Hydrogen	117-118	$C_{14}H_{20}O_2NCI \cdot C_2H_2O_1$	C. H, N, C!	1-3	10	
8	3,4-Methylene-	/-Pr	oxalate Hydrogen	157159	$\mathbf{C}_{18}\mathbf{H}_{21}\mathbf{O}_{4}\mathbf{N}\boldsymbol{\cdot}\mathbf{C}_{2}\mathbf{H}_{2}\mathbf{O}_{4}$	C, H, N	30		
6	dioxyphenyl 3-Trifluoromethyl-	/-Pr	oxalate Hydrogen	134 136	$\mathrm{C}_{15}\mathrm{H}_{20}\mathrm{O}_{2}\mathrm{NF}_{3}\text{+}\mathrm{C}_{2}\mathrm{H}_{2}\mathrm{O}_{4}$	C, H, N, F	30 - 100	30	75
10	phenyl 3-Tolyl	<i>i</i> -Pr	oxalate ^c Hydro -	174 - 175	$\mathrm{C}_{15}\mathrm{H}_{23}\mathrm{NO}_2$ • $\mathrm{HC1}$	C, H, N, CI	Inactive,	က	100
11	4-Biphenyl	/-Pr	chloride" Hydrogen	180 - 181	$\mathrm{C_{20}H_{25}O_{2}N \cdot C_{2}H_{2}O_{4}}$	C, H, N	100		
12	1-Naphthyl	Benzyl	oxalate Hydro-	230	$\mathrm{C}_{22}\mathrm{H}_{23}\mathrm{O}_{2}\mathrm{N}$ ·HCl	С, Н, N	Inactive,		Inactive,
13	1-Naphthyl	Allyl	$\begin{array}{c} \text{cmor} \text{rate} \\ \text{Hydrogen} \\ \text{oxoleto}^b \end{array}$	210 - 212	$\mathrm{C_{18}H_{21}O_{2}N \cdot C_{2}H_{2}O_{1}}$	C, H, N	30 - 100		
14	1-Naphthyl	Cyclopentyl	$\begin{array}{c} \text{ox} \\ \text{Hydrogen} \\ \text{ox} \\ \text$	163 - 165	$\mathrm{C_{20}H_{25}O_2N\cdot C_2H_2O_4}$	C, H, N	10 - 30	100	
15	1-Naphthyl	CH_3	Hydrogen	180 - 182	${ m C_{16}H_{19}O_2N \cdot C_2H_2O_4}$	C, H, N	10-30		
16	1-Naphthyl	н	Hydrogen	160 - 162	$\mathrm{C}_{15}\mathrm{H}_{17}\mathrm{O}_2\mathrm{N}\!\cdot\!\mathrm{C}_2\mathrm{H}_2\mathrm{O}_4$	C, H, N	10		
17 18	2-Methoxyphenyl 2-Ethoxyphenyl	нн	Oxalate ^d Hydrogen	$192 - 194 \\ 106 - 108$	$(C_{12}H_{17}O_3N)_2 \cdot C_2H_2O_4 \ C_{13}H_{19}O_3N \cdot C_2H_2O_4$	C, H, N C, H, N	$\frac{1-3}{0.3}$	ကက	100 30
19	2-n-Propoxyphenyl	ш	oxalate Hydrogen	133 - 135	$\mathrm{C}_{14}\mathrm{H}_{21}\mathrm{O}_{3}\mathrm{N}\boldsymbol{\cdot}\mathrm{C}_{2}\mathrm{H}_{2}\mathrm{O}_{4}$	C, H, N	0.3	ဇ	30 - 100
20	2-Isopropoxyphenyl	н	oxalate ⁻ Hydrogen oxalate ^c	98 - 103	$C_{14}H_{21}O_3N \cdot C_2H_2O_4$	С, н, м	က	10	

2-Phenoxyphenyl H 2-n-Heptoxyphenyl H 2-Tolyl H 2-Allylphenyl H 4-Methoxyphenyl H 3-Methoxyphenyl H 2,6-Dimethoxy- H phenyl H 2-Hydroxyphenyl H 4-Acetamidophenyl i-Pr	21	2-Allyloxyphenyl	н	Hydrogen	115-118	$C_{14}H_{19}O_3N \cdot C_2H_2O_4$	C, H, N	0.3	10	30
2-Tolyl Hydrogen oxalate* 97-99 C ₁₈ H ₂ o ₃ O ₈ C ₂ H ₂ O ₄ C, H, N 10 10 2-Tolyl H Hydrogen oxalate* 117-120 C ₁₂ H ₁ O ₂ N·C ₂ H ₂ O ₄ C, H, N 1-3 3 2-Allylphenyl H Hydrogen oxalate* 87-94 C ₁₄ H ₁ O ₂ N·C ₂ H ₂ O ₄ C, H, N 1 3 10 2-Chlorophenyl H Hydrogen oxalate* 144-147 C ₁₂ H ₁ O ₂ N·C ₂ H ₂ O ₄ C, H, N 1 10 10 10 4-Methoxyphenyl H Hydrogen oxalate* 159-161 C ₁₂ H ₁ O ₃ N·C ₂ H ₂ O ₄ C, H, N 10	9	2-Phenoxynhenyl	н	oxalate" Oxalate [¢]	159-161	(C, H, O, N), C, H, O,	C. H. N	0.3	က	100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$! ഇ	2-n-Heptoxyphenyl	: #	Hydrogen	66-26	C ₁ °H, O ₂ N·C ₃ H, O ₄	C, H, N	10	10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	}		1	oxalate		h - 7 7 6 - 67 91 -				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4.	2-Tolyl	Н	Hydrogen	117 - 120	$\mathrm{C}_{12}\mathrm{H}_{17}\mathrm{O}_2\mathrm{N}{\cdot}\mathrm{C}_2\mathrm{H}_2\mathrm{O}_4$	C, H, N	1-3	3	
				$oxalate^c$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	2-Allylphenyl	Н	Hydrogen	87-94	$C_{14}H_{19}O_2N \cdot C_2H_2O_4$	С, н, N	1	က	30-100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	2-Chlorophenyl	н	Hydrogen	144-147	$C_{11}H_{14}O_2NCI^{\circ}C_2H_2O_4$	C, H, N, C1	က	10	
				oxalate						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	4-Methoxyphenyl	Н	Hydrogen	146 - 149	$\mathrm{C}_{12}\mathrm{H}_{17}\mathrm{O_3N}{\cdot}\mathrm{C}_2\mathrm{H}_2\mathrm{O}_4$	C, H, N	10 - 30	10	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$oxalate^c$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	3-Methoxyphenyl	Н	Hydrogen	159-161	$\mathbf{C}_{12}\mathbf{H}_{17}\mathbf{O}_{3}\mathbf{N}\boldsymbol{\cdot}\mathbf{C}_{2}\mathbf{H}_{2}\mathbf{O}_{4}$	C, H, N	Inactive,	10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$oxalate^c$				100		
phenyl cxalate° cxalate° 2-Hydroxyphenyl H Free base° $157-158$ $C_{11}H_{15}O_3N$ C, H, N 4-Acetamidophenyl i -Pr Hydro- $210-214$ $C_{16}H_{24}O_3N_2$ ·HCl C, H, N chloride°	29	2,6-Dimethoxy-	Н	Hydrogen	153 - 156	$\mathrm{C}_{13}\mathrm{H}_{19}\mathrm{O}_4\mathrm{N}{\cdot}\mathrm{C}_2\mathrm{H}_2\mathrm{O}_4$	C, H, N	10		
2-Hydroxyphenyl H Free base 157–158 $C_{11}H_{15}O_3N$ C, H, N 4-Acetamidophenyl i-Pr Hydro- 210–214 $C_{16}H_{24}O_3N_2$ ·HCl C, H, N chloride chloride		phenyl		$oxalate^c$						
4-Acetamidophenyl i -Pr Hydro- $210-214$ $C_{16}H_{24}O_3N_2$ ·HCl $C_{11}H_{12}O_3N_2$ ·HCl $C_{11}H_{12}O_3N_2$ ·HCl $C_{11}H_{12}O_3N_2$ ·HCl $C_{11}H_{12}O_3N_2$ ·HCl	30	2-Hydroxyphenyl	Н	Free base c	157 - 158	$C_{11}H_{15}O_3N$	C, H, N	10 - 30		
$\operatorname{chloride}^{arepsilon}$	31	4-Acetamidophenyl	i-Pr	Hydro-	210 - 214	$\mathrm{C}_{16}\mathrm{H}_{24}\mathrm{O}_{3}\mathrm{N}_{2} ext{ o}\mathrm{HCl}$	C, H, N	30 - 100		
				$\operatorname{chloride}^c$						

methanol-diethyl ether. eAll compounds analyzed within from ^aRecrystallized from butyl acetate. ^bRecrystallized from methanol. ^cRecrystallized from methanol-ethyl acetate. ^aRecrystallized E0.4% of theory sion method, hydrogenolysis giving the n-propyl derivative. The o-chlorophenyl compound VI (Ar = o-chlorophenyl; R = H) was also prepared using this route, hydrogenolysis in this case removing the o-chloro group.

The p-acetamidophenoxymethyl derivative VI (R = i-Pr; Ar = p-acetamidophenyl) was prepared from the p-nitrophenoxypropanolamine III (R = i-Pr; Ar = p-nitrophenyl) by chloroacetylation and cyclization to the lactam by the general procedure, followed by reduction of the nitrogroup to amino by hydrogenation, reduction of the lactam to the tetrahydrooxazine with lithium aluminum hydride, and finally acetylation of the aromatic amino group with acetic anhydride.

Biological Assay Results. Each compound was tested in mice (males, 18–21 g of the Alderley Park, No. 1, specific pathogen free strain) for potential antidepressant, sedative, and anticonvulsant activity. Compounds were administered orally in logarithmically increasing doses in 0.5 ml of an aqueous solution or, in the case of less soluble compounds, as a ball-milled dispersion in an inert suspending agent. Throughout, control animals received 0.5 ml of the respective vehicle alone.

Antidepressant activity was assessed by the ability to reverse reserpine-induced hypothermia. Groups of six mice were pretreated with reserpine (2 mg of base/kg subcutaneously) and 17 hr later with the test compound. Gastric temperatures were recorded immediately before dosing with the test compound (t0) and at intervals of 2, 4, and 6 hr thereafter (t2, t4, and t6). The cumulative temperature rise (T) was then calculated according to the formula: T = (t2 + t4 + t6) - 3 t0. For convenience in comparing the calorigenic activity of the different compounds, the minimum dose of each which produced a cumulative temperature difference of 10° greater than the controls has been defined as the ED₁₀.

Sedative activity was measured in groups of ten mice housed singly in photobeam cages. The number of beam interruptions occurring during the 60-min periods immediately prior to and after dosing was recorded and the expression log (counts after dosing/counts before dosing) calculated for both treated and control groups. The significance of any observed difference in locomotor activity as measured by this technique was assessed by means of the Student's t test

Anticonvulsant activity was determined in groups of ten mice 2 hr after administration of the test compound. Each animal was subjected to a constant current of 20 mA for 0.33 sec and ED_{50} 's were calculated by log-probit analysis from the number of mice which were protected.

Structure-Activity Relationships. The compound derived from propranolol (1) in Table III showed antireserpine activity at 10–30 mg/kg compared with a score of 5–10 mg/kg exhibited by the widely used antidepressant drug, amitriptyline. The 1-tetralin and phenyl derivatives (2 and 4) had increased activity whereas the indan 3 had reduced activity. Very high activity was shown by the ortho-substituted phenyl compounds, the o-chlorophenyl derivative 7 displaying activity at 1–3 mg/kg. Replacement of the 4-isopropyl group in 1 by other alkyl groups and hydrogen demonstrated that the highest activity in the series of compounds 12–16 was found in the secondary amine 16.

Synthesis of ortho-substituted phenyl derivatives with no N-substituent produced the extremely active compounds 17–26, some of which showed activity at 0.3 mg/kg. The activity enhancement produced by an ortho substituent in the phenyl ring was demonstrated by comparing the activities of the ortho, meta, and para isomers, 17, 27, and 28. Surprisingly, the 2,6-dimethoxyphenyl compound 29 possessed lower activity (10 mg/kg) than 17, indicating that

 $C_{18}H_{19}O_3N$

 $C_{16}H_{17}O_3N$

 $C_{15}H_{21}O_3N$

C, H, N

C, H, N

C, H, N

further ortho substitution is detrimental to activity.

The o-ethoxyphenyl derivative 18 which displayed antireserpine activity at 0.3 mg/kg has been processed for clinical trial evaluation. This compound in common with other active compounds in this series also reduced locomotor activity at 3 mg/kg and possessed anticonvulsant action at 30 mg/kg against convulsions induced electrically in mice.9 Initial clinical trial results with 18, trademark Vivalan, have been encouraging. 10,11

Experimental Section

All melting points are uncorrected. The NMR spectra were taken on a Varian HA-100D and the mass spectra analyses were performed on a Hitachi Perkin-Elmer RMU-6E machine. All spectra for compounds listed in Table I were consistent with the as-

2-Aryloxymethyl-2,3,5,6-tetrahydro-1,4-oxazines (VI, R = alkyl, H). The same general route, which is exemplified for the case of compound 1 in Table I, was used for the tertiary amines 1-15 and the secondary amines 20 and 21. The starting materials, the 3-aryloxy-2-hydroxypropylamines, were prepared from the phenols and epichlorohydrin followed by treatment of the resultant epoxide with an amine.5-7 The 1,4-oxazinones which were characterized are listed in Table II.

4-Isopropyl-6-(naphth-1-yloxymethyl)-2,3,5,6-tetrahydro-1,4-oxazin-3-one. A solution of 1-isopropylamino-3-(naphth-1yloxy)propan-2-ol (7.5 g, 0.03 mol) in ethylene chloride (150 ml) was added to a solution of sodium hydroxide (12 g) in water (60 ml). The mixture was cooled to -5° and was vigorously stirred. Chloroacetyl chloride (2.5 ml, 0.03 mol) was added dropwise over a period of 30 min, the temperature being kept below 0°, and then the mixture was stirred at room temperature for 3 hr. The organic phase was separated, washed with 10% aqueous hydrochloric acid and then with water, and evaporated. The resultant oil (8.6 g) in anhydrous methanol (100 ml) was added to a solution of sodium (0.6 g) in anhydrous methanol (100 ml) and the mixture was refluxed for 6 hr. The mixture was evaporated and partitioned between 10% aqueous hydrochloric acid and ether. Evaporation of the ether furnished 3.5 g (40%) of the oxazin-3-one, colorless prisms (from petroleum ether, bp 80–100°)

4-Isopropyl-2-(naphth-1-yloxymethyl)-2,3,5,6-tetrahydro-1,4-oxazine (1). A mixture of 4-isopropyl-6-(naphth-1-yloxymethyl)-2,3,5,6-tetrahydro-1,4-oxazin-3-one (2.0 g, 0.007 mol), lithium aluminum hydride (0.5 g, 0.014 mol), and dry ether (100 ml) was refluxed for 6 hr. Ethyl acetate (100 ml) was added and the mixture was refluxed for 10 min. Water was added and the organic phase separated and dried. A 1% ethereal solution of oxalic acid was added to the crude oxazine which was isolated as the hydrogen oxalate (1.6 g, 65%); colorless prisms (n-butyl acetate); mp 143-145°

2-Aryloxymethyl-2,3,5,6-tetrahydro-1,4-oxazines (VI, R = H). Compounds 16-19, 22-24, and 27-30 were conveniently prepared from the N-benzylated 1,4-oxazines by hydrogenolysis as exemplified for compound 16. Compounds 25 and 26 were synthesized from the N-benzylated 1,4-oxazines by the ethyl chloroformate-alkali fission method⁴ as exemplified for compound 26. The N-benzylated 1,4-oxazines were prepared by the method described for compound 1. In general, the intermediate N-benzylated 1,4oxazin-3-ones V (R = PhCH₂-) and the N-benzylated 1,4-oxazines were not isolated and characterized. The N-benzylated propanolamines which were characterized are listed in Table III.

2-(Naphth-1-yloxymethyl)-2,3,5,6-tetrahydro-1,4-oxazine (16). A solution of 12 free base (1.75 g) in concentrated hydrochloric acid (0.5 ml) and ethanol (40 ml) was hydrogenated at atmospheric pressure using a 5% palladium-charcoal catalyst (0.75 g). Filtration and evaporation gave the hydrochloride, which was converted to the hydrogen oxalate (1.1 g, 60%): mp 160-162° (from methanol-ethyl acetate).

2-(2-Chlorophenoxymethyl)-2,3,5,6-tetrahydro-1,4-oxazine (26). 4-Benzyl-2-(2-chlorophenoxymethyl)-2,3,5,6-tetrahydro-1,4oxazine (6.5 g, 0.02 mol) and ethyl chloroformate (2.0 ml, 0.02 mol) in benzene solution (100 ml) were refluxed for 5 hr. The solvent was removed and the residue was refluxed 2 days with 10% methanolic potassium hydroxide solution (100 ml). The methanol was removed and the residue was partitioned between ether and water. The ether phase was extracted with 2 N hydrochloric acid and the acid extract after basification and ether extraction gave the oxazine, which was converted to the hydrogen oxalate (4.0 g, 60%):

Table II

Ar

1-Naphthyl

1-Naphthyl

1-Naphthyl

1-Naphthyl

3-Tolyl

Allyl

Me

i-Pr

75-77 ⁴Compounds recrystallized from petroleum ether, bp 100–120°.

OH

113-114

105-107

Table III

ArOCH2CHCH2NHCH2Ph Empirical Ar Mp, ${}^{\circ}C^a$ formula Analyses 2-Ethoxyphenyl C, H, N 77 - 79 $C_{18}H_{23}O_3N$ 2-Allyloxyphenyl 87-90 C, H, N $C_{19}H_{23}O_3N$ 2-Methoxyphenyl 89 - 92 $C_{17}H_{21}O_3N$ C, H, N 4-Methoxyphenyl 97 - 99 $C_{17}H_{21}O_3N$ C, H, N 2-Tolyl 80-82 $C_{17}H_{21}O_2N$ C, H, N

"Compounds recrystallized from benzene-petroleum ether, bp 60-80° mixtures

colorless prisms; mp 144-147° (from ethanol-ether).

2-(4-Aminophenoxymethyl)-4-isopropyl-2,3,5,6-tetrahydro-4-Isopropyl-6-(4-nitrophenoxymethyl)-2,3,5,6-te-1.4-oxazine. trahydrooxazin-3-one was prepared as an oil in the usual manner from 1-isopropylamino-3-(4-nitrophenoxy)propan-2-ol. The oxazin-3-one (3.0 g) was hydrogenated at atmospheric pressure in absolute ethanol (150 ml) over 5% Pd/C (1.5 g) for 3.5 hr. The catalyst was filtered off and washed with 20% triethylamine in ethanol (50 ml). The total filtrate was evaporated and the residue, dissolved in ethyl acetate (100 ml), was extracted with 2 N HCl. The aqueous layer was made alkaline and extraction with ethyl acetate furnished the 6-(4-aminophenoxymethyl)-2,3,5-6-tetrahydrooxazin-3-one (2.24 g, 80%) as a crude solid. This oxazinone in dry ether (200 ml) was added to lithium aluminum hydride (0.9 g, 0.024 mol) in ether (30 ml) and the mixture refluxed for 24 hr. The cooled mixture was treated with 20% Rochelle salt solution (50 ml) and the ether layer separated. The aqueous layer was further extracted with ethyl acetate and the combined organic extracts were evaporated to give the oxazine (1.2 g, 51%) as a colorless oil.

2-(4-Acetamidophenoxymethyl)-4-isopropyl-2,3,5,6-tetrahydro-1,4-oxazine (31). The 4-aminophenoxymethyl-2,3,5,6tetrahydrooxazine (4.98 g, 0.02 mol) in dry ethanol (50 ml) was treated dropwise with acetic anhydride (2.5 ml, 0.025 mol) at room temperature over a period of 10 min. After stirring for 30 min, the solvent was removed in vacuo and the residue partitioned between ethyl acetate and $2\ N$ HCl. The aqueous layer was made alkaline and extracted with ethyl acetate. The resultant crude base was converted to its hydrochloride (1.08 g, 17%): mp 210-214° (methanol-ethyl acetate-hexane).

References and Notes

- (1) G. Leszkovsky and L. J. Tardos, J. Pharm. Pharmacol., 17, 518 (1965).
- W. Murmann, L. Almirante, and M. Sacconi-Guelfi, J. Pharm. Pharmacol., 18, 317 (1966).
- (3) K. B. Mallion, A. H. Todd, and R. W. Turner, U.K. Patent 1,138,405.

- (4) J. D. Hobson and J. G. McCluskey, J. Chem. Soc. C, 2015
- (5) A. F. Crowther, D. J. Gilman, B. J. McLoughlin, L. H. Smith, R. W. Turner, and T. M. Wood, J. Med. Chem., 12, 638
- (6) A. F. Crowther and L. H. Smith, J. Med. Chem., 11, 1009
- (7) U.K. Patent, 1,023,214.
- (8) B. M. Askew, Life Sci., 2, 725 (1963).
- (9) K. B. Mallion, A. H. Todd, R. W. Turner, J. C. Bainbridge, D. T. Greenwood, J. Madinaveitia, A. R. Somerville, and B. A. Whittle, Nature (London), 238, 157 (1972).
- (10) A. Peet, J. Int. Med. Res., 1, 624 (1973).
- (11) D. Wheatley, Curr. Ther. Res., Clin. Exp., 16, 821 (1974).

3,4-Dihydro-1*H*-1,4-oxazino[4,3-a]indoles as Potential Antidepressants

Christopher A. Demerson, George Santroch, Leslie G. Humber,*

Department of Chemistry

and Marie-Paule Charest

Department of Pharmacology, Ayerst Research Laboratories, Montreal, Canada. Received December 3, 1974

A series of 3,4-dihydro-1H-1,4-oxazino[4,3-a]indoles bearing basic side chains has been synthesized by a novel chemical process. These compounds have been screened for potential antidepressant activity. One of these derivatives, 3.4-dihydro-1,10-dimethyl-1-(3-methylaminopropyl)-1H-1,4-oxazino[4,3-a]indole (AY-23,673), was particularly potent in the prevention of reserpine ptosis test in mice, with an ED $_{50}$ of 0.5 mg/kg ip.

Recent reports from this laboratory have described novel synthetic routes to pyrano- and thiopyrano-fused indolic systems which have led to the development of prodolic acid† (1), an antiinflammatory agent,1 and tandamine hydrochloride† (2), a potential antidepressant.2 This report describes the synthesis and antidepressant properties of a series of compounds containing the 3,4-dihydro-1H-1,4oxazino[4,3-a]indole system 3 and bearing basic side chains attached at position 1.

Chemistry. The only reported syntheses of oxazino [4,3alindoles are the preparation of 4 in 19493 and of 5 in 1952.4 The synthetic routes used in those studies are not suitable for the synthesis of the types of derivatives described in this report. In the present investigation we have utilized a reaction whose potential for the formation of $\alpha.\alpha$ -disubstituted pyrano rings was first recognized in our laboratory.⁵ It involves the acid-catalyzed intramolecular

alkylation of an aryl ring by a hemiketal formed in situ from an arylethanol and a carbonyl component. Its application to the synthesis of 1,1-disubstituted 3,4-dihydro-1H-

1,4-oxazino[4,3-a]indoles is illustrated in Scheme I. The 3methyl- and 3-ethylindole-1-ethanols (6 and 7, respectively) were allowed to react with the appropriate keto ester in benzene with p-toluenesulfonic acid as catalyst, followed directly by hydrolysis, to afford the 1,10-dialkyl-1-alkanoic acids 8-12 which are described in detail in Table I. The required indole-1-ethanol 6 was obtained from the readily available 3-methylindole and ethylene oxide, while 7 was prepared from the reaction of 3-ethylindole⁶ with ethyl bromoacetate, followed by reduction of the resulting 1-acetic acid derivative with lithium aluminum hydride (see Experimental Section).

The five alkanoic acids 8-12 were ultimately transformed to the 23 basic derivatives 38-60 collected in Table III. Thus, the amides 13-30 were prepared from the corresponding alkanoic acids by conversion to the mixed anhydrides with ethyl chloroformate followed by reaction with the appropriate amine. The amides were reduced, either directly with lithium aluminum hydride (path A) or, in one case, via sodium borohydride reduction7 of the ethoxyiminium salt 31 derived from amide 23 with triethyloxonium fluoroborate. Some of the basic compounds were best prepared from the acids via the intermediate alcohols 32 and 33, tosylates 34 and 35, and iodides 36 and 37 (path B). The intermediates 32-37 were characterized by spectroscopy and, with the exception of 37, were obtained as oils. Reaction of these iodides with the appropriate amines afforded the required basic compounds.

Chemical data on the compounds referred to in Scheme I as well as definitions of the range of the variables R₁-R₄ and n are collected in Tables I-III and some detailed reaction conditions are given in the Experimental Section.

Pharmacology. The 23 compounds listed in Table III were investigated as antidepressant agents. The results are shown in Table III along with the activities of two standard antidepressants, amitriptyline (61) and imipramine (62). Acute toxicity was investigated ip in albino mice. Graded doses of the compounds were administered to groups of five animals each. The approximate LD₅₀ was determined from the 5-day mortality data. Prevention of reserpine-induced ptosis was estimated by an adaptation of the method of Petersen et al.8 The percentage of mice in which ptosis was prevented was recorded. The ED₅₀ was determined according to the method of Finney.9

[†] Nonproprietary names adopted by the USAN Council.