

Journal of Fluorine Chemistry 80 (1996) 13-16

Synthesis of allylic trifluoromethyl alcohols from 1-trifluoromethyl-epoxy ethers

Jean-Pierre Bégué^{a,*}, Danièle Bonnet-Delpon^a, Andrei Kornilov^{a,b}, Nathalie Fischer-Durand^a

^a BioCIS-CNRS, Centre d'Etudes Pharmaceutiques, Rue J.B. Clément, F-92296 Châtenay-Malabry, France

^b Institute of Bioorganic Chemistry and Petrochemistry, Ukrainian Academy of Sciences, Murmanskaya St. 1, 253160, Kiev, Ukraine

Accepted 2 April 1996

Abstract

 α -Thiophenyl ketones are easily available by the regioselective ring-opening of 1-trifluoromethyl-epoxy ethers with phenyl sodium thiolate. Their in situ reduction with NaBH₄, followed by oxidation with NaIO₄ and thermal decomposition of the resultant sulphoxides, provided allylic trifluoromethyl alcohols in high overall yield.

Keywords: Synthesis; Allylic trifluoromethyl alcohols; Epoxy ethers; a-Thiophenyl ketones; NMR spectroscopy

1. Introduction

Allylic trifluoromethyl alcohols could be versatile building blocks for the synthesis of CF₃-containing compounds. Several methods for their preparation have been described: the reaction under ultrasonic irradiation of an organozinc reagent with trifluoroacetaldehyde [1]; the double reduction of trifluoromethyl alkynyl ketones [2]; direct trifluoromethylation of appropriate ketones or aldehydes [3]. Two peculiar cases have been described from trifluoromethyl epoxides: the abstraction by LDA of an active proton in the β -position to the oxirane ring [4] and the reaction of the (S)-3,3,3-trifluoropropene oxide with triphenylphosphine followed by the condensation of the resulting phosphonium salt with an aldehyde [5].

We report here a practical and general multigram-scale synthetic method for the preparation of allylic trifluoromethyl alcohols through a thermal elimination of β -CF₃ from β -hydroxy sulphoxides [6], prepared in two steps from 1-trifluoromethyl-epoxy ethers.

2. Results and discussion

Allylic trifluoromethyl alcohols were prepared from epoxy ethers 1 (Scheme 1), easily available from trifluoroacetic acid [7]. The regioselective opening of 1 with sodium thio-

NaBH₄ EtOH THE. n ÖFt ö ĊН 1 2 2 NalO, 100 • 140°C MeOH-H₂O òн (3:1) 5 Scheme 1.

phenate smoothly proceeded (10 min at room temperature) to give α -thiophenyl ketones 2 [8], which were reduced in situ with NaBH₄. β -Thiophenyl alcohols 3 were isolated in good yield from 1 (Table 1). The reduction is stereoselective leading to the *syn* isomer as the major product. This *syn* configuration has been deduced from ¹⁹F NMR chemical shifts: for α -functionalized alcohols, $|\delta(^{19}F)|$ is larger for the *syn* than for the *anti* diastereoisomer¹.

Reaction of β -hydroxy sulphides 3 with NaIO₄ led to β hydroxy sulphoxides 4 (Table 2), which were converted to allylic alcohols 5 in high yield by heating the neat compounds for several hours at 80–140 °C (Table 3).

This method of preparation of allylic trifluoromethyl alcohols offers the advantage of being practical on a large scale,

^{*} Corresponding author.

¹ This empirical rule was based on the data for α -bromo [9], α -azido [10], α -amino [11] and α -peptidyl alcohols [10]; no exceptions are known.

Table 1 Preparation of thiophenyl alcohols 3 from epoxides 1

Thiophenyl alcohol 3	R	Yield (%)	
3a	cyclohexyl	77	
3b	p-MeO-C ₆ H ₄ -CH ₂	71	
3c	n-pentyl	78	
3d	C ₆ H ₅	71	
3e	C ₆ H ₅ -CH ₂	76	
	3a 3b 3c 3d	$3a$ cyclohcxyl $3b$ p -MeO-C ₆ H ₄ -CH ₂ $3c$ n -pentyl $3d$ C_6H_5	

Table 2

Preparation of sulphoxides 4 from thiophenyl alcohols 3

Entry No.	Sulphoxide 4	R	Yield (%)	
1	4a	Cyclohexyl	90	
2	4b	p-Meo-C ₆ H ₄ -CH ₂	93	
3	4c	n-Pentyl	90	
4	4d	C ₆ H ₅	55 ª	
5	4e	C ₆ H ₅ -CH ₂	87	

^a Formation of **4d** was accompanied by allylic alcohol **5d**, isolated in 43% yield.

using cheap starting materials, easy-to-handle reagents and technically simple procedures.

3. Experimental details

3.1. General

¹⁹F NMR, ¹H NMR and ¹³C NMR spectra were recorded on a 200 MHz multinuclear spectrometer. ¹⁹F NMR spectra are referenced with external CFCl₃, and ¹H NMR and ¹³C NMR spectra with tetramethylsilane. Multiplicities described in the ¹³C NMR data are for J_{CF} coupling. In all NMR measurements, CDCl₃ was used as solvent. GC analyses were performed using an SE 30 capillary column (25 m).

3.2. Materials

THF was purified by distillation from sodium ketyl. All reactions with NaH were performed in oven-dried apparatus. NaH was washed with pentane from a suspension in mineral oil obtained from Fluka Co.

 Table 3

 Preparation of allylic alcohols 5 from sulphoxides 4

3.3. Preparation of thiophenyl alcohols **3**: typical procedure for 1,1,1-trifluoro-2-hydroxy-3-S-phenyl-nonane (**3c**)

Sodium hydride (300 mg, 80% dispersion in oil, 10 mmol) was placed in an argon-flushed three-necked flask and washed twice with dry pentane, after which THF (50 ml) was added via a syringe through a septum cap. The suspension was cooled to 0 °C and PhSH (1.03 ml, 10 mmol) was added dropwise. The mixture was stirred for ca. 0.5 h at room temperature and epoxy ether 2c (2.54 g, 9 mmol) then added in one portion to the suspension of sodium thiophenate. After 10 min the precipitate disappeared. The reaction mixture was quenched with an aqueous solution of NH₄Cl and extracted twice with Et₂O. The organic phase was washed with brine, dried (MgSO₄) and concentrated. Ethanol (20 ml) was added and the solution obtained cooled to 0 °C. NaBH₄ (0.76 g, 20 mmol) was added in portions over 15 min and the reaction mixture then stirred at room temperature for 2 h. NH₄Cl (saturated aq. solution, 20 ml) was added at 0 °C and the mixture extracted with CH_2Cl_2 (3×20 ml). The combined organic layers were dried (MgSO₄), concentrated in vacuo and purified by column chromatography on silica gel (eluent pentane/ether 20:1, 5:1) to afford 2.49 g (78%) of 3c as a mixture of syn and anti isomers (ratio 91:9).

¹H NMR δ : 0.91 (t, J = 7.0 Hz, 3H); 1.33 (b s, 6H); 1.65 (m, 4H); 2.82 (d, J = 8.0 Hz, 1H, OH, anti); 3.32 (dt, J = 7.0 and 6.7 Hz, 1H); 3.41 (d, J = 7.5 Hz, 1H, OH, syn); 3.85 (ddq, J = 7.0, 7.5 and 7.1 Hz, 1H); 7.35 (m, 3H); 7.5 (m, 2H) ppm. ¹³C NMR δ : 14.1, 22.7, 27.1, 28.9, 31.7, 32.4, 46.1 and 52.2, 71.9 (q, ²J = 30 Hz, C–CF₃); 124.8 (q, ¹J = 292 Hz, CF₃); 128.3; 129.3; 133.2 ppm ¹⁹F NMR δ : -75.4 (d, J = 7.1 Hz) (syn); -74.5 (d, J = 7.5 Hz) (anti) ppm.

1,1,1-Trifluoro-2-hydroxy-3-S-phenyl-4-cyclohexyl-2butane (3a) was obtained according to the above typical procedure in 77% yield as a mixture of *syn* and *anti* isomers (ratio 93:7).

¹H NMR δ : 0.71–1.75 (m, 13H); 2.69 (d, J = 7.9 Hz, 1H, OH, *anti*); 3.31 (d, J = 7.5 Hz, 1H, OH, *syn*); 3.85 (ddq, J = 7.0, 7.5, 6.8 Hz, 1H); 7.27–7.44 (m, 5H) ppm. ¹³C NMR δ : 25.9, 26.2, 26.4, 32.2, 33.6, 34.7, 39.5, 45.6 and 49.0, 71.4 (q, ²J = 30 Hz C–CF₃); 121.8, 125.1 (q, ¹J = 293 Hz, CF₃); 128.2; 129.1; 129.4; 131.8; 133.3 ppm. ¹⁹F NMR δ : –75.0 (d, J = 6.8 Hz) (*syn*); –74.4 (d, J = 7.4 Hz) (*anti*) ppm.

1,1,1-Trifluoro-2-hydroxy-3-S-phenyl-5-(4-methoxy)phenyl-propane (**3b**) was obtained according to the above

Entry No.	Alcohol 5	R	Time (h)	Temp. (°C)	Yield (%)
1		Cyclohexyl	2	125-130	91
2	5b	p-MeO-C ₆ H ₄ -CH ₂	3	135-140	86
3	5c	n-pentyl	3	135-140	81
4	5d	C ₆ H ₅	3	100-110	85
5	5e	C ₆ H ₅ -CH ₂	3	125-130	87

typical procedure in 71% yield as a mixture of *syn* and *anti* isomers (ratio 99:1).

¹H NMR δ: 1.95 (m, 2H); 2.82 (m, 2H); 3.22 (dt, J = 7.0, 6.9 Hz, 1H); 3.32 (d, J = 7.6 Hz, 1H, OH, syn); 3.73 (s, 3H); 3.88 (ddq, J = 7.0, 7.6, 7.1 Hz, 1H); 7.79 (m, 2H); 6.98 (m, 2H); 7.31 (m, 3H); 7.38 (m, 2H) ppm. ¹³C NMR δ: 32.0, 33.7, 50.7 and 55.1, 65.6, 71.7 (q, ²J = 29 Hz, C– CF₃); 113.8, 124.5 (q, ¹J = 284 Hz, CF₃); 128.0; 129.0; 129.2; 131.9; 132.3; 132.7; 158.0 ppm. ¹⁹F NMR δ: -75.3 (d, J = 7.0 Hz) (syn) ppm.

1,1,1-Trifluoro-2-hydroxy-3-S-phenyl-4-phenyl-butane (**3d**) was obtained according to the above typical procedure in 71% yield as a mixture of *syn* and *anti* isomers (ratio 97:3).

¹H NMR δ : 2.83 (ddd, J = 8.2, 7.6, 13.5 Hz, 1H); 2.92 (d, J = 8.6 Hz, 1H, OH, syn); 3.41 (dt, J = 3.3, 7.9 Hz, 1H); 4.15 (ddq, J = 3.3, 7.0, 8.6 Hz, 1H); 7.15–7.51 (m, 10H) ppm. ¹³C NMR δ : 39.2, 45.4 and 52.7, 70.5 (q, ²J = 31 Hz, C– CF₃); 124.8 (q, ¹J = 283 Hz, CF₃); 127.0; 127.3; 128.1; 128.7; 129.1; 129.3; 132.7; 133.1; 137.7 ppm. ¹⁹F NMR δ : -75.5 (d, J = 7.0 Hz) (syn) ppm.

1,1,1-Trifluoro-2-hydroxy-3-S-phenyl-5-phenyl-pentane (3e) was obtained according to the above typical procedure in 76% yield as a mixture of *syn* and *anti* isomers (ratio 91:9).

¹H NMR δ: 1.92 (m, 1H); 2.15 (m, 1H); 2.98 (m, 2H); 3.32 (m, 1H); 3.51 (d, J = 7.9 Hz, 1H, OH, syn); 3.92 (ddq, J = 6.8, 7.9, 2.0 Hz, 1H); 7.15–7.57 (m, 10H) ppm. ¹³C NMR δ: 33.2, 33.6, 45.6 and 51.0, 71.5 (q, ²J = 30 Hz, C–CF₃); 124.5 (q, ¹J = 283 Hz, CF₃); 126.0; 126.3; 128.2; 128.4; 128.5; 129.2; 131.8; 133.0; 140.4 ppm. ¹⁹F NMR δ: -75.2 (d, J = 6.8 Hz) (syn); -74.6 (d, J = 7.4 Hz) (anti) ppm.

3.4. Preparation of sulphoxides 4: typical procedure for 1,1,1-trifluoro-2-hydroxy-3-(phenylsulphinyl)-4-cyclohexyl-2-butane (4a)

To a solution of thio alcohol **3a** (3.18 g, 10 mmol) in MeOH (100 ml) was added in one portion NaIO₄ (2.27 g, 10.5 mmol) in H₂O (35 ml) with stirring. The reaction mixture was heated at 70 °C for 4 h (control by TLC), cooled and extracted with CH₂Cl₂ (3×100 ml). The combined organic layers were dried (MgSO₄), concentrated in vacuo and purified by column chromatography on silica gel (eluent pentane/ether 5:1, 1:1) to afford the sulphoxide **4a** (3.01 g, 90%). All sulphoxides **4** were obtained as a mixture of diastercoisomers in a ratio approximately 45:45:5:5. The NMR data described below concern the two major isomers.

¹H NMR δ : 0.71–1.75 (m, 13H); 2.92 (dt, J=4.6, 7.2 Hz); 3.19 (dt, J=5.8, 6.0 Hz, 1H, H-3); 4.21, 4.37 (m, 1H, H-2); 5.18 (d, J=5.1 Hz); 5.82 (d, J=6.0 Hz, 1H, OH); 7.55 (m, 4H); 7.58 (m, 1H) ppm. ¹³C NMR δ : 25.6 and 25.7, 25.8 and 26.0, 28.6, 31.8 and 32.0, 32.5 and 32.6, 34.5 and 34.8, 61.1 and 62.1, 70.5 (q, ²J=32 Hz, C-CF₃); 124.5, 124.7 (q, ¹J=283 Hz, CF₃); 124.3 and 125.6, 129.1, 131.0

and 131.7, 140.1 and 141.1 ppm. ¹⁹F NMR δ : -74.6 (d, J = 6.2 Hz); -75.8 (d, J = 6.0 Hz) ppm.

1,1,1-Trifluoro-2-hydroxy-3-(phenylsulphinyl)-5-(4methoxy)phenyl-propane (**4b**) was obtained according to the above typical procedure in 93% yield as a mixture of diastereoisomers.

¹H NMR δ : 1.92 (m, 2H); 2.12 (m, 1H); 2.55 (m, 1H); 2.77, 3.12 (m, 1H, *H*-3); 3.72 (s, 3H); 3.75 (s, 3H); 4.35, 4.55 (m, 1H, *H*-2); 5.21 (d, *J* = 5.5 Hz); 5.81 (d, *J* = 7.0 Hz, 1H, OH); 6.65 (m, 2H); 6.72 (m, 1H); 6.89 (m, 1H); 7.51 (m, 4H); 7.55 (m, 1H) ppm. ¹⁹F NMR δ : -75.0 (d, *J* = 7.3 Hz); -76.0 (d, *J* = 7.5 Hz) ppm.

1,1.1-Trifluoro-2-hydroxy-3-(phenylsulphinyl)-nonane (4c) was obtained according to the above typical procedure in 90% yield as a mixture of diastereoisomers.

¹H NMR δ: 0.91 (m, 3H); 1.33 (m, 8H); 1.67 (m, 2H); 2.82 (dt, J = 7.0, 6.9 Hz); 3.12 (dt, J = 7.5, 9.0 Hz, 1H, H-3); 4.35, 4.55 (m, 1H, H-2); 5.38 (d, J = 5.5 Hz); 5.99 (d, J = 6.5 Hz, 1H, OH); 7.49 (m, 4H); 7.6 (m, 1H) ppm. ¹⁹F NMR δ: -75.3 (d, J = 6.6 Hz, CF₃); 76.2 (d, J = 7.4 Hz, CF₃) ppm.

1,1,1-Trifluoro-2-hydroxy-3-(phenylsulphinyl)-4-phenylbutane (4d) was obtained according to the above typical procedure in 55% yield as a mixture of diastereoisomers (alcohol 5d was also isolated in 43% yield).

¹H NMR δ : 2.73, and 3.39 (m, 1H, *H*-C3); 2.98 (m, 2H); 4.15, and 4.39 (m, 1H, *H*-C2); 4.85 (d, *J* = 6.0 Hz); 5.39 (d, *J* = 7.0 Hz, 1H, OH); 6.85 (m, 1H); 6.95–7.58 (m, 9H) ppm. ¹⁹F NMR δ : -75.5 (d, *J*=6.7 Hz); -75.9 (d, *J*=6.7 Hz) ppm.

1,1,1-Trifluoro-2-hydroxy-3-(phenylsulphinyl)-5-phenylpentane (4e) was obtained according to the above typical procedure in 87% yield as a mixture of diastereoisomers.

¹H NMR δ: 1.88 (m, 2H); 2.65 (m, 2H); 2.79, 3.05 (m, 1H, *H*-C3); 4.27, 4.45 (m, 1H, *H*-C2); 5.09 (d, J=6.0 Hz); 5.59 (d, J=7.0 Hz, 1H, OH); 6.95 (m, 1H); 7.01–7.29 (m, 4H); 7.31–7.62 (m, 5H) ppm. ¹⁹F NMR δ: -74.5 (d, J=5.7 Hz); -75.2 (d, J=7.2 Hz) ppm.

3.5. Preparation of allylic alcohols 5: typical procedure for (E)-1,1,1-trifluoro-2-hydroxy-3-nonene (5c)

Sulphoxide **4c** (1.68 g, 5 mmol) was heated at 135–140 °C for 3 h (control by TLC), cooled and purified by column chromatography on silica gel (eluent pentane ether 10:1, 2:1) to afford 0.85 g (81%) of the allylic alcohol **5c** with traces of the Z isomer (GC).

¹H NMR δ : 0.91 (t, J=7.5 Hz, 3H); 1.3 (m, 6H); 2.05 (dt, J=7.0, 6.9 Hz, 2H); 2.2 (s, 1H, OH); 4.32 (dq, J=7.0, 6.8 Hz, 1H); 5.45 (dd, J=7.0, 14.2 Hz, 1H); 5.92 (dt, J=7.1, 14.2 Hz, 1H) ppm. ¹³C NMR δ : 13.9, 22.3, 28.2, 31.1, 32.1, 71.5 (q, ²J= 32 Hz, C-CF₃); 121.8, 124.3 (q, ¹J=280 Hz, CF₃); 139.1 ppm. ¹⁹F NMR δ : -79.6 (d, J=6.8 Hz) ppm. Analysis: Calc. for C₉H₁₅OF₃: C, 55.08; H, 7.72%. Found: C, 55.45; H, 7.89%.

(E)-1,1,1-Trifluoro-2-hydroxy-4-cyclohexyl-3-butene (5a) was obtained according to the above typical procedure in 91% yield.

¹H NMR δ: 0.71–1.38 (m, 4H); 1.48–1.82 (m, 6H); 1.95 (m, 1H); 2.15 (bs, 1H); 4.31 (m, 1H); 5.37 (dd, J=7.0, 15.2 Hz, 1H); 5.85 (dd, J=7.1, 15.2 Hz, 1H) ppm. ¹³C NMR δ: 25.8, 26.0, 40.3, 71.8 (q, ²J=32 Hz, C–CF₃); 119.8, 124.6 (q, ¹J=281 Hz, CF₃); 144.7 ppm. ¹⁹F NMR δ: -79.7 (d, J=6.6 Hz) ppm. Analysis: Calc. for C₁₀H₁₅OF₃: C, 57.67; H, 7.25%. Found: C, 57.23; H, 7.36%.

(E)-1,1,1-Trifluoro-2-hydroxy-5-(4-methoxy)phenyl-3propene (**5b**) was obtained according to the above typical procedure in 86% yield with traces of the Z isomer (GC).

¹H NMR δ : 3.31 (d, J=7.1 Hz, 2H); 3.72 (s, 3H); 4.35 (m, 1H); 5.45 (dd, J=7.0, 15.0 Hz, 1H); 6.01 (dt, J=7.1, 15.0 Hz, 1H); 6.75 (m, 2H); 6.98 (m, 2H) ppm. ¹³C NMR δ : 37.8, 55.3, 71.3 (q, ²J=32 Hz, C-CF₃); 114.1, 121.6, 126.2 (q, ¹J=280 Hz, CF₃); 127.6; 129.5; 130.9; 132.7; 137.6; 158.2 ppm. ¹⁹F NMR δ : ~79.5 (d, J=6.6 Hz) ppm. Analysis Calc. for C₁₁H₁₁C₂F₃: C, 56.89; H, 4.78%. Found: C, 57.31; H, 4.91%.

(*E*)-1,1,1-Trifluoro-2-hydroxy-4-phenyl-3-butene (5d) was obtained according to the above typical procedure in 85% yield with traces of the Z isomer (GC).

¹H NMR δ: 2.35 (bs, 1H); 4.55 (m, 1H); 6.12 (dd, J = 7.0, 16.2 Hz, 1H); 5.92 (d, J = 16.2 Hz, 1H); 6.85 (m, 1H); 6.95–7.58 (m, 9H) ppm. ¹³C NMR δ: 71.5 (q, ²J = 32 Hz, *C*–CF₃); 123.5 (q, ¹J = 284 Hz, CF₃); 126.8; 127.4; 128.5; 128.6; 129.3; 135.2; 136.2; 136.5 ppm. ¹⁹F NMR δ: -79.3 (d, J = 6.5 Hz) ppm. Analysis: Calc. for C₁₁H₁₁OF₃: C, 61.10; H, 5.14% Found: C, 60.71; H, 4.98%.

(*E*)-1,1,1-Trifluoro-2-hydroxy-5-phenyl-3-pentene (5e) was obtained according to the above typical procedure in 87% yield with traces of the *Z* isomer (GC).

¹H NMR δ: 3.49 (d, J=7.1 Hz, 2H); 4.42 (m, 1H); 5.61 (dd, J=7.0, 15.1 Hz, 1H); 6.19 (dt, J=7.1, 15.1 Hz, 1H); 7.18–7.62 (m, 5H) ppm. ¹³C NMR δ: 35.5, 71.3 (q, ²J=32 Hz, C-CF₃); 123.4, 124.3 (q, ¹J=282 Hz, CF₃); 126.3; 127.1; 127.5; 128.2; 136.6; 137.1; 138.8 ppm. ¹⁹F NMR δ: -79.3 (d, J=6.6 Hz) ppm. Analysis: Calc. for C₁₀H₉OF₃: C, 59.40; H, 4.50%. Found: C, 59.58; H, 4.59%.

Acknowledgements

We gratefully acknowledge European Community funding to support the Network on the Synthesis and Molecular Recognition of Selectively Fluorinated Bioactive Molecules (ERBCHRXCT930279).

References

- N. Ishikawa, M.G. Koh, T. Kitazume and S.K. Choi, J. Fluorine Chem., 24 (1983) 419, and references cited therein.
- [2] T. Kitazume and T. Sato, J. Fluorine Chem., 30 (1985) 189, and references cited therein.
- [3] Y. Hanzava, V.I. Kawagoe, M. Ito and Y. Kobayashi, Chem. Pharm. Bull., 33 (1987) 1633.
- [4] P.G. Gassman and C.K. Harrington, J. Org. Chem., 49 (1984) 2258.
- [5] T. Kubota and M. Yamamoto, Tetrahedron Lett., 33 (1992) 2603.
- [6] A. Arnone, P. Bravo, M. Frigerio and F. Viani, J. Org. Chem., 59 (1994) 3459.
- [7] F. Benayoud, J.P. Bégué, D. Bonnet-Delpon, N. Fischer-Durand and H. Sdassi, Synthesis, (1993) 1083.
- [8] J.P. Bégué, D. Bonnet-Delpon and A.M. Kornilov, Synthesis, (1996) 529.
- [9] M. Rock, D. Bouvet, J.P. Bégué and D. Bonnet-Delpon, unpublished results.
- [10] J.P. Bégué, D. Bonnet-Delpon, N. Fischer-Durand, A. Amour and M. Reboud-Ravaux, *Tetrahedron: Asymm.*, 5 (1994) 1099.
- [11] J.P. Bégué, D. Bonnet-Delpon and H. Sdassi, Tetrahedron Lett., 33 (1992) 1879.