



Tetrahedron Letters 44 (2003) 6825-6827

TETRAHEDRON LETTERS

## A general synthesis of 2-substituted-5-aminooxazoles: building blocks for multifunctional heterocycles<sup> $\Rightarrow$ </sup>

Qunzhao Wang, Qian Xia and Bruce Ganem\*

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA Received 25 June 2003; revised 12 July 2003; accepted 15 July 2003

Abstract—Condensation of unsubstituted isocyanoacetamides with aldehydes and ketones, or their derived iminium ions, leads to 2-substituted-5-aminooxazoles, which are useful compounds for drug discovery programs.

© 2003 Elsevier Ltd. All rights reserved.

Recently, as part of a program to develop new multiple component condensation (MCC) reactions for combinatorial chemistry, we described a new silyl-promoted variant of the Passerini condensation. In that reaction, simple carbonyl compounds combined with ethyl isocyanoacetate to afford 2-substituted-5-ethoxyoxazoles in a one-pot process that involved nucleophilic participation by the carboethoxy group.<sup>1</sup> Naturally-occurring oxazoles are widely distributed as subunits of biologically active natural products,<sup>2</sup> particularly as 2,4,5trisubstituted heterocycles.<sup>3</sup> Synthetically produced oxazoles also show very favorable pharmacophore profiles in drug discovery programs.<sup>4</sup> However relatively few general methods have been developed that can be used to prepare substituted oxazoles, and most rely on reactive building blocks such as  $\alpha$ -halo or  $\alpha$ -aminoketones and their derivatives.<sup>5</sup>

To explore the utility of silyl-promoted isonitrile condensations in making combinatorial libraries of diversely functionalized 2,4,5-trisubstituted oxazoles, it was of interest to investigate reactions of isocyanoacetamides like 1, which would form electron-rich 5aminooxazoles that should be prone to further substitution at the 4-position of the ring. Here we report successful carbonyl and iminium ion condensations of isonitriles 1 to afford silyloxyalkyloxazoles (e.g. 2, 3) and aminoalkyloxazoles (4, 5), respectively. In the following paper, we demonstrate the utility of heterocycles 2–5 in assembling a broad array of 2,4,5-trisubs-

\* Supplementary data associated with this article can be found at doi:10.1016/S0040-4039(03)01752-0

0040-4039/\$ - see front matter  $\ensuremath{\mathbb{C}}$  2003 Elsevier Ltd. All rights reserved. doi:10.1016/S0040-4039(03)01752-0

tituted oxazoles in new one-pot, four-component condensations.

In 2001, French researchers reported that alkyl-substituted isocyanoacetamides condensed with electrophilic iminium ions, prepared in situ from carbonyl compounds and primary or secondary amines, to afford oxazoles.<sup>6</sup> However, the French group did not investigate reactions of unsubstituted isocyanoacetamides, despite their prospective utility, because of concerns about the potential for competing nucleophilic substitution at both the isonitrile and the active methylene carbons in **1**. It was also unclear whether isocyanoacetamides were sufficiently nucleophilic to condense with the cognate carbonyl compounds themselves, which are less electrophilic than their derived iminium ions.

In fact, isocyanoacetamides 1a and  $1b^7$  reacted with simple carbonyl compounds in the presence of  $R_3SiCl$ ,





<sup>\*</sup> Corresponding author. E-mail: bg18@cornell.edu

 $Zn(OTf)_2$  and *N*-ethylmorpholine (NEM) to form 2,5disubstituted oxazoles **2** (Scheme 1). The method was general in scope, successfully affording the desired condensation product using representative carbonyl compounds.<sup>8</sup> Both trimethylsilyl chloride and triethylsilyl chloride proved to be effective promoters, Moreover, despite initially-expressed concerns about the reactivity of unsubstituted isocyanoacetamides, no products derived from alkylation at the active methylene carbon of **1** were detected.

In the reaction of 1a with benzaldehyde, the desired adduct 2g was only formed at 0°C and in 29% yield, along with an unexpected product 6 (Table 1) in 20% yield, which likely arose by a second condensation of benzaldehyde at the 4-position of 2g. This side reaction proved to be general with aromatic aldehydes.

Iminium salts, prepared in situ from carbonyl compounds and amines,<sup>9</sup> also reacted smoothly with the isonitriles **1a** and **1b** as shown in Table 2. No deleterious side reactions were noted involving the active methylene group of **1**, either using morpholine or the more basic dimethylamine to generate reactive iminium electrophiles. The reaction worked most conveniently in methanol at rt (Table 2), but could also be conducted in less polar solvents such as  $CH_2Cl_2$  or toluene at reflux.

Table 1. Silyl-promoted condensations of isocyanoacetamides 1a and 1b with aldehydes and ketones<sup>a</sup>

| RNC      | Carbonyl compound                                      | R <sub>3</sub> SiCl                          | Product                                                                                                                   | % Yield  |
|----------|--------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------|
| 1a       | (CH <sub>3</sub> ) <sub>3</sub> CCHO                   | TMSCl                                        | <b>2a</b> $R^3 = H$ ,                                                                                                     | 84       |
| 1a       | Ph(CH <sub>2</sub> ) <sub>2</sub> CHO                  | TMSCl                                        | $R^4 = (CH_3)_3C$<br><b>2b</b> $R^3 = H$ ,                                                                                | 74       |
| 1a       | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> CHO    | TMSCl                                        | $R^4 = Ph(CH_2)_2$<br>2c $R^3 = H$ ,                                                                                      | 82       |
| 1a       | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> CHO    | Et <sub>3</sub> SiCl                         | $R^{4} = n - C_{9} H_{19}$<br>2d $R^{3} = H$ ,                                                                            | 72       |
| 1a       | Cyclohexanone                                          | TMSCl                                        | $R^{3} = n - C_{9} H_{19}$<br>2e $R^{3}$ ,<br>$R^{4}$ (CU)                                                                | 79       |
| 1a       | Cyclohexanone                                          | Et <sub>3</sub> SiCl                         | $R^{4} = (CH_{2})_{5}$<br>2f $R^{3}$ ,                                                                                    | 77       |
| 1a       | PhCHO                                                  | TMSCl<br>0°C                                 | $R^{3} = (CH_{2})_{5}$<br><b>2g</b> $R^{3} = H$ ,<br>$R^{4} = Ph$                                                         | 29       |
|          |                                                        | Ph<br>+ N<br>F                               | S<br>N<br>O<br>N<br>O<br>O<br>O<br>N<br>O<br>O<br>O<br>N<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O | 20       |
| 1b<br>1b | Ph(CH <sub>2</sub> ) <sub>2</sub> CHO<br>Cyclohexanone | Et <sub>3</sub> SiCl<br>Et <sub>3</sub> SiCl | 3a<br>3b                                                                                                                  | 73<br>80 |

<sup>a</sup> Conditions: Zn(OTf)<sub>2</sub> (0.3 equiv.), R<sub>3</sub>SiCl (2 equiv. for **1a**, 1.6 equiv. for **1b**), NEM, (2.1 equiv.) CH<sub>2</sub>Cl<sub>2</sub>, carbonyl compound (1.3 equiv.), rt.

 Table 2. Condensations of isocyanoacetamides 1a and 1b
 with iminium salts

| RNC | R <sup>3</sup> R <sup>4</sup> CO                    | Amine<br>(cond) <sup>a</sup> | Product                                                                                         | % Yield |
|-----|-----------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------|---------|
| 1a  | PhCHO                                               | Morph                        | 4a R3 = H, R4 = Ph                                                                              | 88      |
| 1a  | PhCHO                                               | Me <sub>2</sub> NH           | $NR_2 = morph$<br><b>4b</b> $R^3 = H$ ,<br>$R^4 = Ph$                                           | 92      |
| 1a  | <i>p</i> -MeOC <sub>6</sub> H <sub>4</sub> -<br>CHO | Morph                        | $NR_2 = NMe_2$<br>4c R <sup>3</sup> = H,<br>R <sup>4</sup> = p-MeOC <sub>6</sub> H <sub>4</sub> | 82      |
| 1a  | Ph(CH <sub>2</sub> ) <sub>2</sub> CHO               | Morph                        | $NR_2 = morph$<br><b>4d</b> $R^3 = H$ ,<br>$R^4 = Ph(CH_2)_2$                                   | 92      |
| 1a  | Cyclohexanone                                       | Morph                        | $NR_2 = morph$<br><b>4e</b> $R^3$ ,<br>$R^4 = (CH_2)_5$                                         | 92      |
| 1b  | Cyclohexanone                                       | Morph                        | $NR_2 = morph$<br>5a R <sup>3</sup> ,<br>R <sup>4</sup> =(CH <sub>2</sub> ) <sub>5</sub>        | 80      |
| 1b  | PhCHO                                               | Me <sub>2</sub> NH           | $NR_2 = morph$ <b>5b</b> R <sup>3</sup> = H R <sup>4</sup> = Ph                                 | 73      |
| 1b  | p-MeOC <sub>6</sub> H₄−<br>CHO                      | Me <sub>2</sub> NH           | $NR_2 = Me_2N$<br><b>5c</b> $R^3 = H$ ,<br>$R^4 = p - MeOC_6H_4$<br>$NR_2 = Me_2N$              | 75      |

<sup>a</sup> Conditions:  $R^{3}R^{4}CO$  (1.2 equiv.), amine (1.2 equiv.),  $Et_{3}N$ ·HCl (1 equiv.),  $CH_{3}OH$ , rt, 12 h.

The best results were obtained in the presence of pyr·HCl or  $Et_3N$ ·HCl. In earlier work  $NH_4Cl$  was used to catalyze the formation of oxazoles in aprotic solvents from *C*-substituted isocyanoacetamides.<sup>6b</sup>

As the data in Table 2 indicate, iminium ions derived from a wide range of carbonyl compounds could be incorporated into the oxazole ring system using this method.<sup>10</sup> Results with dimethylamine and morpholine suggest that the method should be successful with amines of varying basicity.<sup>11</sup> Even base-sensitive  $\alpha$ -silyloxy-substituted arylacetaldehydes such as 7 and 8<sup>12</sup> reacted smoothly to form the corresponding heterocycles **4f** and **4g**. To confirm their structures, these adducts were deprotected in situ (Bu<sub>4</sub>NF·3H<sub>2</sub>O) to afford aminoalcohols **9** and **10** in overall yields of 66 and 70% yield, respectively (Scheme 2). Compounds **9** and **10** were obtained as a mixture of *syn*- and *anti*diastereomers (1:1.8 for **9**; 1:1.3 for **10**), which could be separated and whose structures were assigned based on

NMR chemical shift and coupling constant data.<sup>13</sup> The route to 2-substituted-5-aminooxazoles described here generates pharmaceutically interesting heterocycles using a practical and convenient one-pot process that is amenable for use in combinatorial chemistry. The incorporation of peptidyl fragments as component substituents on either the carbonyl or isonitrile (or both)



## Scheme 2.

reactants would provide swift access to mimics of natural oxazoles derived by post-translational modification of serine or threonine residues in proteins.<sup>14</sup>

Besides being precursors for oxazolines<sup>15</sup> and pyrrolopyridines,<sup>6</sup> functionalized 5-aminooxazoles have recently been transformed into hexasubstituted benzenes.<sup>16</sup> The further reactivity of oxazoles **2–5** and their implementation in new four-component MCC reactions is described in the following paper.

## Acknowledgements

This work was supported by the National Institutes of Health (DK 55823). Funding for major instrumentation in the Cornell NMR Facility has been provided by NSF (CHE 7904825; PGM 8018643) and NIH (RR02002).

## References

- 1. Xia, Q.; Ganem, B. Org Lett. 2002, 4, 1631-1634.
- (a) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126–8131; (b) Roesener, J. A.; Scheuer, P. J. J. Am. Chem. Soc. 1986, 108, 846–847.
- (a) Prager, R. H.; Smith, J. A.; Weber, B.; Williams, C. M. J. Chem. Soc., Perkin Trans. 1 1997, 2665; (b) Khalafy, J.; Svensson, C. E.; Prager, R. H.; Williams, C. M. Tetrahedron Lett. 1998, 39, 5405–5408.
- Chen, P.; Norris, D.; Haslow, K. D.; Murali Dhar, T. G.; Pitts, W. J.; Watterston, S. H.; Cheney, D. L.; Bassolino, D. A.; Fleener, C. A.; Rouleau, K. A.; Hollenbaugh, D. L.; Townsend, R. M.; Barrish, J. C.; Iwanowicz, E. J. *Bioorg. Med. Chem. Lett.* 2003, 13, 1345–1348.
- 5. For a recent compilation of methods, see: Lee, J. C.; Choi, H. J.; Lee, Y. C. *Tetrahedron Lett.* **2003**, *44*, 123–125.

- (a) Sun, X.; Janvier, P.; Zhao, G.; Bienaymé, H.; Zhu, J. Org. Lett. 2001, 3, 877–880; (b) Janvier, P.; Sun, X.; Bienaymé, H.; Zhu, J. J. Am. Chem. Soc. 2002, 124, 2560–2567.
- Matsumoto, K.; Suzuki, M.; Yoneda, N.; Miyoshi, M. Synth. Commun. 1977, 249–250.
- 8. Representative procedure—preparation of 2a: Pivalaldehyde (54 mg, 0.6 mmol) was added to a solution of Zn(OTf)<sub>2</sub> (91 mg), TMSCl (190 µL), and *N*-ethylmorpholine (200 µL) in CH<sub>2</sub>Cl<sub>2</sub> (0.5 mL) under Ar, immediately followed by isonitrile **1a** (77 mg). The reaction mixture was stirred for 12 h at rt, then diluted with hexane (10 mL). The organic layer was washed with aqueous NaHCO<sub>3</sub> (3 mL), dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated. The crude products was chromatographed over SiO<sub>2</sub> (1:9 EtOAc:hexane) to afford **2a** as a colorless oil (0.13 g, 84%): <sup>1</sup>H NMR (300 MHz, C<sub>6</sub>D<sub>6</sub>)  $\delta$  5.92 (s, 1H), 4.51 (s, 1H), 3.34 (t, 4H, *J*=4.3 Hz), 2.50–2.70 (m, 4H), 1.06 (s, 9H); <sup>13</sup>C NMR (75 MHz)  $\delta$  157.6, 156.6, 103.0, 77.1, 65.8, 48.5, 36.2, 26.1, -0.4; FIMS *m/z* 312 (M+).
- 9. The presence of acid (Et<sub>3</sub>N·HCl) enabled reactions to occur smoothly at rt and prevented side reactions involving the active methylene group of 1.
- 10. Representative procedure-preparation of 4e: A solution of cyclohexanone (124 µL, 1.2 mmol), morpholine (105 µL), Et<sub>3</sub>N·HCl (27 mg), and isonitrile 1a (154 mg) in methanol (1.5 mL) was stirred overnight. The solvent was evaporated and the residue partitioned between CH<sub>2</sub>Cl<sub>2</sub> (10 mL) and aqueous NaHCO<sub>3</sub> (5 mL). After further extraction ( $3 \times 10$  mL), the combined CH<sub>2</sub>Cl<sub>2</sub> layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated. Chromatography of the residue (SiO<sub>2</sub>, 1:99 CH<sub>3</sub>OH:EtOAc) afforded 4e as an oil (296 mg, 92%): <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 5.99 (s, 1H), 3.78-3.84 (m, 4H), 3.66 (br. s, 4H), 3.02-3.08 (m, 4H), 2.49 (br. s, 4H), 2.18 (br. s, 2H), 1.60-1.82 (m, 4H), 1.20-1.50 (m, 4H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 158.1, 157.0, 102.7, 68.0, 66.2, 60.1, 48.7, 46.8, 32.6, 25.9, 22.4; IR (film) 2930, 2850, 1610, 1555, 1455; FABMS m/z 320 (M-1).
- 11. A representative cross-section of primary and secondary amines gave good results in an earlier study with substituted isocyanoacetamides (Ref. 6a).
- Hayashi, M.; Yoshiga, T.; Nakatani, K.; Ono, K.; Oguni, N. *Tetrahedron* 1994, *50*, 2821–2830.
- 13. Spectroscopic and physical characterization data for new compounds are included in Supplementary Data, which is available on the Web.
- (a) Jack, R. W.; Jung, G. Curr. Opin. Chem. Biol. 2000, 4, 310–317; (b) Roy, R. S.; Gehring, A. M.; Milne, J. C.; Belshaw, P. J.; Walsh, C. T. Nat. Prod. Rep. 1999, 16, 249–263.
- 15. Suga, H.; Ikai, K.; Ibata, T. Tetrahedron Lett. 1998, 39, 869–872.
- Janvier, P.; Bienayamé, H.; Zhu, J. Angew. Chem., Int. Ed. 2002, 41, 4291–4294.