Syntheses, Reactivities and Molecular Structures of Tungsten Complexes containing the Diphenylphosphinodithioformato Ligand †

Kuang-Hway Yih, Ying-Chih Lin,* Ming-Chu Cheng and Yu Wang Department of Chemistry, National Taiwan University, Taiwan 106, Republic of China

Treatment of [NEt₄][W(CO)₅(PPh₂)] 1 with CS₂ afforded [NEt₄][W(CO)₅(PPh₂CS₂)] 3 which was also synthesized from the reaction of [W(CO)₅(MeCN)] with [NEt₄][PPh₂CS₂] 2. The reactions of 3 with various alkyl halides gave the neutral complexes [W(CO)₅{PPh₂(CS₂R)}] [R = Me(4a), Et, C₂H₄OH, C₃H₈, CH₂CN, C₂H₄CN or C₃H₆CN], and the reactions of 3 with acyl halides gave [W(CO)₅{PPh₂(CS₂-COR)}] (R = Me or Ph). Both alkylation and acylation reactions occur at the sulfur atom. Treatment of 3 with [Re(CO)_sBr] afforded [(OC)_sW(μ-PPh₂CS₂)Re(CO)_s] in which the two metal atoms were bridged by the $PPh_2CS_2^-$ ligand. The reaction of 3 with $[W(pip)_2(CO)_4]$ (pip = piperidine) yielded [W(CO)_s(PPh₂H)] and the dithiocarbamato tungsten complex [NEt₄][W(CO)₄(S₂CNC₅H₁₀)]. Complex 3 reacted with organic α,ω -diiodides (CH₂I₂, C₂H₄I₂, C₃H₆I₂), giving the phosphine bridged dinuclear complexes [{W(CO)₅(PPh₂CS₂)}₂(μ -CH₂)_n] (n = 1–3), and only in the reaction of C₃H₆I₂, was a mononuclear complex {[W(CO)₅(PPh₂(CS₂C₃H₆I)}]} seen as a minor product. Complex [{W(CO)₅-Ph₂(CS₂C₃H₆I)}]} (PPh₂CS₂)₂(CO)₂] was obtained from the reaction of 3 with oxalyl bromide in CH₂Cl₂. Thermolysis of 3 in tetrahydrofuran (thf) gave an anionic product identified as [NEt₄][W(CO)₄(PPh₂CS₂)]. All of the complexes were identified by spectroscopic methods. The structures of complexes 2, 3 and 4a were confirmed by single-crystal X-ray diffraction analyses. Crystal data: 2, monoclinic, space group P2, a = 10.244(4), b = 9.877(4), c = 11.124(3) Å, $\beta = 102.02(2)^{\circ}$, Z = 2, R = 0.062, R' = 0.073 based on 1180 reflections with $l > 2\sigma(l)$; 3, triclinic, space group P1, a = 10.688(3), b = 11.070(2), c = 10.070(2)12.461(6) Å, $\alpha = 90.00(3)$, $\beta = 103.85(4)$, $\gamma = 94.79(3)^{\circ}$, Z = 2, R = 0.041, R' = 0.041 based on 2442 reflections with $l > 2\sigma(l)$.

The chemistry of complexes containing the zwitterionic trialkylphosphonium dithiocarboxylate ligand, R₃P+CS₂-, or heteroallylic anionic ligands $R_2P(X)C(Y)NR^-$ or $R_2PC(Y)NR^-$ (X = O or S, Y = O or S)² or dithiocarbamate ligand³ have attracted considerable attention in recent years. One of the objectives for studying these complexes is to find different bonding modes of such ligands and to explore their chemistry. Three possible co-ordination sites are known for the R₃P⁺CS₂⁻ ligand, and a variety of bonding modes have been observed; these include monodentate co-ordination through one S atom, 1a-c bidentate through two S atoms by chelation 1c-f or bridging between two metal centres, 1g,h dinuclear pseudoallylic bridging form i.e. η^3 , σ -mode with donation of six electrons, η^{1h-k} or η^2 , η^3 mode with donation of eight electrons.¹¹ The $R_2P(X)C(Y)NR^-$ or $R_2PC(Y)NR^-$ (X = O or S, Y = O or S) anionic ligands normally show bidentate co-ordination through O and S,^{2a} N and S,^{2c,d} S and S,^{2e} P and S.^{2b,d,f-i} Interestingly, in metal complexes containing the aforementioned ligands, no monodentate P-co-ordination mode has been observed. The dithiocarbamate ligand was found to bind to metal through one or two sulfur atoms. Whereas the co-ordination chemistry of the dithiocarbamato ligand (R₂NCS₂⁻) has been much explored, virtually none is known of the phosphorus analogue R₂PCS₂⁻. For R₂PCS₂⁻, only one example 4 is known and, in that instance, the chelating R₂PCS₂ - ligand bonds to the metal through the two sulfur atoms of the CS₂.

In our previous communication,⁵ we reported the synthesis of the complex [NEt₄][W(CO)₅(PPh₂CS₂)] by the reaction of

[W(CO)₂(PPh₂)] with CS₂ in the presence of NEt₄Br and found that the PPh₂CS₂ ligand was bound to the metal in an unprecedented monodentate P-co-ordination mode. Herein we report the synthesis of the anionic diphenylphosphino-dithioformato Ph₂PCS₂ and a series of tungsten complexes each containing the monodentate P-co-ordinated R₂PCS₂ ligand and the reactivities of these complexes. The new bonding mode has been confirmed by single-crystal X-ray diffraction studies.

Experimental

General Procedures.—All manipulations were performed under nitrogen using vacuum-line, drybox, and standard Schlenk techniques. NMR spectra were recorded on a Bruker AC-200, or on a AM-300 WB FT-NMR spectrometer and are reported in units of δ (ppm) with residual protons in the solvent used as an internal standard (CDCl₃, & 7.24; CD₃CN, & 1.93; C_6D_6 , δ 7.15; C_2D_6CO , δ 2.04). IR spectra were measured on a Perkin-Elmer 983 instrument and were referenced to a polystyrene standard, using cells equipped with calcium fluoride windows. Mass spectra were recorded on a JEOL SX-102A spectrometer. Solvents were dried and deoxygenated by refluxing over the appropriate reagents before use. n-Hexane, diethyl ether, tetrahydrofuran (thf) and benzene were distilled from sodium-benzophenone. Acetonitrile, dichloromethane were distilled from calcium hydride, and methanol from magnesium. All other solvents and reagents were of reagent grade and were used as received. Metal carbonyls $\{[W(CO)_6],$ [Re₂(CO)₁₀]}, allyl bromide and iodomethane were purchased from Strem, Merck and Aldrich, respectively. CS2, LiBun, NEt₄Br, EtI, IC₂H₄OH, CH₂I₂, ICH₂CN, IC₂H₄CN,

[†] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

 IC_3H_6CN , $C_2H_4I_2$ and $C_3H_6I_2$ were purchased from Janssen. The compounds $[W(pip)_2(CO)_4]$ (pip = piperidine), 6 $[Re(CO)_5Br]^7$ and PPh_2H^8 were prepared according to the literature methods. Elemental analyses and X-ray diffraction studies were carried out at the Regional Center of Analytical Instrument located at the National Taiwan University.

Syntheses.—[NEt₄][W(CO)₅(PPh₂)] 1. To a flask containing a thf solution of [W(CO)₅(PPh₂H)] (0.75 g, 1.5 mmol) and NEt₄Br (0.3 g, 1.5 mmol), an aliquot of LiBuⁿ (1 cm³, 1.6 mmol) was added at 0 °C. The solution was stirred for 5 min and the solvent was removed *in vacuo*. Methanol (15 cm³) was added to the flask and the solution was stored at -18 °C for 12 h to give yellow precipitates. These precipitates were filtered off, washed with 2 × 10 cm³ diethyl ether and then dried under vacuum to give 1 (1.0 g, 1.4 mmol) as a yellow powder in 93% yield. IR (KBr, ν_{CO}): 2070m and 1910vs cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ -12.9 ($J_{WP} = 226.95$ Hz); ¹H (200 MHz), δ 1.18 (tt, 12 H, CH₃, ³ $J_{NH} = 1.87$, $J_{HH} = 7.3$), 3.18 (q, 8 H, CH₂, $J_{HH} = 7.3$ Hz), 7.47 (m, 6 H, Ph) and 7.67 (m, 4 H, Ph); ¹³C (50 MHz), δ 7.65 (CH₃), 52.96 (CH₂), 128.16 (d, *m*-C of Ph, ³ $J_{PC} = 9.0$), 131.48 (s, *p*-C of Ph), 133.0 (d, *o*-C of Ph, ² $J_{PC} = 9.7$), 134.61 (d, *ipso*-C of Ph, $J_{PC} = 34.58$ Hz) and 197.0 (CO).

[NEt₄][PPh₂CS₂] **2.** A solution of KPPh₂ (1 mol dm⁻³, 10

[NEt₄][PPh₂CS₂] **2**. A solution of KPPh₂ (1 mol dm⁻³, 10 cm³, 10 mmol) in thf was added slowly to a flask containing CS₂ (0.9 cm³, 15 mmol) at 0 °C. The solution was stirred for 5 min then was transferred to a flask containing NEt₄Br (2.1 g, 10 mmol) in MeOH (10 cm³) at room temperature. After solvent was removed *in vacuo*, water (10 cm³) was added to the flask and the solution yielded red precipitates during 1 h. The mixture was filtered and the precipitates were washed with diethyl ether (3 × 10 cm³) to give a red powder, identified as **2**. NMR (CD₃CN): ³¹P (81 MHz), δ 44.1; ¹H (200 MHz), δ 1.17 (tt, 12 H, CH₃, ³J_{NH} = 1.87, J_{HH} = 7.3), 3.14 (q, 8 H, CH₂, J_{HH} = 7.3 Hz), 7.24 (m, δ H, Ph) and 7.49 (m, 4 H, Ph); ¹³C (50 MHz), δ 7.70 (CH₃), 52.60 (CH₂), 127.63 (d, *m*-C of Ph, ³J_{PC} = 7.0), 127.90 (s, *p*-C of Ph), 134.39 (d, *o*-C of Ph, ²J_{PC} = 19.5), 141.61 (d, *ipso*-C of Ph, J_{PC} = 34.18) and 210.1 (d, CS₂, J_{PC} = 25.50 Hz). Mass spectrum: m/z 391 (M +) (Found: C, 67.95; H, 2.70; N, 3.75. C₂₁H₁₀NPS₂ requires C, 67.90; H, 2.70; N, 3.75%).

[NEt₄][W(CO)₅(PPh₂CS₂)] 3. Method A. To a thf solution of 1 (0.51 g, 1 mmol), CS₂ (1 cm³) was added at room temperature. The colour changed from bright yellow to red immediately accompanied with the formation of red precipitates. The solution was filtered and the precipitates were washed with hexane to gave a red powder 3 (0.62 g) in 87% yield.

Method B. A MeCN solution (5 cm³) of [W(CO)₅(MeCN)] (0.364 g, 1 mmol) was added slowly at room temperature to a MeCN solution (20 cm³) of [NEt₄][PPh₂CS₂] **2** (0.391 g, 1 mmol). The solution was stirred for 1 h. The reaction was monitored by ³¹P NMR spectroscopy. After complete disappearance of the ³¹P resonance of **2**, acetonitrile was removed under vacuum to give a red-brown powder. The crude product was recrystallized from CH₂Cl₂−MeOH (1:1) to give microcrystalline complex **3** (0.6 g, 84%). IR (KBr, v_{CO}): 2062m, 1979s, 1947s and 1904vs cm⁻¹. v_{CS} 1027s and 990w cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 59.08 (J_{WP} = 238.24 Hz); ¹H (200 MHz), δ 1.18 (tt, 12 H, CH₃, ³ J_{NH} = 1.87, J_{HH} = 7.3), 3.10 (q, 8 H, CH₂, J_{HH} = 7.3 Hz), 7.35 (m, 6 H, Ph) and 7.66 (m, 4 H, Ph); ¹³C (50 MHz), δ 7.56 (CH₃), 52.95 (CH₂), 128.25 (d, m-C of Ph, ³ J_{PC} = 9.76), 129.93 (s, p-C of Ph), 134.61 (d, o-C of Ph, ² J_{PC} = 9.77), 134.61 (d, ipso-C of Ph, J_{PC} = 34.18), 199.62 (d, cis-CO, ² J_{PC} = 7.50), 200.1 (d, CS₂, J_{PC} = 25.50) and 255.41 (d, trans-CO, ² J_{PC} = 7.40 Hz). Mass spectrum: m/z 845 (M^+ + NEt₄), 714 (M^+ + NEt₄ - 2CO − CS₂) (Found: C, 43.45; H, 4.30; N, 1.95. C₂₆H₃₀NO₅PS₂W requires C, 43.65; H, 4.25; N, 1.95%).

Reactions of Complex 3.—With MeI. To a solution of 3 (0.71 g, 1 mmol) in CH₂Cl₂ (20 cm³), MeI (0.1 cm³, 1 mmol) was added and the mixture was stirred at room temperature for

1 min. The solvent was removed and the residue was extracted with hexane $(2 \times 10 \text{ cm}^3)$, and the extracts were filtered through Celite. The filtrate was concentrated to ca. 5 cm³ and cooled to -18 °C for 12 h to give the red crystalline product [W(CO)₅{PPh₂(CS₂Me)}] **4a**. Yield = 0.51 g, 85%. IR (KBr, v_{CO}): 2071m, 1988s, 1957sh and 1911vs cm⁻¹. NMR (CDCl₃): 31 P (81 MHz), δ 59.05 (J_{WP} = 247.95 Hz); 11 H (200 MHz), δ 2.71 (s, 3 H, SCH₃), 7.50 (m, 6 H, Ph) and 7.66 (m, 4 H, Ph); 13 C (50 MHz), δ 21.86 (CH₃), 129.62 (d, m-C of Ph, $^{3}J_{PC}$ = 9.72), 132.28 (s, p-C of Ph), 134.63 (d, o-C of Ph, $^{2}J_{PC}$ = 12.2), 134.88 (d, ipso-C of Ph, J_{PC} = 36.6), 198.04 (d, cis-CO, $^{2}J_{PC}$ = 7.50, 200.00 (d, CS₂, J_{PC} = 25.50), 240.28 (d, trans-CO, $^{2}J_{PC}$ = 7.40 Hz). Mass spectrum: m/z 600.7 (M +), 571 (M + — CO), 543.6 (M + — 2CO), 515.6 (M + — 3CO), 487 (M + — 4CO), 459.7 (M + — 5CO, CH₃, CS₂) (Found: C, 38.00; H, 2.25. C₁₉H₁₃O₅PS₂W requires C, 38.00; H, 2.20%).

With EII. The synthesis and work-up were similar to those used in the preparation of complex 4a. The pure complex [W(CO)₅{PPh₂(CS₂Et)}] 4b was isolated in 89% yield as a red microcrystalline solid. IR (thf, v_{CO}): 2072m and 1934vs cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 58.81 (J_{WP} = 245.96 Hz); ¹H (200 MHz), δ 1.34 (t, 3 H, CH₃, J_{HH} = 7.35), 3.28 (q, 2 H, CH₂, J_{HH} = 7.35 Hz), 7.53 (m, 6 H, Ph) and 7.68 (m, 4 H, Ph); ¹³C (50 MHz), δ 11.82 (CH₃), 32.23 (CH₂), 128.44 (d, m-C of Ph, ${}^3J_{PC}$ = 9.0), 130.98 (s, p-C of Ph), 133.74 (d, o-C of Ph, ${}^2J_{PC}$ = 13.5), 134.34 (d, ipso-C of Ph, J_{PC} = 38.78), 197.13 (d, cis-CO, ${}^2J_{PC}$ = 7.50), 199.00 (d, CS₂, J_{PC} = 25.50) and 220.28 (d, trans-CO, ${}^2J_{PC}$ = 7.80 Hz). Mass spectrum: m/z 614 (M^+), 586 (M^+ - CO), 558 (M^+ - 2CO), 530 (M^+ - 3CO), 502 (M^+ - 4CO), 474 (M^+ - 5CO), 445 (M^+ - 5CO - Et), 369 (M^+ - 5CO - Et - CS₂) (Found: C, 39.30; H, 2.60. C₂₀H₁₅O₅PS₂W requires C, 39.10; H, 2.45%).

With IC₂H₄OH. The synthesis and work-up were similar to those used in the preparation of complex 4a. The pure complex [W(CO)₅{PPh₂(CS₂C₂H₄OH)}] 4c was isolated in 90% yield as a red microcrystalline solid. IR (thf, ν_{CO}): 2072m and 1935vs cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 60.40 (J_{WP} = 250.66 Hz); ¹H (200 MHz), δ 3.54 (t, 2 H, SCH₂, J_{HH} = 6.03), 3.81 (t, 2 H, CH₂OH, J_{HH} = 6.03 Hz), 7.53 (m, 6 H, Ph) and 7.68 (m, 4 H, Ph); ¹³C (50 MHz), δ 39.93 (SCH₂), 59.70 (CH₂OH), 128.53 (d, m-C of Ph, $^3J_{PC}$ = 13.5), 131.13 (s, p-C of Ph), 133.77 (d, o-C of Ph, $^2J_{PC}$ = 17.25), 134.26 (d, *ipso*-C of Ph, J_{PC} = 38.78) and 197.07 (d, *cis*-CO, $^2J_{PC}$ = 7.50 Hz). Mass spectrum: m/z 631 (M^+), 602 (M^+ – CO), 547 (M^+ – 3CO), 518 (M^+ – 4CO), 490 (M^+ – 5CO), 445 (M^+ – 5CO – EtO), 369 (M^+ – 5CO – EtO – CS₂).

With C₃H₅Br. The synthesis and work-up were similar to those used in the preparation of complex **4a**. The pure complex [W(CO)₅{PPh₂(CS₂C₃H₅)}] **4d** was isolated in 88% yield as a red microcrystalline solid. IR (KBr, v_{CO}): 2070m, 1988s and 1929vs cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 64.49 (J_{WP} = 248.56 Hz); ¹H (200 MHz), δ 3.90 (d, 2 H, SCH₂, J_{HH} = 7.2), 5.16, 5.24 (dd, 2 H, =CH₂, J_{HH} = 16.94, J_{HH} = 13.34 Hz), 5.78 (m, 1 H, CH=), 7.53 (m, 6 H, Ph) and 7.68 (m, 4 H, Ph); ¹³C (50 MHz), δ 41.03 (SCH₂), 120.99 (CH=), 129.57 (d, m-C of Ph, ³ J_{PC} = 15.6), 130.63 (=CH₂), 132.27 (s, p-C of Ph), 134.59 (d, o-C of Ph, ² J_{PC} = 19.78), 134.66 (d, *ipso*-C of Ph, J_{PC} = 38.78), 197.95 (d, *cis*-CO, ² J_{PC} = 7.50), 199.90 (d, CS₂, J_{PC} = 25.50), and 238.40 (d, *trans*-CO, ² J_{PC} = 7.50 Hz). Mass spectrum: m/z 626 (M⁺), 598 (M⁺ - CO), 542 (M⁺ - 3CO), 514 (M⁺ - 4CO), 486 (M⁺ - 5CO) and 445 (M⁺ - 5CO - C₃H₅).

With ICH₂CN. The synthesis and work-up were similar to those used in the preparation of complex 4a. The complex [W(CO)₅{PPh₂(CS₂CH₂CN)}] 4e was isolated in 92% yield as a red microcrystalline solid. IR (thf, v_{CO}): 2072m and 1937vs cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 61.46 ($J_{WP} = 251.99$ Hz); ¹H (200 MHz), δ 4.00 (s, 2 H, CH₂), 7.48 (m, 6 H, Ph) and 7.69 (m, 4 H, Ph); ¹³C (50 MHz), δ 22.26 (CH₂), 113.59 (CN), 128.88 (d, m-C of Ph, ³ $J_{PC} = 10.1$), 131.66 (s, p-C of Ph), 132.91 (d, ipso-C of Ph, $J_{PC} = 38.95$), 133.76 (d, o-C of Ph, ² $J_{PC} =$

11.85), 196.65 (d, cis-CO, $^2J_{PC} = 7.00$), 198.20 (d, CS₂, $J_{PC} = 25.50$) and 234.46 (d, trans-CO, $^2J_{PC} = 7.40$ Hz). Mass spectrum: m/z 626 (M^+), 597 ($M^+ - \text{CO}$), 569 ($M^+ - 2\text{CO}$), 542 ($M^+ - 3\text{CO}$), 513 ($M^+ - 4\text{CO}$), 485 ($M^+ - 5\text{CO}$), 443 ($M^+ - 5\text{CO} - \text{CH}_2\text{CN}$) and 369 ($M^+ - 5\text{CO} - \text{CH}_2\text{CN} - \text{CS}_2$).

With IC₂H₄CN. The synthesis and work-up were similar to those used in the preparation of complex 4a. The complex [W(CO)₅{PPh₂(CS₂C₂H₄CN)}] 4f was isolated in 92% yield as a red microcrystalline solid. IR (thf, v_{CO}): 2073m and 1935vs cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 61.86 (J_{WP} = 252.08 Hz); ¹H (200 MHz), δ 2.68 (t, 2 H, CH₂CN, J_{HH} = 7.05), 3.53 (t, 2 H, SCH₂, J_{HH} = 7.05 Hz), 7.53 (m, 6 H, Ph) and 7.68 (m, 4 H, Ph); ¹³C (50 MHz), δ 15.1 (CH₂CN), 31.6 (SCH₂), 128.56 (d, *m*-C of Ph, ³ J_{PC} = 10.5), 131.28 (s, *p*-C of Ph), 133.76 (d, *o*-C of Ph, ² J_{PC} = 18.0), 133.79 (d, *ipso*-C of Ph, J_{PC} = 38.78) and 196.79 (d, *cis*-CO, ² J_{PC} = 7.00 Hz). Mass spectrum: m/z 640 (M^+), 611 (M^+ – CO), 583 (M^+ – 2CO), 555 (M^+ – 3CO), 527 (M^+ – 4CO), 499 (M^+ – 5CO), 445 (M^+ – 5CO – C₃H₄N) and 369 (M^+ – 5CO – C₃H₄N) – CS₂).

With IC₃H₆CN. The synthesis and work-up were similar to those used in the preparation of complex 4a. The complex [W(CO)₅{PPh₂(CS₂C₃H₆CN)}] 4g was isolated in 82% yield as a red microcrystalline solid. IR (thf, v_{CO}): 2073m and 1934vs cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 60.51 (J_{WP} = 252.8 Hz); ¹H (200 MHz), δ 1.96 (m, 2 H, SCH₂CH₂), 2.37 (t, 2 H, CH₂CN, J_{HH} = 10.8), 3.49 (t, 2 H, SCH₂, J_{HH} = 9.21 Hz), 7.53 (m, 6 H, Ph) and 7.68 (m, 4 H, Ph); ¹³C (50 MHz), δ 17.05 (SCH₂CH₂), 23.86 (CH₂CN), 35.87 (SCH₂), 129.11 (d, m-C of Ph, J_{PC} = 9.35), 131.74 (s, p-C of Ph), 134.28 (d, o-C of Ph, J_{PC} = 12.3), 134.22 (d, ipso-C of Ph, J_{PC} = 39.5), 197.51 (d, cis-CO, $^2J_{PC}$ = 7.00) and 199.03 (d, CS₂, J_{PC} = 25.50 Hz). Mass spectrum: m/z 654 (M⁺), 625 (M⁺ - CO), 597 (M⁺ - 2CO), 569 (M⁺ - 3CO), 541 (M⁺ - 4CO), 513 (M⁺ - 5CO - C₄H₆N - CS₂) (Found: C, 40.25; H, 2.70; N, 2.30. C₂₂H₁₆NO₅PS₂W requires C, 40.45; H, 2.45; N, 2.15%).

With MeCOCI. The synthesis and work-up were similar to those used in the preparation of complex 4a. The complex [W(CO)₅{PPh₂(CS₂COMe)}] 5a was isolated in 85% yield as a green microcrystalline solid. IR (thf, v_{CO}): 2073m, 1936vs and 1726s cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 67.64 (J_{WP} = 246.3 Hz); ¹H (200 MHz), δ 2.40 (s, 3 H, CH₃), 7.53 (m, 6 H, Ph) and 7.68 (m, 4 H, Ph); ¹³C (50 MHz), δ 33.47 (CH₃), 128.49 (d, m-C of Ph, $^{3}J_{PC}$ = 8.0), 131.15 (s, p-C of Ph), 132.3 (d, ipso-C of Ph, J_{PC} = 39.5), 133.68 (d, o-C of Ph, $^{2}J_{PC}$ = 12.3), 170.0 (COCH₃), 196.32 (d, cis-CO, $^{2}J_{PC}$ = 7.00), 196.47 (d, CS₂, J_{PC} = 25.50) and 226.00 (d, trans-CO, $^{2}J_{PC}$ = 7.40 Hz).

With PhCOCI. The synthesis and work-up were similar to those used in the preparation of complex 4a. The complex [W(CO)₅{PPh₂(CS₂COPh)}] 5b was isolated in 87% yield as a green microcrystalline solid. IR (thf, v_{CO}): 2073m, 1933vs and 1726s cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 67.46 (J_{WP} = 246.8 Hz); ¹H (200 MHz), δ 7.33–7.77 (m, 15 H, Ph); ¹³C (50 MHz), δ 127.6–135.4 (Ph), 168.3 (COPh), 196.40 (d, cis-CO, $^2J_{PC}$ = 7.00) and 197.00 (d, CS₂, J_{PC} = 25.50 Hz). Mass spectrum: m/z 690 (M^+), 661 (M^+ – CO), 634 (M^+ – 2CO), 607 (M^+ – 3CO), 579 (M^+ – 4CO), 551 (M^+ – 5CO) 445 (M^+ – 5CO – PhCO – CS₂).

With [Re(CO)₅Br]. A mixture of [Re(CO)₅Br] (0.41 g, 1 mmol) and complex 3 (0.71 g, 1 mmol) in thf (50 cm³) was heated to reflux for 1 h, the solution was cooled and the solvent was removed in vacuo. Recrystallization using cold 1:1 MeOH-CH₂Cl₂ gave the red crystalline product 6 (0.53 g, 62%). IR (KBr, v_{CO}): 2071m, 1988s, 1980m and 1923vs cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 53.4 (J_{WP} = 240.9 Hz); ¹H (200 MHz), δ 7.33 (m, δ H, Ph) and 7.66 (m, 4 H, Ph); ¹³C (50 MHz), δ 129.6 (d, m-C of Ph, J_{PC} = 9.72), 132.3 (s, p-C of Ph), 134.6 (d, o-C of Ph, J_{PC} = 12.2) and 134.9 (d, ipso-C of Ph, J_{PC} = 36.6 Hz). Mass spectrum: m/z 884 (M^+ − CO), 856 (M^+ −

2CO), 828 (M^+ – 3CO), 800 (M^+ – 4CO), 772 (M^+ – 5CO), 744 (M^+ – 6CO), 716 (M^+ – 7CO), 688 (M^+ – 8CO), 660 (M^+ – 9CO) and 631 (M^+ – 10CO) (Found: C, 30.50; H, 1.55. C₂₃H₁₀O₁₀PReS₂W requires C, 30.30; H, 1.10%).

With [W(pip)₂(CO)₄]. Solid [W(pip)₂(CO)₄] (0.384 g, 1 mmol) was added to a solution of 3 (0.71 g, 1 mmol) in MeCN (50 cm³). After the solution was heated to reflux for 2 h, the IR spectrum indicated that the reaction was complete. The solution was cooled and the solvent was removed in vacuo. Recrystallization using cold MeOH−CH₂Cl₂ (1:1) gave the yellow crystalline product 7 (0.62 g, 84% yield). IR (KBr, v_{CO}): 1987m, 1854m, 1830vs, 1800vs and 1783s cm⁻¹; $v_{C=N}$ 1476m cm⁻¹. NMR (CD₃CN): ¹H (200 MHz), δ 1.21 (tt, 12 H, CH₃, ³ J_{NH} = 1.87, J_{HH} = 7.3), 1.59 (m, 6 H, NCH₂CH₂), 3.15 (q, 8 H, NCH₂CH₃), J_{HH} = 7.3 Hz), 3.82 (m, 4 H, NCH₂CH₂); ¹³C (50 MHz), δ 7.55 (CH₃), 24.68 (NCH₂CH₂CH₂), 25.99 (NCH₂CH₂), 47.53 (NCH₂), 52.89 (NCH₂CH₃), 204.01 (CO), 212.98 (CS₂) and 213.83 (CO). Mass spectrum: m/z 716 (M^+ + NEt₄) and 688 (M^+ + NEt₄ − CO) (Found: C, 36.70; H, 5.25; N, 4.85. C₁₈H₃₀N₂O₄S₂W requires C, 36.85; H, 5.15; N, 4.80%).

With CH₂I₂. Diiodomethane (0.1 cm³, 3 mmol) was added slowly to a solution of 3 (0.71 g, 1 mmol) in CH₂Cl₂ (20 cm³) at room temperature and the solution was stirred for 5 min. The solvent was removed in vacuum and the residue was extracted with hexane, and the extracts were filtered through Celite. The filtrate was concentrated to 5 cm³ and stored at -18 °C for 12 h to give the red-brown crystalline product [{W(CO)₅(PPh₂CS₂)}₂(μ-CH₂)] 8 (0.48 g, 0.41 mmol, 82%). IR (CH₂Cl₂, ν_{CO}): 2070m and 1937vs cm⁻¹. NMR (CDCl₃): 31 P (81 MHz), δ 59.55 (J_{WP} = 250.96 Hz); 1 H (200 MHz), δ 5.01 (s, 2 H, CH₂) and 7.40–7.66 (m, 10 H, Ph); 13 C (50 MHz), δ 42.7 (CH₂), 128.45 (d, *m*-C of Ph, $^{3}J_{PC}$ = 8.3), 131.32 (s, *p*-C of Ph), 133.63 (d, *o*-C of Ph, $^{2}J_{PC}$ = 11.8), 133.3 (d, *ipso*-C of Ph, J_{PC} = 46), 196.74 (d, *cis*-CO, $^{2}J_{PC}$ = 6.50), 198.50 (d, CS₂, J_{PC} = 25.50) and 235.96 (d, *trans*-CO, $^{2}J_{PC}$ = 5.00 Hz). Mass spectrum: m/z 1073 (M^{+} – 4CO), 1045 (M^{+} – 5CO), 1017 (M^{+} – 6CO), 988 (M^{+} – 7CO), 960 (M^{+} – 8CO), 932 (M^{+} – 9CO) and 904 (M^{+} – 10CO) (Found: C, 37.40; H, 1.95. C₃₇H₂₂O₁₀P₂S₄W₂ requires C, 37.50; H, 1.85%).

With ICH₂CH₂I. The synthesis and work-up were similar to those used in the preparation of complex 8. The complex [{W(CO)₅(PPh₂CS₂)}₂(μ-CH₂CH₂)] 9 was isolated in 80% yield as a red-brown microcrystalline solid. IR (CH₂Cl₂, ν_{CO}): 2074m and 1936vs cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 61.27 ($J_{WP} = 254.05 \text{ Hz}$); ¹H (200 MHz), δ 4.08 (s, 4 H, CH₂), 7.45 (m, 6 H, Ph) and 7.78 (m, 4 H, Ph); ¹³C (50 MHz), δ 61.3 (CH₂), 128.7 (d, m-C of Ph, $^{3}J_{PC} = 10.05$), 131.56 (s, p-C of Ph), 133.58 (d, o-C of Ph, $^{2}J_{PC} = 10.0$), 133.5 (d, ipso-C of Ph, $J_{PC} = 36.6$), 196.55 (d, cis-CO, $^{2}J_{PC} = 7.00$), 198.26 (d, CS₂, $J_{PC} = 25.55$) and 229.36 (d, trans-CO, $^{2}J_{PC} = 7.40 \text{ Hz}$). Mass spectrum: m/z 1056 ($M^{+} - 5$ CO), 1028 ($M^{+} - 6$ CO), 1000 ($M^{+} - 7$ CO), 972 ($M^{+} - 8$ CO), 944 ($M^{+} - 9$ CO) and 916 ($M^{+} - 10$ CO). With ICH₂CH₂CH₂I. The synthesis and work-up were similar to those used in the preparation of complex 8. Two

similar to those used in the preparation of complex 8. Two complexes were isolated, $[\{W(CO)_5(PPh_2CS_2)\}_2(\mu CH_2CH_2CH_2$] 10a (56%) and $[W(CO)_5\{PPh_2CS_2(CH_2)_3I\}]$ 10b (18%). If a CH₂Cl₂ solution of 3 was added to C₃H₆I₂ in excess, complex 10b was obtained as the only product. The spectroscopic data of the two complexes 10a and 10b were distinguishable. Therefore, no attempt was made to separate the two complexes. 10a: IR (CH₂Cl₂, v_{CO}) 2070m and 1931vs cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 59.64 ($J_{WP}=250.13$ Hz); ¹H (200 MHz), δ 1.97 (m, 2 H, CH₂CH₂CH₂), 3.34 (m, 4 H, SCH₂), 7.50 (m, 6 H, Ph) and 7.66 (m, 4 H, Ph); ¹³C (50 MHz), δ 24.95 (CH₂CH₂CH₂), 35.86 (SCH₂), 128.44 (d, m-C of Ph, ${}^{3}J_{PC} = 9.75$), 131.06 (s, p-C of Ph), 133.45 (d, o-C of Ph, $^{2}J_{PC} = 11.85$), 133.65 (d, *ipso-C* of Ph, $J_{PC} = 38.7$), 196.93 (d, cis-CO, ${}^2J_{PC} = 7.00$), 198.65 (d, CS₂, $J_{PC} = 24.50$) and 237.20 (d, trans-CO, ${}^2J_{PC} = 7.00$ Hz). Mass spectrum: m/z 1184 (M^+ – CO), 1016 (M^+ – 7CO), 988 (M^+ – 8CO), 960 (M^+ –

Table 1 Crystal data and refinement details for complexes 2, 3 and 4a

	$[NEt_4][PPh_2CS_2]$ 2	$[NEt_4][W(CO)_5(PPh_2CS_2)]$ 3	$[W(CO)_5(PPh_2CS_2Me)]$ 4a
Formula	$C_{21}H_{10}NPS_2$	$C_{26}H_{30}NO_5PS_2W$	$C_{19}H_{13}O_{5}PS_{2}W$
M	371.41	715.48	600.25
Crystal system	Monoclinic	Triclinic	Triclinic
Crystal size (mm)	$0.30 \times 0.30 \times 0.40$	$0.40 \times 0.50 \times 0.50$	$0.30 \times 0.30 \times 0.40$
Space group	$P2_1$	PŢ	$P\overline{1}$
a/Å	10.244(4)	10.688(3)	9.177(5)
$b/ ext{\AA}$	9.877(4)	11.0697(19)	9.403(3)
c/Å	11.124(3)	12.7850(16)	12.461(6)
α/°		88.255(12)	90.00(3)
β/°	102.020(23)	81.870(16)	103.85(4)
γ/°		74.081(17)	94.79(3)
$U/Å^3$	1100.8(6)	1440.0(5)	1040.1(8)
Z	2	2	2
$D_{\rm c}/{\rm g~cm^{-3}}$	1.121	1.650	1.917
$\mu(Mo-K\alpha)/mm^{-1}$	0.3245	4.32	5.9663
F(000)	548	708	576
$2\theta_{\max}/^{\circ}$	45	49.8	45
Unique data	1529	5052	2717
Indices explored	$\pm h(10)$, $+k(10)$, $+l(11)$	$\pm h(11)$, $+k(13)$, $\pm l(15)$	$\pm h(9)$, $+k(10)$, $\pm l(13)$
Data with $F_0^2 > 2\sigma(F_0^2)$	1180	4557	2442
Parameters refined	202	326	253
R^a	0.062	0.028	0.041
R' b	0.073	0.025	0.041
Transmission (min., max.)	1.000, 1.000	0.800, 0.999	0.523, 1.000
Quality-of-fit indicator ^c	1.52	2.66	3.66
(D-map) max., min. residual electron density (e Å ⁻³)	-0.20, 0.44	-0.78, 0.78	-1.74, 1.54

 ${}^{a}R = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|. \quad k' = [\Sigma w(|F_{o}| - |F_{c}|)^{2}/\Sigma w|F_{o}|^{2}]^{\frac{1}{2}}; \quad w = 1/\sigma^{2}(|F_{o}|). \quad \text{Quality-of-fit} = [\Sigma w(|F_{o}| - |F_{c}|)^{2}/(N_{obs} - N_{par})]^{\frac{1}{2}}.$

9CO) and 932 (M^+ – 10CO). **10b**: IR (CH₂Cl₂, v_{CO}) 2070m and 1931vs cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 59.08 (J_{WP} = 250.11 Hz); ¹H (200 MHz), δ 2.14 (t, 2 H, CH₂CH₂I), 3.17 (t, 2 H, CH₂I, J_{HH} = 6.7), 3.43 (t, 2 H, SCH₂, J_{HH} = 6.7 Hz), 7.48 (m, 6 H, Ph) and 7.70 (m, 4 H, Ph); ¹³C (50 MHz), δ 3.72 (CH₂I), 30.27 (CH₂CH₂I), 37.75 (SCH₂), 128.44 (d, m-C of Ph, ³ J_{PC} = 9.75), 131.06 (s, p-C of Ph), 133.45 (d, o-C of Ph, ² J_{PC} = 11.85), 133.65 (d, ipso-C of Ph, J_{PC} = 38.7), 196.93 (d, cis-CO, ² J_{PC} = 6.50), 198.96 (d, CS₂, J_{PC} = 25.50) and 236.55 (d, trans-CO, ² J_{PC} = 6.50 Hz). Mass spectrum: m/z 628 (M^+ – I), 600 (M^+ – I – 2CH₂ – 2CO), 516 (M^+ – I – 2CH₂ – 3CO) and 488 (M^+ – I – 2CH₂ – 4CO).

With BrCOCOBr. The synthesis and work-up were similar to those used in the preparation of complex 8. The pure complex $[\{W(CO)_5(PPh_2CS_2)\}_2(CO)_2]$ 11 was isolated in 40% yield as a green microcrystalline solid. IR (thf, v_{CO}): 2071m, 1933vs and 1705s cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 60.67 ($J_{WP} = 253.77 \text{ Hz}$); ¹H (200 MHz), δ 7.45–7.78 (m, 20 H, Ph). Mass spectrum: m/z 1226 (M^+), 946 ($M^+ - 10CO$), 471 ($M^+ - 10CO - WPPh_2CS_2CO$) and 369 ($M^+ - 10CO - WPPh_2CS_2CO - CO$) and 369 ($M^+ - 10CO - WPPh_2CS_2CO - CO - CS_2$).

Synthesis of [NEt₄][W(CO)₄(PPh₂CS₂)] 12.—Compound 3 (0.71 g, 1 mmol) was dissolved in thf (40 cm³) and the solution heated to reflux and the reaction monitored by IR spectroscopy. After refluxing for 1 h, the IR spectrum indicated that the starting material was completely consumed. The solution was cooled and the solvent was removed *in vacuo*. Recrystallization using cold hexane–CH₂Cl₂ (1:1) gave the red crystalline product 12 (yield, 0.62 g, 84%). IR (thf, v_{CO}): 1993m, 1879vs, 1859sh and 1833s cm⁻¹. NMR (CDCl₃): ³¹P (81 MHz), δ 24.23 (J_{WP} = 187.4 Hz); ¹H (200 MHz), δ 1.17 (tt, 12 H, CH₃, $^{3}J_{NH}$ = 1.87, J_{HH} = 7.3), 3.13 (q, 8 H, NCH₂, J_{HH} = 7.3 Hz), 7.43 (m, 6 H, Ph) and 7.69 (m, 4 H, Ph); ¹³C (50 MHz), δ 7.51 (CH₃), 52.8 (NCH₂), 129.06 (d, *m*-C of Ph, $^{3}J_{PC}$ = 7.16), 131.85 (s, *p*-C of Ph), 133.91 (d, *o*-C of Ph, $^{2}J_{PC}$ = 12.07), 134.61 (d, *ipso*-C of Ph, J_{PC} = 26.4), 205.70 (d, *cis*-CO, $^{2}J_{PC}$ = 7.50),

214.27 (d, CS_2 , $J_{PC} = 24.00$ Hz) and 264.63 (trans-CO). Mass spectrum: m/z 817.0 ($M^+ + NEt_4$), 550 ($M^+ - NEt_4 - Ph - CO - S$), 522 ($M^+ - NEt_4 - Ph - 2CO - S$) and 494 ($M^+ - NEt_4 - Ph - 3CO - S$) (Found: C, 43.80; H, 4.20; N, 2.00. $C_{25}H_{30}NO_4PS_2W$ requires C, 43.70; H, 4.40; N, 2.05%).

Single-crystal X-Ray Diffraction Analyses of 2, 3 and 4a.—Single crystals of 2, 3 and 4a suitable from X-ray diffraction analysis were all grown by recrystallization from hexane— CH_2Cl_2 (20:1). The diffraction data were collected at room temperature on an Enraf-Nonius CAD4 diffractometer equipped with graphite-monochromated Mo-K α (λ = 0.7107 Å) radiation. The raw intensity data were converted to structure factor amplitudes and their estimated standard deviations after correction for scan speed, background, Lorentz, and polarization effects. An empirical absorption correction, based on the azimuthal scan data, was applied to the data. Crystallographic computations were carried out on a Microvax III computer using the NRCC-SDP-VAX structure determination package. 9

A suitable single crystal of 2 was mounted on the top of a glass fibre with glue. Initial lattice parameters were determined from 24 accurately centred reflections with 20 values in the range 19.50-24.38°. Cell constants and other pertinent data were collected and are recorded in Table 1. Reflection data were collected using the θ -2 θ scan method. The final scan speed for each reflection was determined from the net intensity gathered during an initial prescan and ranged from 2 to 7° min⁻¹. The θ scan angle was determined for each reflection according to the equation 0.75 ± 0.25 tan θ . Three check reflections were measured every 30 min throughout the data collection and showed no apparent decay. The merging of equivalent and duplicate reflections gave a total of 1529 unique measured data in which 1180 reflections with $I > 2\sigma(I)$ were considered observed. The structure was first solved by using the heavyatom method (Patterson synthesis), which revealed the positions of P and S atoms. The remaining atoms were found in a series of alternating Fourier difference maps and least-squares refinements. The quantity minimized by the least-squares

View Article Online

Table 2 Selecte	ed bond distances	(Å) and angles (°) for con	npound 2
S(1)-C	1.658(15)	C(4)-C(5)	1.41(3)
S(2)-C	1.660(14)	C(5)-C(6)	1.375(23)
P-Ć	1.870(16)	C(7)-C(8)	1.392(23)
P-C(1)	1.833(13)	C(7)-C(12)	1.383(21)
P-C(7)	1.823(14)	C(8)–C(9)	1.370(23)
C(1)-C(2)	1.395(20)	C(9)-C(10)	1.37(3)
C(1)-C(6)	1.381(21)	C(10)-C(11)	1.38(3)
C(2)-C(3)	1.369(21)	C(11)-C(12)	1.36(3)
C(3)-C(4)	1.363(25)		
C-P-C(1)	101.5(7)	C(3)-C(4)-C(5)	118.4(14)
C-P-C(7)	106.8(7)	C(4)-C(5)-C(6)	119.3(15)
C(1)-P-C(7)	100.2(6)	C(1)-C(6)-C(5)	121.6(14)
S(1)-C-S(2)	128.7(10)	P-C(7)-C(8)	125.3(11)
S(1)C-P	120.6(8)	P-C(7)-C(12)	117.2(12)
S(2)-C-P	110.7(9)	C(8)-C(7)-C(12)	117.3(13)
P-C(1)-C(2)	124.3(11)	C(7)-C(8)-C(9)	121.3(15)
P-C(1)-C(6)	117.1(11)	C(8)-C(9)-C(10)	119.9(17)
C(2)-C(1)-C(6)	118.6(13)	C(9)-C(10)-C(11)	119.9(15)
C(1)-C(2)-C(3)	119.7(14)	C(10)-C(11)-C(12)	120.0(17)
C(2)-C(3)-C(4)	122.4(15)	C(7)-C(12)-C(11)	121.6(16)

Table 3 Selected bond distances (Å) and angles (°) for complex 3

W-P	2.5533(14)	C(4)-O(4)	1.152(6)
W-C(1)	2.004(5)	C(5)-O(5)	1.143(6)
W-C(2)	1.997(5)	C(11)-C(12)	1.393(7)
W-C(3)	2.001(5)	C(11)-C(16)	1.394(7)
W-C(4)	2.007(5)	C(12)-C(13)	1.386(7)
W-C(5)	2.025(5)	C(13)-C(14)	1.358(8)
P-C	1.872(5)	C(14)-C(15)	1.350(8)
P-C(11)	1.831(5)	C(15)-C(16)	1.383(7)
P-C(21)	1.833(5)	C(21)-C(22)	1.386(6)
S(1)-C	1.669(5)	C(21)-C(26)	1.379(6)
S(2)-C	1.650(5)	C(22)-C(23)	1.389(7)
C(1)-O(1)	1.168(7)	C(23)-C(24)	1.375(7)
C(2)-O(2)	1.142(6)	C(24)-C(25)	1.364(7)
C(3)-O(3)	1.157(7)	C(25)-C(26)	1.393(7)
P-W-C(1)	87.89(14)	WP-C(21)	119.26(15)
P-W-C(2)	175.77(14)	C-P-C(11)	106.68(21)
P-W-C(3)	93.33(14)	C-P-C(21)	102.59(20)
P-W-C(4)	97.49(13)	C(11)-P-C(21)	102.13(21)
P-W-C(5)	87.02(14)	P-C-S(1)	112.7(3)
C(1)-W-C(2)	91.82(22)	P-C-S(2)	119.6(3)
C(1)-W-C(3)	175.53(21)	S(1)-C-S(2)	127.6(3)
C(1)-W-C(4)	89.49(21)	W-C(1)-O(1)	176.8(4)
C(1)-W-C(5)	92.99(22)	WC(2)O(2)	178.8(5)
C(2)-W-C(3)	87.28(22)	W-C(3)-O(3)	175.5(4)
C(2)-W-C(4)	86.73(19)	W-C(4)-O(4)	174.8(4)
C(2)-W-C(5)	88.78(20)	W-C(5)-O(5)	177.7(4)
C(3)-W-C(4)	86.09(21)	P-C(11)-C(12)	119.7(4)
C(3)-W-C(5)	91.37(22)	P-C(11)-C(16)	122.2(4)
C(4)-W-C(5)	174.93(19)	P-C(21)-C(22)	120.7(3)
W-P-C	112.22(15)	P-C(21)-C(26)	120.6(3)
W-P-C(11)	112.65(15)		

program was $\Sigma w(|F_o|-|F_c|)^2$, where w is the weight of a given operation. The analytical forms of the scattering factor tables for the neutral atoms were used. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the structure factor calculations in their expected positions on the basis of idealized bonding geometry but were not refined in least squares. The NEt₄ cation was found disordered and the refinement was carried out with 50% occupancy for the disordered group. The final residuals of this refinement were R=0.062 and R'=0.073. Final values of selected bond distances and angles are listed in Table 2.

The procedures for 3 and 4a were similar to those for 2. The unit-cell constants were also determined from 24 accurately centred reflections. Cell constants and other pertinent data are collected in Table 1. The final residuals of the refinements were

Table 4	Selected bond distances	(Å) and angles (°) for co	omplex 4a
W-P	2.533(3)	C(6)-O(6)	1.217(19)
W-C(3)	1.970(14)	C(7)-O(7)	1.124(15)
W-C(4)	2.014(12)	C(11)-C(12)	1.392(17)
W-C(5)	1.967(16)	C(11)-C(16)	1.428(17)
W-C(6)	1.932(16)	C(12)-C(13)	1.393(20)
W-C(7)	2.008(12)	C(13)-C(14)	1.35(3)
P-C(1)	1.879(11)	C(14)-C(15)	1.40(3)
P-C(11)	1.823(11)	C(15)-C(16)	1.360(19)
P-C(21)	1.826(11)	C(21)– $C(22)$	1.387(17)
S(1)-C(1)	1.638(12)	C(21)-C(26)	1.402(15)
S(2)-C(1)	1.673(11)	C(22)-C(23)	1.373(19)
S(2)-C(2)	1.780(13)	C(23)-C(24)	1.364(21)
C(3)-O(3)		C(24)-C(25)	1.345(23)
C(4)-O(4)		C(25)-C(26)	1.371(19)
C(5)-O(5)	1.185(19)		
P-W-C(2		W-P-C(21)	121.0(4)
P-W-C(4		C(1)-P-C(11)	103.8(5)
P-W-C(:		C(1)-P-C(21)	102.6(5)
P-W-C(6) 96.0(4)	C(11)-P- $C(21)$	101.1(5)
P-W-C(C(1)-S(2)-C(2)	103.5(7)
C(3)-W-		P-C(1)-S(1)	117.4(6)
C(3)-W-	` '	P-C(1)-S(2)	114.7(6)
C(3)-W-		S(1)-C(1)-S(2)	127.7(6)
C(3)-W-		W-C(3)-O(3)	176.9(11)
C(4)-W-	` '	W-C(4)-O(4)	177.8(11)
C(4)-W-		W-C(5)-O(5)	179.4(10)
C(4)-W-	• • • • • • • • • • • • • • • • • • • •	W-C(6)-O(6)	172.7(10)
C(5)-W-		W-C(7)-O(7)	176.3(10)
C(5)-W-		P-C(11)-C(12)	124.5(9)
C(6)-W-		P-C(11)-C(16)	116.2(9)
W-P-C(P-C(21)-C(22)	120.5(8)
W-P-C(11) 115.8(4)	P-C(21)-C(26)	121.4(9)

Table 5 Atomic coordinates for compound 2 with estimated standard deviations (e.s.d.s) in parentheses

Atom	x	y	z
S(1)	0.3733(4)	0.9441(5)	0.7754(4)
S(2)	0.2032(5)	1.0553(7)	0.9404(4)
P`´	0.2122(4)	1.2063(6)	0.7180(4)
C	0.2679(13)	1.0543(16)	0.8154(12)
C(1)	0.0416(12)	1.1583(15)	0.6441(12)
C(2)	-0.0094(14)	1.0273(14)	0.6434(14)
C(3)	-0.1373(15)	1.0012(17)	0.5819(15)
C(4)	-0.2175(16)	1.0989(20)	0.5189(15)
C(5)	-0.1662(15)	1.2312(19)	0.5173(15)
C(6)	-0.0393(15)	1.2586(16)	0.5821(15)
C(7)	0.2928(12)	1.1970(16)	0.5867(13)
C(8)	0.2506(16)	1.1168(16)	0.4830(15)
C(9)	0.3134(18)	1.1217(20)	0.3857(15)
C(10)	0.4176(18)	1.209(3)	0.3883(18)
C(11)	0.4607(15)	1.2897(22)	0.4897(21)
C(12)	0.4003(14)	1.2819(17)	0.5874(16)
N	0.2406(12)	0.5796(15)	-0.0086(12)
C(13)	0.272(4)	0.439(5)	0.064(4)
C(13')	0.152(5)	0.475(6)	0.035(5)
C(14)	0.189(3)	0.381(4)	0.125(3)
C(15)	0.369(3)	0.630(4)	-0.032(3)
C(15')	0.354(4)	0.503(5)	-0.062(4)
C(16)	0.4259(21)	0.562(3)	-0.1281(19)
C(17)	0.123(5)	0.553(6)	-0.129(5)
C(17')	0.149(4)	0.667(5)	-0.101(4)
C(18)	0.088(3)	0.630(4)	-0.212(3)
C(19)	0.178(4)	0.690(5)	0.073(4)
C(19')	0.328(4)	0.674(5)	0.093(4)
C(20)	0.2602(23)	0.740(3)	0.1733(22)

R = 0.028 and R' = 0.025 for 3 and R = 0.041 and R' = 0.041 for 4a. Final values of selected bond distances and angles of 3 and 4a are listed in Tables 3 and 4. The atomic coordinates of 2, 3 and 4a are given in Tables 5-7.

Table 6 Atomic coordinates for complex 3 with e.s.d.s in parentheses

Atom	x	у	z
W	0.388 70(2)	0.283 81(2)	0.081 46(2)
P	0.174 96(12)	0.326 93(12)	0.209 54(9)
S(1)	0.294 42(15)	0.374 69(16)	0.393 05(11)
S(2)	0.141 71(20)	0.184 94(15)	0.414 90(12)
Ĉ ´	0.204 6(5)	0.290 2(4)	0.349 4(4)
C(1)	0.427 2(5)	0.428 5(5)	0.148 5(4)
O(1)	0.449 7(4)	0.515 6(4)	0.183 0(3)
C(2)	0.562 4(5)	0.242 3(5)	-0.0104(4)
O(2)	0.661 4(3)	0.216 5(4)	-0.0634(3)
C(3)	0.347 0(5)	0.147 9(5)	0.004 8(4)
O(3)	0.325 5(4)	0.072 9(4)	-0.0457(3)
C(4)	0.319 1(4)	0.397 5(5)	-0.0347(4)
O(4)	0.286 8(4)	0.457 1(4)	-0.1066(3)
C(5)	0.471 0(5)	0.159 9(5)	0.188 7(4)
O(5)	0.521 2(4)	0.089 0(4)	$0.247\ 0(3)$
C(11)	0.066 5(4)	0.234 6(4)	0.178 4(3)
C(12)	0.113 8(5)	0.104 4(5)	0.169 0(4)
C(13)	0.035 6(6)	0.033 8(5)	0.139 1(4)
C(14)	-0.0879(6)	0.090 4(6)	0.118 1(4)
C(15)	-0.1353(5)	0.216 5(5)	0.127 1(4)
C(16)	$-0.061\ 0(5)$	0.290 5(5)	0.157 3(4)
C(21)	0.064 4(4)	0.486 5(4)	0.220 8(3)
C(22)	-0.0219(5)	0.526 2(5)	0.312 5(4)
C(23)	-0.1134(5)	0.643 2(5)	0.317 0(4)
C(24)	-0.1200(5)	0.720 7(5)	0.230 6(4)
C(25)	-0.0348(5)	0.682 9(5)	0.140 3(4)
C(26)	0.057 3(5)	0.565 9(5)	0.135 2(4)
N	0.304 2(4)	0.778 7(4)	0.474 1(3)
C(31)	0.428 2(7)	0.712 5(7)	0.407 6(5)
C(32)	0.483 2(8)	0.791 6(7)	0.326 7(6)
C(33)	0.195 3(7)	0.834 8(7)	0.409 7(6)
C(34)	0.171 0(7)	0.756 4(7)	0.329 2(6)
C(35)	0.259 4(7)	0.680 4(6)	0.545 9(5)
C(36)	0.341 8(7)	0.620 1(6)	0.622 9(5)
C(37)	0.328 8(8)	0.876 2(7)	0.536 4(5)
C(38)	0.215 3(8)	0.945 8(6)	0.615 9(5)

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Results and Discussion

Synthesis and Reactivities of [NEt₄][PPh₂CS₂] 2 and Synthesis of [NEt₄][W(CO)₅(PPh₂CS₂)] 3.—Although the anionic heteroallyl ligands containing phosphorus such as $R_2P(X)C(Y)NR^-$ or $R_2PC(Y)NR^-$ (X = O or S, Y = O or S) were synthesized by Kunze, Ambrosius and co-workers,² no crystal structures were reported and little effort was directed toward investigating the chemistry of metal complexes dialkylphosphinodithioformate containing the ligand, PR₂CS₂. We prepared the compound [NEt₄][PPh₂CS₂] 2, from the reaction of KPPh2 with CS2 in the presence of NEt4Br in thf at 0 °C. Recrystallization from CH₂Cl₂-MeOH (1:1) gave the product as a clear, red crystalline solid and the molecular structure of 2 was determined by X-ray diffraction. In order to compare the co-ordination chemistry of 2 with that of the anionic heteroallyl ligands R₂P(X)C(Y)NR⁻ $R_2PC(Y)NR^-$ (X = O or S, Y = O or S), we carried out the reaction of 2 with [W(CO)₅(MeCN)] in MeCN at room temperature. The reaction was monitored by ³¹P NMR spectroscopy and the monodentate P-co-ordinated complex [NEt₄][W(CO)₅(PPh₂CS₂)] 3, was observed as the sole

Treatment of [NEt₄][W(CO)₅(PPh₂)] 1 with CS₂ also afforded 3 in 87% yield. The analytical data of 3 are in agreement with the formulation. The FAB mass spectrum of 3 shows a base peak at m/z 845. The IR spectrum of 3 shows three v_{CO} stretchings at 2072, 1970 and 1937 cm⁻¹ in thf, a typical

Table 7 Atomic coordinates for complex 4a with e.s.d.s in parentheses

Atom	x	у	z
W	0.281 01(6)	-	
vv P	0.281 01(8)	0.262 34(6)	0.056 70(4)
-	- (-)	0.147 5(3)	0.244 16(25)
S(1)	0.668 5(4)	0.271 1(4)	0.294 3(3)
S(2)	0.598 0(4)	-0.0418(4)	0.308 1(3)
C(1)	0.553 5(11)	0.126 8(12)	0.288 5(9)
C(2)	0.798 1(14)	-0.0262(17)	0.333 0(11)
C(3)	0.246 2(13)	0.362 0(15)	$-0.085\ 1(12)$
O(3)	0.219 2(10)	0.417 2(11)	$-0.170\ 1(8)$
C(4)	0.083 4(14)	0.322 3(13)	0.076 7(8)
O(4)	$-0.026\ 3(10)$	0.360 1(10)	0.087 1(7)
C(5)	0.381 1(15)	0.444 3(14)	0.125 6(13)
O(5)	0.442 6(11)	0.553 5(11)	0.167 2(9)
C(6)	0.179 5(17)	0.092 3(13)	-0.0237(11)
O(6)	0.109 9(10)	-0.0048(10)	$-0.0840(8)^{'}$
C(7)	0.475 3(14)	0.203 5(14)	0.030 5(9)
O(7)	0.580 7(10)	0.170 8(12)	0.009 9(8)
C(11)	0.308 1(13)	0.247 9(12)	0.358 3(9)
C(12)	0.416 3(14)	0.293 1(14)	0.453 4(10)
C(13)	0.371 9(19)	0.365 5(17)	0.536 1(13)
C(14)	0.225 3(25)	0.385 4(16)	0.528 3(13)
C(15)	0.114 7(18)	0.338 8(17)	0.434 4(14)
C(16)	0.154 5(14)	0.272 8(14)	0.349 9(9)
C(21)	0.262 7(11)	-0.0304(12)	0.265 7(9)
C(22)	0.226 1(12)	-0.1317(13)	0.180 5(9)
C(23)	0.168 0(14)	-0.2662(14)	0.199 2(12)
C(24)	0.144 7(15)	-0.3050(15)	0.299 7(13)
C(25)	0.181 3(16)	-0.2067(17)	0.382 2(11)
C(26)	0.239 2(13)	-0.0704(13)	0.369 0(9)
` /			

pattern for a LM(CO)₅ unit in octahedral geometry. The ³¹P NMR spectrum of 3 exhibits a resonance at δ 59.08 with a tungsten satellite ($J_{WP}=238.24~Hz$) indicating phosphorus coordination of the ligand. From the X-ray diffraction study described below, the co-ordination of the ligand to the tungsten metal is established to be through the P atom.

Obviously, 3 is formed via abstraction of the proton by LiBuⁿ, followed by the addition of the resulting phosphido unit onto the carbon atom of CS₂. Such a strategy, namely, abstraction of a proton from the metal-co-ordinated phosphine has been reported for the synthesis of the phosphorus derivatives. 11 Until now, only one example 4 is known for the $S_2CP(SiMe_3)_2$ CI], obtained from the reaction of $[Zr(\eta^5 - \eta^5 - \eta^$ $C_5H_5)_2(PR_2)X]X$ (R = SiMe₃, X = Cl or Me) with CS₂, contains a R₂PCS₂ ligand chelating through the two sulfur atoms of the CS₂ moiety. Formation of complex 3 was observed in two different synthetic routes. This observation clearly indicates that 3 is a thermodynamic product. Thermolysis of 3 causes loss of CO and changes the co-ordination mode of the PPh₂CS₂ ligand (possibily via P,S-chelate described below). Therefore in a tungsten carbonyl complex with only one vacant co-ordination site, P-co-ordination seems to be more favourable than S-co-ordination for the PPh₂CS₂ ligand. Attempts to obtain a similar product from the reaction of 3 with CO₂ were unsuccessful. No reaction occurred under the same reaction conditions.

Reactions of 3 with Alkyl Halides.—To explore the reactivity of complex 3, we carried out reactions of 3 with several alkyl halides. The reaction of 3 with MeI in CH_2Cl_2 gave the neutral complex [W(CO)₅{PPh₂(CS₂Me)}] 4a. This red powder was isolated in 85% yield. Complex 4a is stable in refluxing MeCN or in refluxing C_6H_6 under N_2 . Hexane extraction of 4a followed by removal of solvent gave the analytically pure product. The spectroscopic and analytical data of 4a are in agreement with the formulation. The FAB mass spectrum of 4a

View Article Online

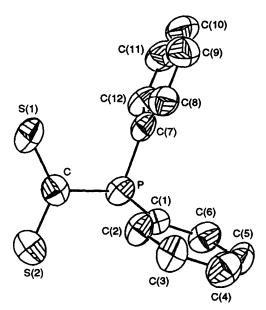


Fig. 1 An ORTEP ¹⁴ drawing with 50% thermal ellipsoids and atomnumbering scheme for [NEt₄][PPh₂CS₂] 2 with hydrogen atoms and the NEt₄ cation omitted for clarity

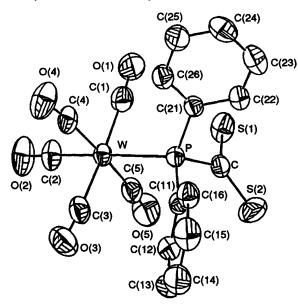


Fig. 2 An ORTEP ¹⁴ drawing with 50% thermal ellipsoids and atomnumbering scheme for [NEt₄][W(CO)₅(PPh₂CS₂)] 3 with hydrogen atoms and the NEt₄ cation omitted for clarity

shows a parent peak at m/z 600. The ¹H NMR spectrum of 4a exhibits a resonance at δ 2.71 attributed to the methyl protons. The corresponding resonance in the ¹³C NMR spectrum appears at δ 21.86.¹² Lack of coupling with ³¹P of this ¹³C resonance contrasts with the observation of a doublet resonance with ² J_{PC} = 14.7 Hz ¹³ for the compound [W(η^5 -C₅H₅)(CO₂){S₂C(Me)PMe₃}] where the methyl group is attached to the carbon atom. The ³¹P NMR spectrum of 4a shows a resonance at δ 59.05 (J_{WP} = 247.95 Hz), near to the ³¹P resonance of 3. On the basis of these spectroscopic data, it is likely that the alkylation takes place at one of the sulfur atoms. The structure is confirmed by an X-ray diffraction analysis. The other alkylated complexes [W(CO)₅{PPh₂(CS₂R)}] (R = Et, C₂H₄OH, C₃H₅, CH₂CN, C₂H₄CN, C₃H₆CN, 4b-4g) have been prepared similarly. Interestingly, the chemical shifts of the ³¹P resonances of all these complexes fall in the region δ 58-64 with J_{WP} varying from 245 to 252 Hz indicating similar structures. Although the difference is small, the ³¹P chemical

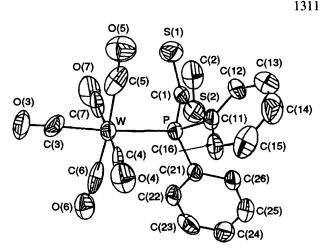


Fig. 3 An ORTEP ¹⁴ drawing with 50% thermal ellipsoids and atomnumbering scheme for [W(CO)₅{PPh₂(CS₂Me)}] 4a with hydrogen atoms omitted for clarity

shift moves downfield with increasingly electron-withdrawing groups attached to the phosphine ligand. Using this reaction, we can impart various functional groups into the diphenyl-diphosphinodithioformato ligand. Kunze^{2f} and Ambrosius^{2a} and co-workers have described the reactions of PPh₂H with RNCS to give PPh₂CSNRH (R = alkyl). The molecule displayed a bidentate co-ordination mode through P and S or N and S when bound to metal. Interestingly, the neutral phosphines PPh₂(CS₂Me) and PPh₂(CS₂C₃H₅), which are readily prepared by the alkylation of PPh₂CS₂ with iodomethane and allyl bromide, respectively, are less stable than the corresponding metal-co-ordinated ones.

No reaction was observed when complex 4a was treated with amines such as ethylamine, piperidine or other strong donor ligands such as Ph₂PCH₂PPh₂, PPh₃ or PhC≡CPh, even in refluxing toluene. Under photolytic condition the reaction of 4a with piperidine gave more than ten compounds. This reaction was not pursued further.

This alkylation reaction was extended to α,ω-diiodides for the synthesis of dinuclear complexes. The reaction of 3 with an excess of CH₂I₂ in CH₂Cl₂ gave the dinuclear complex $[\{W(CO)_5(PPh_2CS_2)\}_2(\mu-CH_2)]$ 8. The FAB mass spectrum of shows a base peak at m/z 904 corresponding to [{W(PPh₂CS₂)}₂(μ-CH₂)]⁺, formed by loss of ten CO groups from complex 8. The spectroscopic and analytical data of 8 are in agreement with the formulation. The ¹H NMR spectrum of 8 exhibits a resonance at δ 5.01 assignable to the CH₂ group and the corresponding ¹³C NMR signal is at δ 42.7. The ³¹P NMR spectrum of 8 shows a resonance at δ 59.55 ($J_{WP} = 250.96$ Hz). Two other dinuclear complexes [{W(CO)₅(PPh₂CS₂)}₂(μ-CH₂CH₂)] 9 and [{W(CO)₅(PPh₂CS₂)}₂(μ-CH₂CH₂CH₂)] 10a were prepared similarly. In the ³¹P NMR spectra, the resonances for 9 and 10a are at δ 61.3 ($J_{WP} = 254.05$ Hz) and δ 59.6 ($J_{WP} = 250.13 \text{ Hz}$), respectively. In the reaction of $C_3H_6I_2$ with 3, if C₃H₆I₂ was added to 3, the mononuclear complex $[W(CO)_5\{PPh_2CS_2(C_3H_6I)\}]$ 10b was also obtained as the minor product. The ratio of 10a to 10b was 5:1. If a solution of 3 was added at room temperature to C₃H₆I₂ in excess, complex 10b was obtained as the only product. The ¹H NMR spectrum of 10b exhibits a multiplet resonance at δ 2.14, two triplet resonances at δ 3.17 and 3.43 assignable to the centre CH₂, ICH₂ and SCH₂ units, respectively, and the corresponding ¹³C NMR signals are at δ 30.3, 3.7 and 37.8. The ³¹P NMR spectrum of 10b shows a resonance at δ 59.08 ($J_{WP} = 250.11$ Hz). From the reactions of 3 with these α, ω -diiodide species, it is observed that the rate of formation of the dinuclear product decreases as the chain length increases.

Structure Determination of [NEt₄][PPh₂CS₂] 2, [NEt₄][W(CO)₅(PPh₂CS₂)] 3 and [W(CO)₅(PPh₂(CS₂Me)]] 4a.—

Scheme 1 (i) CS_2 ; (ii) $PPh_2CS_2^-$; (iii) RX; (iv) RCOX; (v) $[Re(CO)_5Br]$; (vi) $[W(pip)_2(CO)_4]$; (vii) $(CH_2)_nI_2$; (viii) $(CH_2)_3I_2$; (ix) $C_2Br_2O_2$; (x) heat

The three complexes 2, 3 and 4a were also identified on the basis of their single-crystal X-ray diffraction analyses, as illustrated in Figs. 1, 2 and 3, respectively. Interatomic distances and angles of 2, 3 and 4a are recorded in Tables 2, 3 and 4, respectively. The two C-S bonds of 2 are equal [C-S(1) 1.66(2), C-S(2) 1.66(1) Å] and the P-C bond distance is 1.87(2) Å, indicating delocalization of the negative charge on CS₂. These C-S(1), C-S(2) and P-C bond distances in PPh₂CS₂ comparable to the corresponding bond lengths [1.669(5), 1.650(5), 1.872(5) Å] in $[NEt_4][W(CO)_5(PPh_2CS_2)]$ 3. The four atoms C, S(1), S(2), P are coplanar both in the free ligand 2 and in complex 3. In complexes 3 and 4a, it is clear that the coordination geometry about the tungsten atom can be described as distorted octahedral with a phosphorus co-ordination. The W-P distances were 2.553(1) Å for 3 and 2.533(3) Å for 4a. As expected, the CS₂ group on the phosphorus makes the M-P bond shorter by inducing more phosphorus s character into that bond. 15 In complex 3 the CS₂ unit is attached to the phosphorus atom through carbon. The W-S(1) and W-S(2) distances of 3 [4.056(2) and 4.946(2) Å] and 4a [4.041(4) and 4.846(4) Å] also indicate the absence of a bonding interaction between the tungsten and the two sulfur atoms. The W-C-O angles are from 174.8(4) to 178.5(5)° for 3 and from 172.7(10) to 179.4(10)° for 4a. The W-C distances of the W-CO groups are between 1.997(5) and 2.025(5) Å for 3 and between 1.932(16) and 2.014(12) Å for 4a, and the C-O distances are 1.142(6)-1.168(7) for 3 and 1.124(15)-1.217(19) for 4a.

Reactions of 3 with Acyl Halides.—Acyl groups, similarly to alkyl groups, are easily attached to the CS₂ of 3. For example, treatment of the complex 3 with excess acetyl chloride resulted in an immediate reaction from which the green, hexane-soluble complex, [W(CO)₅{PPh₂(CS₂COMe)}] 5a, was obtained in 85% yield. The ¹H NMR spectrum of 5a exhibits a singlet at δ 2.40 attributed to the methyl protons and the corresponding ^{13}C NMR signal is at δ 33.4. The ^{31}P NMR spectrum of 5a shows a resonance at δ 67.6 ($J_{WP} = 246.3$ Hz). The complex [W(CO)₅{PPh₂(CS₂COPh)}] **5b** was prepared similarly in 87% yield. In the ³¹P NMR spectrum of 5b, the resonance appeared at δ 67.46 ($J_{WP} = 246.8$ Hz). The downfield shift of the ³¹P resonance compared to that of 4a-4g may be caused by the presence of the electron-withdrawing acyl group -COR on the phosphine. This type of reaction was extended to oxalyl bromide for diacylation. The reaction of 3 with excess BrCOCOBr in CH₂Cl₂ gave a neutral complex [{W(CO)₅-(PPh₂CS₂)₂(CO)₂] 11. This green, air- and water-sensitive powder was isolated in only 40% yield. Under N_2 and at low temperature, complex 11 is stable in n-hexane and C_6H_6 . The FAB mass spectrum of 11 also shows a base peak at m/z 946 corresponding to $[\{W(PPh_2CS_2)\}_2(CO)_2]^+$, formed by loss of ten CO groups from complex 11.

Reactions of 3 with Metal Complexes.—Reaction of anionic complex 3 with [Re(CO)₅Br] afforded the dinuclear complex, [(OC)₅W(µ-PPh₂CS₂)Re(CO)₅] 6. The FAB mass spectrum of 6 shows a base peak at m/z 631 corresponding to [W(μ -PPh₂CS₂)Re]⁺, formed by loss of ten CO groups from complex 6. In the IR spectrum of 6, two sets of absorptions are clearly distinguishable, the three absorptions at 2141, 2037 and 1977 cm⁻¹ which are assigned to the v_{CO} of Re(CO)₅ are red-shifted ¹⁶ relative to those of [Re(CO)₅Br]; the other two absorptions at 2068 and 1933 cm⁻¹, assigned to the v_{CO} of W(CO)₅ show blue-shifting relative to that for 3. The ³¹P NMR spectrum of 6 exhibits a resonance at δ 53.47 with a tungsten satellite (J_{WP} = 240.9 Hz) indicating phosphorus co-ordination of the ligand to the tungsten. The PPh₂CS₂ ligand serves as a bridge in complex 6, in which the phosphorus bonds to the tungsten centre and one of the sulfur atoms bonds to the rhenium centre.

View Article Online

Attempts to prepare a W-W dinuclear complex using the R₂PCS₂ unit of 3 as the bridging ligand led to cleavage of the P-CS₂ bond. In the reaction of 3 and [W(pip)₂(CO)₄] the CS₂ of the Ph₂PCS₂ ligand in complex 3 inserted into the metalnitrogen bond of [W(pip)2(CO)4] to yield the alkyldithiocarbamate complex [NEt₄][W(CO)₄(S₂CNC₅H₁₀)] 7 and [W(CO)₅(PPh₂H)]. A recent article ¹⁷ reported the synthesis of dithiocarbamate metal complexes of the type [NEt₄][M(Et₂- $NCS_2(CO)_4$ (M = Mo or W) from the reaction of [M(CO)₆] with Na(S₂CNEt₂) in the presence of NEt₄Cl. The IR spectrum of 7 shows four terminal carbonyl stretchings at 1984, 1865, 1834 and 1794 cm⁻¹. The band at 1476 cm⁻¹ for 7 is assigned to the C=N group. In the ¹³C NMR spectrum, the CS₂ group shows a resonance at δ 212.98. This assignment is supported by a HMBC (1H-detected heteronuclear multiple bond correlation) experiment, ¹⁸ i.e. the α-protons of piperidine show long-range couplings with the carbon atom of CS₂.

Thermal Reaction of 3.—When compound 3 was heated in thf, decarbonylation occurred, affording a stable compound which can be formulated as [NEt₄][W(CO)₄(PPh₂CS₂)] 12 based on its analytical and spectroscopic data (Scheme 1). The IR spectrum of 12 shows a different pattern from that of M(CO)₅L. The four absorptions at 1993, 1879, 1859 and 1833 cm⁻¹ are typical for a M(CO)₄¹⁷ unit in pseudo-octahedral geometry. The ³¹P NMR spectrum of 12 shows a resonance at δ 24.23 again with a tungsten satellite ($J_{WP} = 187.4$ Hz) indicating phosphorus co-ordination. The significant upfield shift of the ^{31}P resonance of 12 relative to that of 3 (δ 59.08) suggests a distinctively different chemical and electronic environment for the R₂PCS₂ ligand and supports the structure depicted in Scheme 1. Attempts to grow single crystals of complex 12 were unsuccessful. We believe that in 12 the R₂PCS₂ behaves as a bidentate ligand co-ordinating to the metal through the phosphorus and one of the sulfur atoms. Complexes with co-ordination via P and S atoms in the similar heteroallylic Ph₂PCSNR⁻ ligand, have been reported by Kunze, Ambrosius and co-workers.² Attempted reaction of complex 12 with MeI did not give any product at room temperature, and decomposition occurred at elevated temperature.

Conclusion

The R₂PCS₂ - ligand of [NEt₄][W(CO)₅(PPh₂CS₂)] is bonded to the metal through the phosphorus atom. Alkylation and acylation reactions of 3 with various alkyl and acyl halides take place at the sulfur atom leading to a number of neutral complexes. The reactions of 3 with organic α,ω-diiodide reagents give dinuclear complexes, in which the two metal atoms are bridged by the chelating phosphorus ligand. Treatment of 3 with [Re(CO)₅Br] gave a dinuclear heterobimetallic complex, in which the bridging R₂PCS₂ ligand is bound to the two metal atoms through the phosphorus and one of the sulfur atoms. Thermolysis of 3 causes decarbonylation and leads the R₂PCS₂⁻ ligand to bind to the tungsten metal centre through the phosphorus and one of the sulfur atoms.

Acknowledgements

We thank the National Science Council of the Republic of China for support.

References

(a) C. Bianchini, A. Meli and A. Orlandini, Inorg. Chem., 1982, 21, 4161; (b) R. Uson, A. Laguna, M. Laguna and M. L. Castilla, J. Chem. Soc., Dalton Trans., 1987, 3017; (c) D. Miguel and V. Riera, J. Organomet. Chem., 1991, 412, 127; (d) R. C. George, J. C. Terrence, M. J. Suzanne, R. R. Warren and G. T. Keith, J. Chem. Soc., Chem. Commun., 1976, 475; (e) S. M. Boniface and G. R. Clark,

- J. Organomet. Chem., 1980, 188, 263; (f) C. Bianchini, A. Meli, A. Orlandini and G. Scapacci, J. Organomet. Chem., 1981, 215, C59; (g) D. M. Baird, P. E. Fanwick and T. Barwick, Inorg. Chem., 1985, 24, 3753; (h) B. Alvarez, D. Miguel and V. Riera, Organometallics, 1991, 10, 384; (i) D. Miguel, J. A. Perez-Martinez and V. Riera, J. Organomet. Chem., 1991, 420, C12; (j) B. Alvarez, C. Garcia-Granda, Y. Jeannin, D. Miguel, J. A. Miguel and V. Riera, Organometallics, 1991, 10, 3005; (k) A. Galindo, E. Gutierrez-Puebla, A. Monge, M. A. Munoz, A. Pastor, C. Ruiz and E. Carmona, J. Chem. Soc., Dalton Trans., 1992, 2307; (l) D. Miguel, J. A. Perez-Martinez and V. Riera, Organometallics, 1993, 12, 1394. 2 (a) H. P. M. M. Ambrosius, W. P. Bosman and J. A. Cras,
- J. Organomet. Chem., 1981, 215, 201; (b) H. P. M. M. Ambrosius, A. H. I. M. Van Der Linden and J. J. Steggerda, J. Organomet. Chem., 1980, 204, 211; (c) H. P. M. M. Ambrosius, F. A. Cotton, L. R. Falvello, H. T. J. M. Hintzen, T. J. Melton, W. Schwotzer, M. Tomas and J. G. M. van der Linden, Inorg. Chem., 1984, 23, 1611; (d) H. P. M. M. Ambrosius, J. Willemse, J. A. Cras, W. P. Bosman and J. H. Noordik, *Inorg. Chem.*, 1984, 23, 2672; (e) H. P. M. M. Ambrosius, A. W. Van Hemert, W. P. Bosman, J. H. Noordik and G. J. A. Ariaans, *Inorg. Chem.*, 1984, 23, 2678; (f) A. Antoniadis, U. Kunze and M. Moll, J. Organomet. Chem., 1982, 235, 177; (g) U. Kunze, A. Bruns and D. Rehder, J. Organomet. Chem., 1984, 268, 213; (h) U. Kunze and A. Bruns, J. Organomet. Chem., 1985, 292, 349; (i) U. Kunze, H. Jawad, R. Burghardt, R. Tittmann and V. Kruppa, J. Organomet. Chem., 1986, 302, C30.
- 3 D. Coucouvanis, Prog. Inorg. Chem., 1970, 11, 233; R. Colton, G. R. Scollary and I. B. Tomkins, Aust. J. Chem., 1968, 21, 15; R. Colton and G. R. Scollary, Aust. J. Chem., 1968, 21, 1427; B. J. Brisdon and G. F. Griffin, J. Chem. Soc., Dalton Trans., 1975, 1999; J. W. McDonald, J. L. Corbin and W. E. Newton, J. Am. Chem. Soc., 1975, 97, 1970; J. L. Templeton and B. C. Ward, Inorg. Chem., 1980, 19, 1753; J. Am. Chem. Soc., 1980, 102, 6568; 1981, 103, 3743; J. L. Templeton, P. B. Winston and B. C. Ward, J. Am. Chem. Soc., 1981, 103, 7713; J. L. Templeton and S. J. N. Burgmayer, Organometallics, 1982, 1, 1007; K. B. Shiu and K. H. Yih, J. Organomet. Chem., 1991, 420, 359; G. L. Hillhouse and B. L. Haymore, J. Am. Chem. Soc., 1982, 104, 1537; E. Carmona, L. Contreras, L. J. Sanchez, E. Gutierrez-Puebla and A. Monga, J. Chem. Soc., Dalton Trans., 1989, 2003; P. L. Baker and S. G. Fraser, Transition Met. Chem., 1986, 11, 273; E. M. Armstrong, P. K. Baker and M. G. B. Drew, *Organometallics*, 1988, 7, 319; E. M. Armstrong, P. K. Baker, K. R. Flower and M. G. B. Drew, J. Chem. Soc., Dalton Trans., 1990, 2535; P. K. Baker, K. R. Flower, M. E. Harman and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1990, 3169.
- 4 E. Hey, M. F. Lappert, J. L. Atwood and S. G. Bott, J. Chem. Soc., Chem. Commun., 1987, 421.
- 5 K. H. Yih, Y. C. Lin, M. C. Cheng and Y. Wang, J. Chem. Soc., Chem. Commun., 1993, 1380.
- 6 D. J. Darensbourg and R. L. Kump, Inorg. Chem., 1978, 17, 2680.
- 7 G. Dolecetti and J. R. Norton, Inorg. Synth., 1976, 16, 35.
- M. A. A. Beg, Bull. Chem. Soc. Jpn., 1976, 40, 15.
 E. J. Gabe, F. L. Lee and Y. Le Page, Crystallographic Computing 3, eds. G. M. Sheldrick C. Kruger and R. Goddard, Clarendon Press, Oxford, 1985, p. 167.
- 10 International Tables for X-Ray Crystallography, D. Reidel, Dordrecht, 1974; Y. Le Page and E. Gabe, J. Appl. Crysallogr., 1990, 23, 406.
- 11 P. M. Treichel, W. M. Donglas and W. K. Dean, Inorg. Chem., 1972, 11, 1615.
- 12 A. Galindo, E. Gutierrez-Puebla, A. Monge, M. Munoz, A. Pastor, C. Ruiz and E. Carmona, J. Chem. Soc., Dalton Trans., 1992, 2307.
- 13 F. R. Lcreissl, N. Ullrich, A. Wirsing and U. Thewalt, Organometallics, 1991, 10, 3275.
- 14 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 15 J. Pickardt, L. Rosch and H. Schumann, Z. Anorg. Allg. Chem., 1976, 426, 66; I. Macleod, L. Manojlovic-Muir, D. Millington, K. W. Muir, D. W. A. Sharp and R. Walter, J. Organomet. Chem., 1975, 97, 67.
- 16 E. Lindner and H. Berke, J. Organomet. Chem., 1972, 39, 145.
- 17 B. Zhuang, L. Huang, L. He, Y. Yang and J. Lu, Inorg. Chim. Acta,
- 18 K. H. Yih, S. G. Chen, Y. C. Lin, G. H. Lee and Y. Wang, unpublished work.

Received 12th October 1994; Paper 4/06224H