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Abstract—Alkynyl(trimethylsilyl)mercurials are formed by a fast and quantitative reaction between
bis(alkynyl)- and bis(trimethylsilyl)mercury in chloroform or benzene at ambient temperature. They
decompose slowly in solution to alkynyltrimethylsilanes and mercury. *3C, 29Si, °°Hg NMR data serve for
the characterization. The polarizability of the Hg-Si bond and the great polarizing ability of the alkynyl

group is clearly reflected by the NMR data.

INTRODUCTION

Alkynyl metal compounds (A) are attractive reagents
in organometallic synthesis [1]. Their reactivity is
controlled to a large extent by mutual interactions
between the alkynyl bonding system and the metal
fragment (L,M). NMR spectroscopy appears to be
particularly useful for obtaining information on the
M-C= and the C=C bonds. In the case of linear
systems L-M-C=C-R changes in the NMR para-
meters can be traced to a single L/C=C-R interaction,
mediated by the metal M.

L,M-C=C-R A
Our current interest in NMR parameters of alkynes

[2-5] led us to study alkynyl(trimethylsilyl)mercurials

).
(CH;),Si-Hg-C=C-R 2

Hg(C=C-R), + Hg[Si(CH3)3 ],

1 4

The NMR data (6'C, §2°Si, 6'°°Hg chemical shifts
and various coupling constants) for compounds 2
are of great interest in connection with the large data
set available for organyl(alkynylymercury [3] and
alkyl(trimethylsilyl)mercury compounds [6], and
other silylmercury derivatives [7].

EXPERIMENTAL

All NMR spectra have been recorded at 27-28°C from
samples (10-15%) in 10mm (o0.d.) tubes with a Bruker WP
200 spectrometer equipped with a multinuclear unit. The
295i NMR spectra have been obtained with the refocused
INEPT pulse sequence [8].

SYNTHESIS

Various methods are available for the synthesis of
unsymmetrical mercury compounds from bis(tri-
methylsilyl)mercury, 4 [11-13]. Previous results
reported for the reaction between 4 and diorganomer-
curials [ 12-14] are not encouraging. Either there is no
reaction at all in a particular solvent [12,14] or
extensive decomposition is observed. Some 'H NMR
data of the reaction mixtures show that small amounts
of the unsymmetrical compounds, (CH;);Si-Hg-R
(e.g. R = CH;, C¢H;, CH=CH,, C;H;), are formed
[13]. We found that divinylmercury in CDCl; does
not react with 4 over a period of 24h. In contrast,
a clean and quantitative reaction between the
bis(alkynyl)mercury compounds 1 and 4 in CDCl; or
benzene gives the unsymmetrical silylmercury com-
pounds [Eqn. (1)].

CDCl3 or CgHg 2 (CH3)3 Sl_Hg_CEC—~R (1)

2

Attempts to isolate the compounds 2 from the reac-
tion solutions were not successful owing to decompo-
sition of 2 into mercury and alkynyltrimethylsilanes
[Eqn. (2)].

(CH3)3 Sl*Hg—CEC—R - Hg + (CH3)3 Si-C=C-R
2 6

@

Again this is a clean reaction which is noticeable in
solution at room temperature after several hours. The
rate of decomposition increases in the order R
= Si(CH,); < C4Hy < C¢H;.

The unsymmetrical mercury compounds S5a—c
were studied by NMR in the reaction solution (Eqn. (3)

The alkynyl mercurials la—c, 3a—< [3,9] and [11,12]}in order to have more data for comparison.
RHgCl + Hg[Si(CH,)s ], — (CH;3)3 Si-Hg-R + Hg + (CH,3)5 SiCl 3)
4 5

bis(trimethylsilyl)mercury, 4 [10], have been prepared as
described. All compounds were carefully handled in an N,
atmosphere and dissolved in oxygen-free dry solvents.
Mixtures of 1 and 4 (1:1 ratio) were made directly in the
NMR tubes right before the NMR measurements and kept in
the dark.

If R = CH=CHj, the reaction according to Eqn. (3)
leads to divinylmercury and hexamethyldisilane in-
stead of (CH;);Si-Hg-CH=CH,. This reminds one
somewhat of the result reported for the reaction
between CoHsHgCl and bis(triethylgermyl)mercury

[11].
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(CH3)3 Si=Hg~CZC~Si(CH;)3
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Fig. 1. 2°Si NMR (39.76 MHz) (refocused INEPT

[8] with 'H-decoupling) of the reaction solution

containing the compound 2¢. The assignment is based on the §*°Si values and on the coupling constant
1J(**?Hg?*°Si), as measured from the '°°Hg satellites. The °°Hg satellites are slightly broadened owing to
efficient chemical shift anisotropy relaxation of the ***Hg nucleus [3, 24, 25] which prevents the observation

of '9°Hg satellites

All reactions [Eqns (1-3)] are readily monitored by
199Hg or 2°Si NMR (see Fig. 1). The new compounds 2
are fully characterized by their 1*C, ?°8i, }*Hg NMR
data and the decomposition products 6 [Eqn. (2)] are
identified by !*C and/or *°Si NMR. NMR data are
given in Table 1, together with some data for other
mercury compounds for comparison.

CHEMICAL SHIFTS §'3C, §*°Si, 6'°Hg

The electropositive character of the (CHj); Si group
is clearly reflected by the decrease in the shielding of
13C® in 2 with respect to 1 and also to 3. In contrast
there is only a very small shift to higher frequency of
the !*CP-resonance in 2 compared to 1 and 3. This
shows that the n-system of the C=C bond is hardly
involved in any interactions with the mercury [15].
The data show the increasing electronegativity,
as expected, with (CH3);Si < (CH;);C (alkyl)
< C=C-R. This follows from the §!>C (Hg-C) values
for the tert-butyl derivatives 5d, 3b (§'3C 75.5 and 50.1,
respectively) and also from the 6%°Si values for 4, 5d, 2
(6%°81 63.6, 33.6 and 15.7, 15.3, 15.4, respectively). As
the changes in the nuclear shielding of '*C, ?°Si and
199Hg are governed mainly by changes in the local
paramagnetic term (within POPLE’s MO treatment of
nuclear shielding [16]) Bo-induced mixing of excited
states with the ground state has to be considered. This
will be more important in the case of weak Hg-X (X
= 29841, 1*C) g-bonds.

The mercury atom mediates all mutual ligand
effects. Thus, the shielding of the *°*?Hg nucleus will be
affected both by the release of electron density, e.g.
from the (CH3); Si group, and by the charge withdraw-
ing ability of the alkynyl group. The former effect
destabilizes Si-Hg-X o-orbitals with respect to all

for 3J(1°°Hg?°Si).

other unoccupied orbitals at the mercury atom, and it
also destabilizes the occupied mercury 5d-orbitals.
Such influences are expected to cause deshielding of
the 1°°Hg nucleus. This is evident from the correlation
between 6'?°Hg and the lowest observed u.v. absorp-
tion of some silylmercurials [7]. The shielding effect
observed for the '"?Hg nucleus in the presence of
electron withdrawing groups [3, 7] provides an in-
direct proof for these assumptions. In the case of
compounds 2 the electronegative alkynyl group com-
pensates part of the deshielding effect of the (CH3)35i
group. The great difference in the bond polarity of
Hg-C and Hg-Si bonds is reflected by the non-
additivity of ligand contributions to '°°Hg-nuclear
shielding. It was shown that 6'°°Hg values of the
compounds R-Hg-C=C-X correspond almost
exactly to the mean value of §'°°Hg(R,Hg) and
319? Hg[Hg(C=C-X), ] [3] (see also the §'*°Hg values
of compounds 1, 3in Table 1). Considering the §'**Hg
values for (CH;);Si-Hg-R (see Ref. [6] and com-
pounds 4, 5 in Table 1) a similar impression may be
formed at first sight. However, there is a noticeable
shift of the 51 °°Hg values of 5 towards 6'*’Hg (HgR ,),
and this trend is much more amplified in the case of the
alkynyl(trimethylsilylymercurials 2 (with respect to
8'°?Hg[Hg(C=C-X),]).

COUPLING CONSTANTS, J (**°Hg!'*C), J (**9Hg*"Si)

The numerous values of J (*°°Hg'*C= ) available [3]
show that the decrease in 'J(!°*°Hg'*C=) is accom-
panied by a decrease in 2J (**°Hg!*C=) (both coupling
constants are > 0 [17]). Furthermore, it was found
that in most cases a decrease in shielding of '*C? is
connected with a smaller value of 'J(**°Hg!3C=) [3].
These features have also been observed for a series
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of isobutyimercury compounds {8] and they are evi-
dent for 'J(*°°Hg!3C) (alkyl) (cf. Table 1) and
1J(1°°Hg?*Si) values (Table 1, [6, 7]).

As for other alkynylmercury compounds [3], the
most striking fact is the large range found for
1J(**°Hg'3C=). The coupling constant 'J(!*°Hg'*C=)
in 2¢ (650 Hz) has the smallest value observed so far.
This extends the range of 'J(*°°Hg!? C=) values to ca
2300 Hz (1J (1*°Hg!*C=) in Hg (C=C-Cl); 2991 Hz
[3]). As pointed out previously [3] this range appears
to be too large to be accommodated in the average
excitation energy (AE) approach (a simplification of
PoOPLE and SANTRY's MO treatment [9, 20], assuming
the Fermi-contact term to be dominant). The new data
available reinforce this conclusion. Indeed, it may be
advisable to include the influence of relativistic effects
[21] on the Hg-6s electrons, for a more quantitative
understanding of 'J(*?HgX).

The qualitative expectations for changes in
LJ(***Hg'3C) or 'J(**°Hg?°Si) based on rehybridiz-
ation [22] are fulfilled. Valiant attempts have been
made to use the simple hybrid orbital model for the
quantitative prediction of 'J(!**Hg!3C=) values but
the results are not very accurate [23]. The same
authors also have claimed a quantitative relation-
ship between 'J(!?°Hg'3C) and 'J(!°°Hg?°Si) in
organyl(silyl)mercurials [19]. This relationship holds
for the alkyl(trimethylsilyl)mercurials but it breaks
down completely if the data for compounds 2a,corla,
¢ are inserted. Obviously, these simple concepts are
useful and work well if the ligand properties are not
too different. This guarantees that most factors in-
fluencing the magnitude of 'J(*°°Hg'’C) or
1J(**°Hg?°Si) remain fairly constant except for the
changes in the “scharacter” of the Hg-C or Hg-Si
hydrid orbitals, However, the introduction of strongly
polarizing groups, like the alkynyl group, together
with the presence of a readily polarizable Hg-Si bond,
breaks up this concept.
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