Synthesis and ¹³C, ²⁹Si, ¹⁹⁹Hg nuclear magnetic resonance spectroscopy of alkynyl(trimethylsilyl)mercurials

ANGELIKA SEBALD and BERND WRACKMEYER*

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2, F.R.G.

(Received 11 February 1986; in final form 3 April 1986; accepted 4 April 1986)

Abstract—Alkynyl(trimethylsilyl)mercurials are formed by a fast and quantitative reaction between bis(alkynyl)- and bis(trimethylsilyl)mercury in chloroform or benzene at ambient temperature. They decompose slowly in solution to alkynyltrimethylsilanes and mercury. ¹³C, ²⁹Si, ¹⁹⁹Hg NMR data serve for the characterization. The polarizability of the Hg–Si bond and the great polarizing ability of the alkynyl group is clearly reflected by the NMR data.

INTRODUCTION

Alkynyl metal compounds (A) are attractive reagents in organometallic synthesis [1]. Their reactivity is controlled to a large extent by mutual interactions between the alkynyl bonding system and the metal fragment (L_nM). NMR spectroscopy appears to be particularly useful for obtaining information on the M-C= and the C=C bonds. In the case of linear systems L-M-C=C-R changes in the NMR parameters can be traced to a single L/C=C-R interaction, mediated by the metal M.

$$L_n M - C \equiv C - R$$
 A

Our current interest in NMR parameters of alkynes [2–5] led us to study alkynyl(trimethylsilyl)mercurials (2).

$$(CH_3)_3Si-Hg-C\equiv C-R$$
 2

$$Hg(C \equiv C-R)_{2} + Hg[Si(CH_{3})_{3}]_{2} \xrightarrow{CDCl_{3} \text{ or } C_{6}H_{6}}{2 (CH_{3})_{3}Si-Hg-C} \equiv C-R$$
(1)

pounds [Eqn. (1)].

The NMR data (δ^{13} C, δ^{29} Si, δ^{199} Hg chemical shifts and various coupling constants) for compounds **2** are of great interest in connection with the large data set available for organyl(alkynyl)mercury [3] and alkyl(trimethylsilyl)mercury compounds [6], and other silylmercury derivatives [7].

EXPERIMENTAL

All NMR spectra have been recorded at $27-28^{\circ}$ C from samples (10-15%) in 10 mm (o.d.) tubes with a Bruker WP 200 spectrometer equipped with a multinuclear unit. The ²⁹Si NMR spectra have been obtained with the refocused INEPT pulse sequence [8].

The alkynyl mercurials 1a-c, 3a-c [3,9] and

Attempts to isolate the compounds 2 from the reaction solutions were not successful owing to decomposition of 2 into mercury and alkynyltrimethylsilanes [Eqn. (2)].

$$(CH_3)_3 \operatorname{Si-Hg-C} = C - R \rightarrow Hg + (CH_3)_3 \operatorname{Si-C} = C - R$$
2
6
(2)

Again this is a clean reaction which is noticeable in solution at room temperature after several hours. The rate of decomposition increases in the order R = $Si(CH_3)_3 < C_4H_9 < C_6H_5$.

The unsymmetrical mercury compounds 5a-c were studied by NMR in the reaction solution (Eqn. (3) [11, 12]) in order to have more data for comparison.

$$RHgCl + Hg[Si(CH_3)_3]_2 \rightarrow (CH_3)_3Si-Hg-R + Hg + (CH_3)_3SiCl$$
(3)
4 5

bis(trimethylsilyl)mercury, 4 [10], have been prepared as described. All compounds were carefully handled in an N_2 atmosphere and dissolved in oxygen-free dry solvents. Mixtures of 1 and 4 (1:1 ratio) were made directly in the NMR tubes right before the NMR measurements and kept in the dark.

If $R = CH=CH_2$ the reaction according to Eqn. (3) leads to divinylmercury and hexamethyldisilane instead of $(CH_3)_3Si-Hg-CH=CH_2$. This reminds one somewhat of the result reported for the reaction between C_6H_5HgCl and bis(triethylgermyl)mercury [11].

SYNTHESIS

Various methods are available for the synthesis of

unsymmetrical mercury compounds from bis(tri-

methylsilyl)mercury, 4 [11-13]. Previous results

reported for the reaction between 4 and diorganomer-

curials [12-14] are not encouraging. Either there is no

reaction at all in a particular solvent [12, 14] or

extensive decomposition is observed. Some ¹H NMR

data of the reaction mixtures show that small amounts

of the unsymmetrical compounds, (CH₃)₃Si-Hg-R

(e.g. $R = CH_3$, C_6H_5 , $CH=CH_2$, C_3H_5), are formed

[13]. We found that divinylmercury in $CDCl_3$ does not react with 4 over a period of 24h. In contrast,

a clean and quantitative reaction between the

bis(alkynyl)mercury compounds 1 and 4 in CDCl₃ or

benzene gives the unsymmetrical silylmercury com-

	Table 1. ¹³ C, ²⁹ Si,	¹⁹⁹ Hg NMR	t data*† of	organomercury(II) and silylmercury	/(II) comp	spuno	
No.	Compound	$\delta^{13}C^a$	$\delta^{13}C^{\beta}$	$\delta^{13}C$ (other)	δ^{199} Hg	δ ²⁹ Si	Solvent
la	Hg(C≡C-C₄H ₉) ₂	110.9	106.3	19.2, 31.3, 22.0, 13.5 (C4H9)	-859		CDCl ₃
1b	Hg(C≡C-C ₆ H ₅) ₂	[0.1862] 122.8 [2526.0]	[026.0] 107.0 [648.0]	[41.7] [12.0] [23.8 (i) [32.8 (o) [28.3 (m) [28.3 (p) (C ₆ H ₅)	-863	ł	C ₆ D ₆
lc	Hg[C=C-Si (CH ₃) ₃] ₂ ‡	138.1	115.9	0.1 (SiCH ₃)	- 1004	- 19.3	$C_{6}D_{6}$
2a	(CH ₃) ₃ Si-Hg-C≡C-C₄H ₉ §	[660.0] [660.0]	[2.00.0]	[] 19.0, 31.3, 21.9, 13.5 (C4H9) [13.0] 3.6 (SiCH3)	404	+ 15.7 [1950]	CDCI ³
2b	(CH ₃) ₃ Si-Hg-C≡C-C ₆ H ₅ ∥	167.6	108.8	[156.2] 123.6 (i) 132.1 (o) 128.2 (m) 127.7 (p) (C ₆ H ₃) 3.6 (SiCH ₃)	-417	+ 15.3 [2001]	C,D,
3c	(CH ₃) ₃ Si−Hg−C≡C−Si (CH ₃) ₃ ¶	186.4 [650.0]	113.4 [190.0]	[169.0] 0.6 (C-SiCH ₃), 3.5 (HgSiCH ₃) [] [157.3]	- 446	+ 15.4 (SiHg) [1946]	C,D,
3a	CH ₃ −Hg−C≡C−C₄H ₉	131.6 [1400.3]	108.2 [403.8]	19.2, 31.2, 22.0, 13.9 (C ₄ H ₉) [26.0] 7.0	-450	-21.9(SiC) 	CDCI ₃
3b	(CH ₃) ₃ C−Hg−C≡C−C ₆ H ₅	144.0	106.0	[1132] 124.9 (i) 132.5 (o) 128.3 (m) 120.7 H	-822	l	C ₆ D ₆
		[916.0]	[294.0]	129:3(p) (~15) [19.0] 50.1, 31.4 (C(CH ₃) ₃) [1294] [n.o.]			

Ř	CH ₃ -Hg-C=C-Si(CH ₃) ₃ **	160.9	112.8	0.6 (SiCH ₃) 7.4 (CH ₃ Hg)	- 503	-21.2	င'ပို
))	[1319.1]	[334.3]	[] [1138.0]		[29.0]	
4	Hg[Si(CH ₁),]2 [±]	1	1	6.6	+ 485	+63.6	ငိ့ပို
				[93.8]		[981]	
5a	(CH ₃) ₃ Si-Hg-CH ₃ ‡‡	ĺ	I	39.9 (CH ₃) 4.6 (SiCH ₃)	+ 153	-32.5	CDCI
				[423.0] [118.4]		[1393]	
Sb	(CH1),Si-Hg-C2H,±	[ſ	53.5, 13.1 (C ₂ H ₅), 4.6 (SiCH ₃)	+7	+ 33.8	CDCI
				[493.2] [18.3] [109.8]		[1227]	
3	(CH ₁) ₁ Si-Hg-CH ₂ C(CH ₃) ₃ ⁺	1	1	78.0, 29.7, 36.5 (CH ₂ C(CH ₃) ₃)	+ 121	+36.2	CDCI
				[512.7] [35.3] [61.0]		[1245]	
				4.6			
				[113.5]			
R	(CH ₃) ₃ Si-Hg-C(CH ₃) ₃ §§	ĺ	.	75.5, 30.2 (C(CH ₃) ₃)	- 259	33.6	ငို့ ငို
				[612.0] [26.6]		[995.6]	
				4.9 (SiCH ₃)			
				[109.9]			
\$ *	¹³ C (± 0.1), δ^{29} Si (± 0.1) relative to	o (CH ₃), Si,	δ ¹⁹⁹ Hg (±().5) relative to HgMe ₂ (neat) ($\Xi_{(^{199})}$	_(g) = 179	10 670 Hz.	

 $\begin{aligned} & \left[Coupling constants J(^{199}Hg^{13}C) \text{ and } J(^{199}Hg^{2}S) \right] \text{ are given in square brackets.} \\ & \downarrow J(^{29}S)^{13}C=) = 77.1, ^2J(^{29}S)=^{13}C) = 10.7, ^1J(^{29}S)^{13}CH_3) = 56.2 \text{ Hz.} \\ & \S^{1}J(^{29}S)^{13}C=) = 47.0 \text{ Hz.} \\ & \Vert^{1}J(^{29}S)^{13}C) = 47.0 \text{ Hz.} \\ & \Vert^{1}J(^{29}S)^{13}C) = 47.0 \text{ Hz.} \\ & \Vert^{1}J(^{29}S)^{13}C) = 76.0, ^2J(^{29}S) = ^{13}C) = 10.5, ^1J(^{29}S)^{13}C) = 56.0, ^1J[^{29}S)(Hg)C] = 46.1 \text{ Hz.} \\ & \star^{1}J(^{29}S)^{13}C) = 55.7 \text{ Hz.} \\ & \star^{1}J(^{29}S)^{13}CH_3) = 55.7 \text{ Hz.} \\ & \uparrow^{1}SS^{13}C) = 46.1 \text{ Hz.} \\ & \downarrow^{1}SS^{13}C) = 46.1 \text{ Hz.} \\ & \downarrow^{1}SS^{13}C) = 46.1 \text{ Hz.} \\ & \downarrow^{1}SS^{13}C = 46.1 \text{ Hz.} \\ & \overset{1}SS^{13}C = 46.1$

Fig. 1. ²⁹Si NMR (39.76 MHz) (refocused INEPT [8] with ¹H-decoupling) of the reaction solution containing the compound **2c**. The assignment is based on the δ^{29} Si values and on the coupling constant ¹J(¹⁹⁹Hg²⁹Si), as measured from the ¹⁹⁹Hg satellites. The ¹⁹⁹Hg satellites are slightly broadened owing to efficient chemical shift anisotropy relaxation of the ¹⁹⁹Hg nucleus [3, 24, 25] which prevents the observation of ¹⁹⁹Hg satellites for ³J(¹⁹⁹Hg²⁹Si).

All reactions [Eqns (1-3)] are readily monitored by 199 Hg or 29 Si NMR (see Fig. 1). The new compounds 2 are fully characterized by their 13 C, 29 Si, 199 Hg NMR data and the decomposition products 6 [Eqn. (2)] are identified by 13 C and/or 29 Si NMR. NMR data are given in Table 1, together with some data for other mercury compounds for comparison.

CHEMICAL SHIFTS δ^{13} C, δ^{29} Si, δ^{199} Hg

The electropositive character of the $(CH_3)_3$ Si group is clearly reflected by the decrease in the shielding of ${}^{13}C^{\alpha}$ in 2 with respect to 1 and also to 3. In contrast there is only a very small shift to higher frequency of the ${}^{13}C^{\beta}$ -resonance in 2 compared to 1 and 3. This shows that the π -system of the C=C bond is hardly involved in any interactions with the mercury [15]. The data show the increasing electronegativity, as expected, with $(CH_3)_3Si < (CH_3)_3C$ (alkyl) $< C \equiv C - R$. This follows from the $\delta^{13}C(Hg - C)$ values for the tert-butyl derivatives 5d, 3b (δ^{13} C 75.5 and 50.1, respectively) and also from the δ^{29} Si values for 4, 5d, 2 $(\delta^{29}$ Si 63.6, 33.6 and 15.7, 15.3, 15.4, respectively). As the changes in the nuclear shielding of ¹³C, ²⁹Si and ¹⁹⁹Hg are governed mainly by changes in the local paramagnetic term (within POPLE's MO treatment of nuclear shielding [16]) B₀-induced mixing of excited states with the ground state has to be considered. This will be more important in the case of weak Hg-X (X $= {}^{29}$ Si, 13 C) σ -bonds.

The mercury atom mediates all mutual ligand effects. Thus, the shielding of the ¹⁹⁹Hg nucleus will be affected both by the release of electron density, e.g. from the (CH₃)₃ Si group, and by the charge withdrawing ability of the alkynyl group. The former effect destabilizes Si-Hg-X σ -orbitals with respect to all

other unoccupied orbitals at the mercury atom, and it also destabilizes the occupied mercury 5d-orbitals. Such influences are expected to cause deshielding of the 199Hg nucleus. This is evident from the correlation between δ^{199} Hg and the lowest observed u.v. absorption of some silylmercurials [7]. The shielding effect observed for the ¹⁹⁹Hg nucleus in the presence of electron withdrawing groups [3, 7] provides an indirect proof for these assumptions. In the case of compounds 2 the electronegative alkynyl group compensates part of the deshielding effect of the (CH₃)₃Si group. The great difference in the bond polarity of Hg-C and Hg-Si bonds is reflected by the nonadditivity of ligand contributions to 199 Hg-nuclear shielding. It was shown that δ^{199} Hg values of the compounds $R-Hg-C\equiv C-X$ correspond almost exactly to the mean value of δ^{199} Hg(R₂Hg) and δ^{199} Hg[Hg(C=C-X)₂][3] (see also the δ^{199} Hg values of compounds 1, 3 in Table 1). Considering the δ^{199} Hg values for (CH₃)₃Si-Hg-R (see Ref. [6] and compounds 4, 5 in Table 1) a similar impression may be formed at first sight. However, there is a noticeable shift of the δ^{199} Hg values of 5 towards δ^{199} Hg(HgR₂), and this trend is much more amplified in the case of the alkynyl(trimethylsilyl)mercurials 2 (with respect to δ^{199} Hg[Hg(C=C-X)₂]).

COUPLING CONSTANTS, J (199Hg13C), J (199Hg29Si)

The numerous values of $J(^{199}\text{Hg}^{13}\text{C}\equiv)$ available [3] show that the decrease in $^{1}J(^{199}\text{Hg}^{13}\text{C}\equiv)$ is accompanied by a decrease in $^{2}J(^{199}\text{Hg}^{13}\text{C}\equiv)$ (both coupling constants are > 0 [17]). Furthermore, it was found that in most cases a decrease in shielding of $^{13}\text{C}^{\alpha}$ is connected with a smaller value of $^{1}J(^{199}\text{Hg}^{13}\text{C}\equiv)$ [3]. These features have also been observed for a series of isobutylmercury compounds [8] and they are evident for ${}^{1}J({}^{199}\text{Hg}{}^{13}\text{C})$ (alkyl) (cf. Table 1) and ${}^{1}J({}^{199}\text{Hg}{}^{29}\text{Si})$ values (Table 1, [6, 7]).

As for other alkynylmercury compounds [3], the most striking fact is the large range found for ${}^{1}J({}^{199}\text{Hg}{}^{13}\text{C}\equiv)$. The coupling constant ${}^{1}J({}^{199}\text{Hg}{}^{13}\text{C}\equiv)$ in 2c (650 Hz) has the smallest value observed so far. This extends the range of ${}^{1}J({}^{199}\text{Hg}{}^{13}\text{C}\equiv)$ values to ca 2300 Hz (${}^{1}J({}^{199}\text{Hg}{}^{13}\text{C}\equiv)$) in Hg (C=C-Cl)₂ 2991 Hz [3]). As pointed out previously [3] this range appears to be too large to be accommodated in the average excitation energy (ΔE) approach (a simplification of POPLE and SANTRY'S MO treatment [9, 20], assuming the Fermi-contact term to be dominant). The new data available reinforce this conclusion. Indeed, it may be advisable to include the influence of relativistic effects [21] on the Hg-6s electrons, for a more quantitative understanding of ${}^{1}J({}^{199}\text{HgX})$.

The qualitative expectations for changes in ${}^{1}J({}^{199}\text{Hg}{}^{13}\text{C})$ or ${}^{1}J({}^{199}\text{Hg}{}^{29}\text{Si})$ based on rehybridization [22] are fulfilled. Valiant attempts have been made to use the simple hybrid orbital model for the quantitative prediction of ${}^{1}J({}^{199}\text{Hg}{}^{13}\text{C}\equiv)$ values but the results are not very accurate [23]. The same authors also have claimed a quantitative relationship between ${}^{1}J({}^{199}\text{Hg}{}^{13}\text{C})$ and ${}^{1}J({}^{199}\text{Hg}{}^{29}\text{Si})$ in organyl(silyl)mercurials [19]. This relationship holds for the alkyl(trimethylsilyl)mercurials but it breaks down completely if the data for compounds 2a, c or la, c are inserted. Obviously, these simple concepts are useful and work well if the ligand properties are not too different. This guarantees that most factors influencing the magnitude of ${}^{1}J({}^{199}Hg{}^{13}C)$ or ${}^{1}J({}^{199}\text{Hg}{}^{29}\text{Si})$ remain fairly constant except for the changes in the "s-character" of the Hg-C or Hg-Si hydrid orbitals. However, the introduction of strongly polarizing groups, like the alkynyl group, together with the presence of a readily polarizable Hg-Si bond, breaks up this concept.

Acknowledgements—We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support.

REFERENCES

- (a) R. NAST, Coord. Chem. Rev. 47, 89 (1982); (b) B. WRACKMEYER, Rev. Silicon, Germanium, Tin, Lead Compds 6, 75 (1982).
- [2] B. WRACKMEYER, J. Magn. Reson. 42, 287 (1981).
- [3] A. SEBALD and B. WRACKMEYER, Spectrochim. Acta 38A, 163 (1982).
- [4] A. SEBALD, B. WRACKMEYER and W. BECK, Z. Naturforsch. Teil B 38, 45 (1983).
- [5] A. SEBALD, P. FRITZ and B. WRACKMEYER, Spectrochim. Acta 41A, 1405 (1985).
- [6] T. N. MITCHELL and H. C. MARSMANN, J. Organomet. Chem. 150, 171 (1978).
- [7] M. J. ALBRIGHT, T. F. SCHAAF, A. K. HOVLAND and J. P. OLIVER, J. Organomet. Chem. 259, 37 (1983).
- [8] (a) D. P. BURUM and R. R. ERNST, J. Magn. Reson. 39, 163 (1980); (b) G. A. MORRIS, J. Magn. Reson. 41, 185 (1980).
- [9] L. G. MAKAROVA and A. N. NESMEYANOV, The Organic Compounds of Mercury. Worth-Holland, Amsterdam (1967).
- [10] E. WIBERG, O. STECHER and E. STAUDE, Angew. Chem. 75, 516 (1963).
- [11] N. S. VYAZANKIN, E. N. GLADYSHEV, E. A. ARKHANGEL'SKAYA and G. A. RAZUVAEV, J. Organomet. Chem. 17, 340 (1969).
- [12] T. N. MITCHELL, J. Organomet. Chem. 71, 27 (1974).
- [13] T. F. SCHAAF and J. P. OLIVER, Inorg. Chem. 10, 1521 (1971).
- [14] A. G. LEE, J. Organomet. Chem. 16, 321 (1969).
- [15] C. CAULETTI, C. FURLANI, M. N. PIANCASTELLI, A. SEBALD and B. WRACKMEYER, *Inorg. Chem.* 23, 1113 (1984).
- [16] J. A. POPLE, Molec. Phys. 7, 301 (1964) and references cited therein.
- [17] W. MCFARLANE, A. SEBALD and B. WRACKMEYER, to be published.
- [18] D. STEINBORN, R. TAUBE, R. RADEGLIA and W. Höbold, J. Organomet. Chem. 210, 139 (1981).
- [19] J. A. POPLE and D. P. SANTRY, Molec. Phys. 8, 1 (1964).
- [20] H. M. MCCONNELL, J. chem. Phys. 24, 460 (1956).
- [21] (a) Р. РҮККÖ, Chem. Phys. 22, 289 (1977); (b) Р. РҮККÖ, J. Organomet. Chem. 232, 21 (1982).
- [22] H. A. BENT, Chem. Rev. 61, 275 (1961).
- [23] R. RADEGLIA, D. STEINBORN and R. TAUBE, Spectrochim. Acta 39A, 843 (1983).
- [24] A. SEBALD and B. WRACKMEYER, J. Magn. Reson. 63, 397 (1985).
- [25] D. G. GILLIES, L. P. BLAAUW, G. R. HAYS, R. HUIS and A. D. H. CLAGUE, J. Magn. Reson. 42, 420 (1981).