428 Communications **SYNTHESIS** $$\begin{array}{c} \text{CH}_{3} \\ \text{H}_{3}\text{C} \\ \text{CH}_{3} \\ \text{H}_{3}\text{C} \\ \text{CH}_{3} \text{CH}$$ ### A New Approach to the Synthesis of Methyl (1 S)-cis-3-(2-Acetoxyalkyl/2-Hydroxyalkyl/2-Oxoalkyl)-2,2-dimethylcyclopropanecarboxylates from (+)-3-Carene R. B. MITRA*, B.G. MAHAMULKAR, G.H. KULKARNI National Chemical Laboratory**, Pune 411008, India Methyl (1S)-cis-2,2-dimethyl-3-(2-oxopropyl)-cyclopropanecarboxylate (1a) is an important intermediate for the synthesis^{1,2} of (-)-cis-chrysanthemic acid which can in turn be converted into (+)-(1 R)-trans-chrysanthemic acid³, a component of natural pyrethrins. Other related esters such as methyl (1 S)-cis-3-(2-acetoxyalkyl/2-hydroxyalkyl/2-oxoalkyl)-2,2-dimethylcyclopropanecarboxylates are useful in the synthesis of (1R)-trans-pyrethroids⁴. We report here a facile five-step synthesis of compound 1a and other related ketoesters (1 b, c) from (+)-3-carene (2) via (+)-4 α -acetyl-2-carene (3)⁵. Base-catalyzed methylation of compound 3 with methyl iodide/potassium t-butoxide affords 4-acetyl-4-methyl-2-carene (4a) which on ozonolysis followed by oxidative work-up is converted into (1 S)-cis-3-(2.2-diacetylpropyl)-2,2-dimethylcyclopropanecarboxylic acid (5a, $R^1 = H$). This acid is esterified with diazomethane to ester 5a ($R^1 = CH_3$) and characterized as such. Ester 5a $(R^1 = CH_3)$ which possesses a β -diketone moiety undergoes C-C and ester cleavage; subsequent esterification with diazomethane affords methyl(1S)-cis-2,2-dimethyl-3-(2-methyl-3-oxobutyl)-cyclopropanecarboxylate (6a, $R^1 = CH_3$). Baeyer-Villiger oxidation of $\mathbf{6a}$ (R¹ = CH₃) yields (1 S)-cis-3-(2-acetoxypropyl)-2,2-dimethylcyclopropanecarboxylate $(7a, R^1 = CH_3)$. Hydrolysis of 7a at room temperature, followed by esterification with diazomethane gives methyl (1 S)cis-3-(2-hydroxypropyl)-2,2-dimethylcyclopropanecarboxylate (8a, $R^1 = CH_3$) which is converted into the title compound 1a by Jones' oxidation. Analogous sequences afford the ketoesters 1b and 1c. #### H or CH₃ CH₃ b or CH₃ C₂H₅ c -CH2 1,5-8 а #### (+)-4-Acetyl-4-methyl-2-carene (4a); Typical Procedure: To an ice-cooled and stirred solution of potassium t-butoxide (8.4 g, 75 mmol) and (+)-4 α -acetyl-2-carene⁵ (3; 8.9 g, 50 mmol) in tbutanol (100 ml), methyl iodide (10.65 g, 75 mmol) is added in one portion and the mixture stirred at 0 °C for 2 h and at room temperature for 24 h. The mixture is then filtered, t-butanol removed by distillation under reduced pressure, and the residue diluted with water (100 ml), extracted with ether (4 \times 50 ml), and evaporated. The product is column-chromatographed on silica gel (elution with benzene/petroleum ether 1/4 and benzene/petroleum ether 1/1, successively) to give 4a; yield: 6.3 g (65%); b.p. 102-107°C/0.1 torr (see table); $[\alpha]_D^{28}$: + 133.5° (c = 2.9, chloroform). ¹H-N. M. R. (CCl₄/TMS_{int}): $\delta = 1.00$, 1.16 (s, 9 H, 4-CH₃ and 7,7di-CH₃); 1.56 (s, 3H, 3-CH₃); 2.03 (s, 3H, CO-CH₃); 5.5 ppm (m, 1 H. 2-H). ### Methyl (1S)-cis-3-(2-Acetyl-2-methyl-3-oxobutyl)-2,2-dimethylcyclopropanecarboxylate (5a); Typical Procedure: A stream of ozonised oxygen is passed through a cooled (-10° C) solution of (+)-4-acetyl-4-methyl-2-carene (4a; 4.8 g, 25 mmol) in ethyl acetate (100 ml) until absorption is completed. To the ozonide solution thus obtained, a solution of chromium(VI) oxide (2.6 g, 26 mmol) in conc. sulfuric acid (2.2 ml) is added dropwise and the mixture is stirred for 2 h at 0 °C. It is then washed with water (50 ml) and the organic layer is separated and extracted with aqueous 10 % sodium carbonate (50 ml). The aqueous extract is acidified with dilute hydrochloric acid and extracted with ether (2 \times 75 ml). The ether extract is washed with water (2 × 20 ml) and a 0.5 molar solution of diazomethane in ether (80 ml) is added for esterification. May 1984 Communications 429 Table. Compounds 1 and 4-8 prepared | Prod-
uct | Yield ^a | b.p./torr ^b
[°C] | [α] _D ^{28 °} (c) | Molecular
Formula ^d | M.S.
m/e
(M ⁺) | |--------------------|--|--|--|--|--| | 4a | 65 | 102-107°/ | +133.5° (2.9) | C ₁₃ H ₂₀ O
(192.2) | 192 | | 4b | 69 | 110-115°/ | + 106.3° | $C_{14}H_{22}O$ | 206 | | 4c | 70 | 145-150°/ | + 140.4° | $C_{19}H_{24}O$ | 268 | | 5a | 52 | 118-120°/ | - 0.4° | $C_{14}H_{22}O_4$ | 254 | | 5b | 50 | 127-132°/ | $+7.2^{\circ}$ | $C_{15}H_{24}O_4$ | 268 | | 5c | 47 | 175-180°/ | +4.8° | $C_{20}H_{26}O_4$ | 330 | | 6a | 75 | 100-105°/ | $+28.5^{\circ}$ | $C_{12}H_{20}O_3$ | 212 | | 6b | 78 | 115-120°/ | $+22.3^{\circ}$ | $C_{13}H_{22}O_{3}$ | 226 | | 6c | 77 | 150-155°/ | $+15.8^{\circ}$ | $C_{18}H_{24}O_3$ | 288 | | 7a | 65 | 105-110°/ | + 21.1° | $C_{12}H_{20}O_4$ | 228 | | 7b | 64 | 110-115°/ | + 19.2° | $C_{13}H_{22}O_4$ | 242 | | 7c | 59 | 150-155°/ | $+0.5^{\circ}$ | $\mathrm{C_{18}H_{24}O_{4}}$ | 304 | | 8a | 67 | 115-120°/ | + 5.2° | $C_{10}H_{18}O_3$ | 186 | | 8b | 65 | 110-115°/ | $+3.8^{\circ}$ | $C_{11}H_{20}O_3$ | 200 | | 8с | 62 | 160-165°/ | $+4.6^{\circ}$ | $C_{16}H_{22}O_3$ | 262 | | 1a ^{1, 2} | 63 | 90-95°/ | $+35.0^{\circ}$ | $C_{10}H_{16}O_3$ | 184 | | 1b | 65 | 100-105°/ | $+33.6^{\circ}$ | $C_{11}H_{18}O_3$ | 198 | | 1c | 61 | 140~145°/
0.15 | (3.8)
+ 9.0
(1.54) | $C_{16}H_{20}O_3$ | 260 | | | 4a 4b 4c 5a 5b 5c 6a 6b 6c 7a 7b 7c 8a 8b 8c 1a ^{1,2} | uct [%] 4a 65 4b 69 4c 70 5a 52 5b 50 5c 47 6a 75 6b 78 6c 77 7a 65 7b 64 7c 59 8a 67 8b 65 8c 62 1a ^{1,2} 63 1b 65 | uct [%] [°C] 4a 65 102-107°/ 0.2 4b 69 110-115°/ 0.35 4c 70 145-150°/ 0.3 5a 52 118-120°/ 0.2 5c 47 175-180°/ 0.2 6a 75 100-105°/ 0.13 6b 78 115-120°/ 0.2 6c 77 150-155°/ 0.13 7a 65 105-110°/ 0.2 7b 64 110-115°/ 0.15 7c 59 150-155°/ 0.13 8a 67 115-120°/ 0.2 8b 65 110-115°/ 0.15 8c 62 160-165°/ 0.13 1a ^{1,2} 63 90-95°/ 0.15 1b 65 100-105°/ 0.15 | uct [%] [°C] (c) 4a 65 102-107°/ +133.5° 0.2 (2.9) 4b 69 110-115°/ +106.3° 0.35 (4.5) 4c 70 145-150°/ +140.4° 0.3 (2.4) 5a 52 118-120°/ -0.4° 0.3 (1.55) 5b 50 127-132°/ +7.2° 0.2 (2.4) 5c 47 175-180°/ +28.5° 0.13 (1.81) 6b 78 115-120°/ +22.3° 0.2 (1.09) 6c 77 150-155°/ +15.8° 0.13 (1.14) 7a 65 105-110°/ +21.1° 0.2 (1.45) 7b 64 110-115°/ +19.2° 0.15 (1.35) 7c 59 150-155°/ +0.5° 0.13 (1.08) 8a 67 115-120°/ +5.2° 0.2 (1.2) 8b 65 110-115°/ +3.8° 0.15 (1.10) 8c 62 160-165°/ +4.6° 0.13 (1.4) 1a¹-² 63 90-95°/ +35.0° 0.15 (2.32) 1b 65 100-105°/ +33.6° 0.15 (3.8) 1c 61 140-145°/ +9.0 | 4a 65 102-107°/ +133.5° C ₁₃ H ₂₀ O 0.2 (2.9) (192.2) 4b 69 110-115°/ +106.3° C ₁₄ H ₂₂ O 0.35 (4.5) (206.3) 4c 70 145-150°/ +140.4° C ₁₉ H ₂₄ O 0.3 (2.4) (268.3) 5a 52 118-120°/ -0.4° C ₁₄ H ₂₂ O ₄ 0.3 (1.55) (254.3) 5b 50 127-132°/ +7.2° C ₁₅ H ₂₄ O ₄ 0.2 (2.4) (268.3) 5c 47 175-180°/ +4.8° C ₂₀ H ₂₆ O ₄ 0.2 (1.86) (330.4) 6a 75 100-105°/ +28.5° C ₁₂ H ₂₀ O ₃ 0.13 (1.81) (212.2) 6b 78 115-120°/ +22.3° C ₁₃ H ₂₂ O ₃ 0.2 (1.09) (226.3) 6c 77 150-155°/ +15.8° C ₁₈ H ₂₄ O ₃ 0.13 (1.14) (288.3) 7a 65 105-110°/ +21.1° C ₁₂ H ₂₀ O ₄ 0.2 (1.45) (228.2) 7b 64 110-115°/ +19.2° C ₁₃ H ₂₂ O ₄ 0.15 (1.35) (242.3) 7c 59 150-155°/ +0.5° C ₁₈ H ₂₄ O ₄ 0.13 (1.08) (304.3) 8a 67 115-120°/ +5.2° C ₁₀ H ₁₈ O ₃ 0.15 (1.10) (200.2) 8b 65 110-115°/ +3.8° C ₁₁ H ₂₀ O ₃ 0.15 (1.10) (200.2) 8c 62 160-165°/ +4.6° C ₁₆ H ₂₂ O ₃ 0.13 (1.4) (262.3) 0.15 (1.10) (200.2) 8c 62 160-165°/ +3.8° C ₁₁ H ₂₀ O ₃ 0.15 (1.10) (200.2) 8c 62 160-165°/ +3.6° C ₁₆ H ₂₂ O ₃ 0.15 (2.32) (184.2) (186.2) 1b 65 100-105°/ +33.6° C ₁₁ H ₁₈ O ₃ 0.15 (2.32) (184.2) | ^a Yield of pure isolated product. The excess diazomethane is destroyed with acetic acid (0.72 g) in ether (5 ml) and the solvent is evaporated. The crude product is column-chromatographed on silica gel using benzene as eluent to give pure **5a**; yield: 3.3 g (52%); b.p. $118-120\,^{\circ}\text{C}/0.3$ torr; $[\alpha]_D^{28}$: -0.4 (c=1.55, chloroform). ¹H-N. M. R. (CCl₄/TMS_{int}): $\delta = 0.83$ (m, 1 H, 3-H); 1.16 (s, 6 H, 2,2-di-CH₃); 1.25 (s, 3 H, 2'-CH₃); 1.40 (d, 1 H, J = 8 Hz, 1-H); 2.05 (s, 6 H, 2 CO-CH₃); 2.16 (m, 2 H, 1',1'-H₂); 3.60 ppm (s, 3 H, OCH₃). # Methyl (1*S*)-*cis*-2,2-Dimethyl-3-(2-methyl-3-oxobutyl)-cyclopropanecarboxylate (6a); Typical Procedure: A solution of compound 5a (2.5 g, 10 mmol) in methanol (50 ml) containing sodium methoxide (1.6 g, 30 mmol) is refluxed for 6 h, methanol removed under reduced pressure, and the residue diluted with water (25 ml), acidified with dilute hydrochloric acid, and extracted with ether (4 \times 25 ml). The ether layer is washed with water (2 \times 20 ml) and the product esterified by adding, at 0 °C, a 0.5 molar solution of diazomethane in ether (30 ml, 15 mmol). The solvent is evaporated and the product column-chromatographed on silica gel using petroleum ether/benzene (1/1) as eluent to give 6a; yield: 1.6 g (75%); b.p. 100-105°C/0.13 torr; $[\alpha]_D^{28}$: +28.5° (c=1.81, chloroform). ¹H-N. M. R. (CCl₄/TMS_{im}): δ = 1.03 (d, 3 H, J = 7 Hz, 2′-CH₃); 1.12, 1.14 (s, 6 H, 2,2-di-CH₃); 1.33 (d, 1 H, J = 8 Hz, 1-H); 2.00 (s, 3 H, CO-CH₃); 2.16–2.43 (m, 1 H, 2′-H); 3.48 ppm (s, 3 H, OCH₃). ### Methyl(1.S)-cis-3-(2-Acetoxypropyl)-2,2-dimethylcyclopropanecarboxylate (7a); Typical Procedure: To a solution of compound **6a** (1.5 g, 7.0 mmol) in dry dichloromethane (25 ml), 3-chlorobenzoperoxoic acid, (1.8 g, 10.3 mmol) is added and the mixture is refluxed for 6 h, then cooled, and filtered. The filtrate is washed with 10 % aqueous sodium carbonate (10 ml) and water (2 × 10 ml), and evaporated. The product is chromatographed on alumina (activity II) and eluted with petroleum ether/benzene (4/1) to give **7a**; yield: 1.0 g (65 %); b.p. 105-110 °C/0.2 torr; $[\alpha] = \frac{28}{5} + 21.1$ ° (c = 1.45, chloroform). ¹H-N. M. R. (CCl₄/TMS_{int}): δ = 0.96–1.20 (m, 9 H, 2,2-di-CH₃ and 2′-CH₃); 1.35 (d, 1 H, J = 8 Hz, 1-H); 1.78 (t, 2 H, J = 6 Hz, 1′,1′-H₂); 1.90 (s, 3 H, O-CO-CH₃); 3.46 (s, 3 H, OCH₃): 4.43–4.85 ppm (m, 1 H, 2′-H). ## Methyl (1 S)-cis-3-(2-Hydroxypropyl)-2,2-dimethylcyclopropane-carboxylate (8a); Typical Procedure: A solution of potassium hydroxide (0.6 g, 10.7 mmol) in water (2 ml) is added to a solution of compound 7a (0.82 g, 3.6 mmol) in methanol (10 ml) and the mixture is stirred for 24 h at room temperature. Methanol is then distilled off, the residue is diluted with water (10 ml), and the solution acidified with dilute hydrochloric acid and extracted with ether (3 × 25 ml). The ether extract is washed with water (2 × 25 ml) and evaporated. The residual product is esterified by the addition at 0°C of a 0.5 molar solution of diazomethane in ether (12 ml, 5.4 mmol). The solvent is evaporated and the product distilled in vacuo; yield: 0.45 g (67%); b.p. 115-120°C/0.2 torr; [α l] $^{28}_{c}$: + 5.2° (c = 1.2, chloroform). ¹H-N.M.R. (CCl₄/TMS_{im}): δ = 1.11 (d, 3H, J = 5Hz, 2'-CH₃); 1.16 (s, 6H, 2,2-di-CH₃); 1.71 (t, 2H, J = 6Hz, 1',1'-H₂); 2.06 (s, 1H, OH); 3.55 ppm (s, 3H, OCH₃). # Methyl (1*S*)-*cis*-2,2-Dimethyl-3-(2-oxopropyl)-cyclopropanecarboxylate (1a); Typical Procedure: A solution of chromium(VI) oxide (0.5 g, 5.0 mmol) in conc. sulfuric acid (0.5 ml) is added dropwise to a stirred solution of compound $\bf 8a$ (0.75 g, 4.02 mmol) in acetone (5 ml) until a pale orange colour persists. The mixture is stirred for 3 h at 0°C, then diluted with water (20 ml), and extracted with ether (3 × 25 ml). The ether layer is separated, washed with water (2 × 15 ml), and evaporated. The residual product is column-chromatographed on silica gel using petroleum ether/benzene (1/1) as eluent to give $\bf 1a$; yield: 0.46 g (63%); b.p. 90 · 95°C/0.15 torr; [α]: $\frac{28}{2}$ + 35° (c = 2.32, chloroform). ¹H-N. M. R. (CCl₄/TMS_{int}): δ = 1.13, 1.24 (s, 6 H, 2,2-di-CH₃); 1.45 (m, 2 H, 1-H and 3-H); 2.10 (s, 3 H, CO-CH₃); 2.80 (d, 2 H, J = 6 Hz, 1′,1′-H₂); 3.60 ppm (s, 3 H, OCH₃). Received: September 29, 1983 ^b Bath temperature. ^c In chloroform. ^d The microanalyses showed the following maximum deviations from the calculated values: $C, \pm 0.38$; $H, \pm 0.37$. Exception: 3; $C, \pm 0.49$. ^{*} Address for correspondence. ^{**} NCL Communication No. 3373. W. Cocker, H. S. J. Lauder, P. V. R. Shannon, J. Chem. Soc. Perkin Trans. 1, 1975, 332. ² T. L. Ho, Z. U. Din, Synth. Commun. 10, 921 (1980); 12, 257 (1982). ³ M. Matsui et al., Agric. Biol. Chem. 29, 784 (1965). ⁴ B.G. Mahamulkar, G.H. Kulkarni, R.B. Mitra, *Indian J. Chem.*, in press. ⁵ P.J. Kropp, D.C. Heckert, T.J. Flautt, *Tetrahedron* 24, 1385 (1968).