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Abstract A series of reverse Y-shaped surfactants con-

taining aromatic and aliphatic linkers to combine two short

hydrocarbon chains and one carbohydrate head group was

prepared. Liquid crystalline behavior, air–water interfacial

properties, and efficiency as an emulsifier was investigated

for each reverse Y-shaped surfactant. All reverse Y-shaped

surfactants mediated higher emulsion stabilities for water-

in-oil compared to common typical reference surfactants,

reflecting an improved ability to cope with a curvature

towards water. The introduction of a benzene ring into the

linker substantially increased the affinity of the surfactant

for hydrophobic media, resulting in improved emulsion

stability for both water-in-oil and oil-in-water.
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Introduction

Glycolipids, whether natural or synthetic, are non-ionic

surfactants that are associated with independent environ-

mental performance, biological degradability, and reason-

able pricing due to the abundance of renewable resources

[1–11]. Their application potential is not much restricted

by salinity and pH variations [12]. During recent years,

there has been intense interest in the development of new

surfactants derived from natural resources. Moreover, the

synthesis of surfactants has dramatically increased,

reflecting the wide range of applications for these com-

pounds, such as in cleaning and personal care products,

cosmetics, emulsion paints, and polishes [6]. Therefore,

many studies are now focussed on the industrial processes

and formulation of these compounds, in an attempt to

optimize the economy of sugar-based surfactants [1, 2, 13,

14].

Almost all synthetic straight-chain alkyl glycosides

(AG) and their phase behavior properties have been

extensively reported [15]. The same cannot be said for

branched-chain alkyl glycosides [16–18]. The latter are

considered as low-foaming surfactants compared to

straight-chain AG [17, 19]. Over the past few decades, only

a few reports had dealt with double-chain alkyl surfactants

such as disodium 1,8-bis (alkyloxymethyl)-3,6-dioxaoc-

tane-1,8-disulfates and disodium 5,12-bis (alky-

loxymethyl)-4,7,10,13-tetraoxahexadecane-1,16-disul-

fonates (alkyl = octyl or decyl). Their structure consists of

double-chain amphiphilic bearing two ionic head groups,

with the molecular structure apparently shaped as a bundle

of two typical single-chain surfactants. However, these

designs reduce surface tension and enhance interfacial

properties [20]. Besides the advantage of the double-chain

in a surfactant, the presence of different linkages between
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the head group and the hydrocarbon chain affects the sur-

factant behavior, possibly due to intramolecular H-bonding

[21]. This refers not only to the functional group that

mediates the connection, but in particular to small molec-

ular spacers and linkers that may be introduced between the

two surfactant-antipodes, i.e., head group and tail. The

effect of different linkages including triazole and benzene

in double-chain glycolipids is not clearly understood.

The current work investigated the benzene and triazole

linkages with regard to flexibility on the phase behavior.

We successfully synthesized a new series of double-chain

glycolipids with different possibilities of linkage. This

design of surfactants exhibits greater ability to lower sur-

face tension and increase emulsion stability than could

comparable single-chain surfactants, like alkyl polygluco-

sides (APG) [22] and alkyl triazole glycosides (ATG) [23].

Experimental Section

Chemicals

Chemicals were procured from various suppliers, as indi-

cated in brackets: 3,5-dihydroxybenzoic acid (Merck

97 %), dihexylamine (Merck 99 %), 2-bromoethanol

(Merck 95 %), b-D-glucose pentaacetate (Merck 98 %),

sodium azide (Merck 99 %), 1-bromohexane (Merck

98 %), propargyl bromide (Sigma-Aldrich solution 80 wt%

in toluene), 3-chloroperbenzoic acid (Sigma-

Aldrich B77 %), and Allyl alcohol (Merck C99 %). All

chemicals were used without further purification. The

reaction products were purified by column chromatography

using the flash technique on silica gel 35–60 mesh (Merck).

TLC was performed on pre-coated plates of silica gel 60

(GF254 by Merck). Visualization was achieved by treat-

ment with 15 % ethanolic sulfuric acid and subsequent

heating.

Instrumentation

Structural identities of the reaction products were based on

NMR spectra (1H and 13C, recorded on a Bruker AVN-

400 MHz spectrometer).

Surface tension measurements were performed at 25 �C
under atmospheric pressure using a KSV Sigma 702 ten-

siometer. This instrument applied the DuNoüy ring

method. The critical micelle concentration (CMC) was

assessed as the intersection of the linear regressions of the

surface tension against the logarithmic surfactant concen-

tration for the concentration-dependent region as well as

the concentration-independent region, at high surfactant

concentration. The surface tension at this intersection is

called the surface tension at the CMC (cCMC).

The lyotropic phase behavior of the glycolipids was

investigated based on a contact penetration study observed

under an optical polarizing microscope (OPM). The

investigation was carried out at room temperature (about

27 �C), applying two different solvents, one of which was

polar (water) and the other non-polar (1-undecanol).

Experimental Procedure

General Method for Click Chemistry I

A solution of sugar azide (4.5 mmol) and terminal alkyne

compound (4.9 mmol) in 40 mL MeOH was treated with

CuCl (40 mg). The solution was stirred at room tempera-

ture overnight and subsequently filtered through Celite.

After the solvent had evaporated, the residue was purified

by filtration through 5 cm silica gel. Elution with 2:1 ethyl

acetate:hexane removed any remaining starting materials,

after which the product was eluted with 4:1

methanol:CHCl3.

General Procedure for Deacetylation II

Deprotection was carried out by using a catalytic amount of

NaOMe in methanol. The mixture was stirred for 4 h at

room temperature. The catalyst was removed by neutral-

ization with Amberlite IR120 (H?) before the solvent was

evaporated to give the final surfactant.

Emulsion Stability

The water-in-oil emulsion preparation applied a composi-

tion of 1:19 ratio of water and oil (methyl laurate) con-

taining 0.5 % (wt/vol) surfactant. The formulation was

mixed with a homogenizer for approximately 2 min at

room temperature at a speed of 14,450 rpm. The emulsion

samples were stored at room temperature and monitored

for phase separation over a few weeks. A similar procedure

was applied for the stability investigation of oil-in-water

emulsions with a 19:1 ratio of water and methyl laurate,

and containing about 0.5 % surfactant.

Results and Discussion

Surfactant Synthesis

Glucose was selected and fixed as a hydrophilic domain for

all reverse Y-shaped surfactants, whereas the hydrophobic

domain comprised two C6-hydrocarbon chains. This dis-

tribution of a C12 domain was most economical with

respect to chemical synthesis. The investigated reverse

Y-shaped sugar surfactants (compounds 2, 4, 6 and 8) are
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displayed in Fig. 1. For purpose of comparison, two

structurally closely-related single-chain sugar surfactants

(9 and 10) were chosen, resembling previously investigated

alkyl polyglucosides (APG) [22] and alkyl triazole glyco-

sides (ATG) [23], respectively.

All surfactants were prepared with a sequential

approach, in which the alkyl chains were first attached to a

linker. The latter was subsequently coupled to the carbo-

hydrate by glycosylation [2], alkylation of an amine [24] or

CuAAC-based click-chemistry [25]. The synthesis of

hydrophobic precursors is presented in Fig. 2, while the

route to the carbohydrate precursors is shown in Fig. 3. All

surfactants were obtained in overall yields ranging from 29

to 56 % based on glucose pentaacetate. Chromatographic

purification was required due to the presence of remaining

starting material and side products. The 1H-NMR spectra

of the surfactants indicated high purity for all products and

confirmed the complete removal of protecting groups in the

final surfactants.

Fig. 1 Reverse Y-shaped

sugar-based surfactants

Fig. 2 Synthesis scheme for the hydrophobic building blocks

Fig. 3 Synthesis of hydrophilic building blocks
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Liquid Crystalline Behavior

The lyotropic liquid crystal phases were investigated by

optical polarizing microscopy (OPM) at room temperature

using a contact penetration technique [26, 27]. There was no

liquid crystalline phase observed for surfactants 2, 6 and 8

when in contact with water. On their own the compounds

appeared as viscous fluids (syrup) at room temperature.

While no texture was observed for compound 2, probably

reflecting an isotropic liquid based of rather low viscosity,

compound 6 exhibited dark coloring, which made it

impossible to observe liquid crystalline textures. In the case

of compound 4, low water solubility was observed. This

reflected the presence of a benzene ring, which increased

the hydrophobicity of the surfactant. However, at the con-

tact zone with water a phase showing birefringence

emerged. The texture, depicted in Fig. 4b, suggested a

hexagonal phase. The compound alone also exhibited

birefringence, as displayed in Fig. 4a. However, in contrast

to the water penetrated assembly, the fan shape texture for

the anhydrous compound was more in line with a smectic A

phase (lamellar). The observation of a smectic phase for the

pure compound and an La phase at low water concentration

suggested that the aromatic ring with its two short alkyl

chains could balance the surface area of the carbohydrate

head group, thus promoting the lamellar phase.

Upon contact with the non-polar solvent 1-undecanol, sur-

factants 6 and 8 did not show visible solubilization. However,

the exposure led to a swelling of the surfactant. No liquid

crystalline phase was observed. Compounds 2 and 4, on the

other hand, exhibited significant solubility in 1-undecanol. Like

6 and 8, 2 did not form a liquid crystalline phase in undecanol. 4

however exhibited a texture that closely resembled that of the

pure surfactant, as shown in Fig. 4c, thus confirming the sta-

bility of the lamellar phase in the non-polar solvent.

In terms of molecular assembly, a preference for the

lamellar phase was expected for reverse Y-shaped surfac-

tants, owing to a balance of the domain surface areas, like

that found in natural lipids. However, only surfactant 4

matched this expectation. The reason might be found in the

rather short alkyl chains applied in this investigation,

requiring substantial participation of the linker to balance

the cross section of the sugar head group.

The presence of aromatic groups, reflecting both benzene

and triazole, reduced the water-solubility of the surfactants.

This was to be expected, because of a substantially

increased hydrophobicity of the aglycon comprising not

only the alkyl chains, but the linking unit as well. Surpris-

ingly the addition of aromatic rings did not substantially

enhance the interactions with an oil phase. This could be

due to the selection of the latter, which did not contain

aromatic components. The observed low interaction of

surfactants involving triazole linkages and oil might dis-

courage the application of click coupling for the preparation

of sugar-based surfactants. A more extensive study

involving different types of oil as well as a wider range of

surfactants would be required to investigate the effect.

Air–Water Interface Behavior

The behaviour of the surfactants at the air–water interphase

was investigated by systematic surface tension measure-

ments over a wide range of concentrations, displayed in

Fig. 5. With the exception of compound 2, for which a

CMC could not be determined despite measurements at

high concentration, data regarding the micellar assembly

for the surfactants are tabulated in Table 1.

The CMC decreased by one decade upon introduction of

a benzene ring, as seen in the lower values for compounds

4 and 8. The drastic reduction in the CMC could be due to

the presence of the benzene ring, which had somehow

increased the hydrophobicity of the surfactant consider-

ably. On the other hand, the triazole affected the CMC

significantly less. This observation was in line with previ-

ous observations for ATG [23]. A comparison of com-

pounds 4 and 8 indicated a significant reduction of the

minimum surface tension (cmin) upon introduction of the

triazole linkage, whereas the CMC itself was not much

Fig. 4 OPM texture for compound 4: a texture of the pure sample. b Water penetration scans showing hexagonal H1 and lamellar phases La at

room temperature. c After 2-h contact with 1-undecanol, indicating penetration of the solvent
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affected. An explanation could be found in conformational

constraints associated with the linkage of the carbohydrate

head group to the hydrophobic domain, because of the

directly-linked pyranose ring. Surfactant 8 however, con-

sisted of additional carbon atoms and a triazole ring,

resulting in greater flexibility. The lower surface tension of

surfactant 8, compared to 6, could be attributed to the

benzene ring, which increased the efficiency of the rather

small hydrophobic domain. Surfactant 4 exhibited an

unusual decrease of the surface tension above the CMC.

Such behavior has been previously associated with the

presence of poly-disperse micelles or the formation of a

gel-monolayer at the air–water interface [28].

Emulsion Stability

With the exception of surfactant 2, all surfactants exhibited

reasonable good oil-in-water emulsion stability, requiring 5

days for the separation of a homogenized formulation in

the absence of polymeric stabilizers. The data are tabulated

in Table 2. The reverse Y-shaped surfactants exhibited a

more significant increase of emulsion stability than did the

single chain C12-ATG 10 [23], approximately matching the

emulsion stability obtained with lauryl glucoside 9, which,

as an APG model, was considered a good emulsifier [22].

These data suggested that the destabilizing effect of a tri-

azole in an O/W emulsion could be compensated by

splitting the hydrophobic chain into two units. A similar

observation has previously been reported for the intro-

duction of a second head group [29]. The poor emulsion

stabilization of compound 2 could be because of repulsive

ionic interactions originating from a partial protonation of

the amine in combination with the relatively weak

hydrophobic effects of the short alkyl chains. On the other

hand, all reverse Y-shaped surfactants exhibited improved

emulsion stability for water-in-oil compared to the single-

chained reference surfactants. This was expected, consid-

ering the molecular shape. The introduction of a second

chain reduced the curvature of a surfactant assembly

towards the hydrophilic domain, thus simplifying the

reverse curving required for an oil-based emulsion. Sur-

factant 4 exhibited a remarkably good water-in-oil emul-

sion; no separation was observed within an observation

period of 2 months. However, the initially fluid emulsion

formed a gel after about 2 months. The latter required

heating above 67 �C to liquefy again. The emulsion sta-

bility of 4 to that 8, which was remarkable low. It might

reflect the effects of interacting head groups at the inter-

phase, as well as enhanced flexibility in surfactant 8 with

the introduction of the triazole ring which could prevent

these head group interactions. Stability of an emulsion is

highly related to the size of the droplet and their viscosity

[30, 31]. However, there is no significant difference in the

range of droplet size of our emulsions (additional infor-

mation is in the supplement), so the most possible factor to

describe the stability of emulsion of surfactant 4 may be

related to the viscosity. This is also consistent with the

separation time of the emulsion and gel form of the sur-

factant 4 as discussed above.
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