Qualitatively Different Reactivities of Hydride Reagents toward $[(\alpha \text{-diimine})(\eta^5 \text{-} C_5 \text{Me}_5) \text{ClIr}]^+$ Cations: Substitution, Electron Transfer (Reduction), or Stepwise **Hydrogenation**

Stefan Greulich, Axel Klein, Axel Knödler, and Wolfgang Kaim*

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany

Received June 7, 2001

Summary: Whereas complex cations $[(\alpha - diimine)(\eta^5 - C_5 - C_5)]$ Me_5)Cllr⁺ with 2,2'-bipyridine and related aromatic ligands show only the expected Cl/H exchange on reaction with borohydrides, the systems [(RN=CHCH= $NR)(\eta^5-C_5Me_5)CIIr]^+$ undergo reduction to the enedia-mido(2–)–iridium(III) species [(RNCH=CHNR)(\eta^5-C_5-Me₅)Ir], even in protic media, if R is an axially shielding 2,6-dialkylphenyl group. In protic media the complex ion with R = cyclohexyl undergoes Cl/H exchange and stepwise hydrogenation of the a-diimine ligand via $[(\dot{R}HNCH_2CH=NR)(\eta^5-C_5Me_5)HIr](PF_6)$ to the structurally characterized compound [(RHNCH2CH2NHR)(n⁵- $C_5Me_5)HIr][BH_3(CN)].$

Introduction

The halide/hydride exchange using hydridoborate reagents is a standard reaction in synthesizing metal hydride compounds.¹ For instance, systems such as $[(\alpha$ diimine)(η^5 -C₅Me₅)ClIr]⁺ with aromatic α -diimine ligands were found to undergo clean chloride/hydride substitution (eq 1) on reaction with Na[BH₃(CN)],^{2d} yielding models for intermediates in hydride transfer catalysis schemes.²

substitution:

$$[(\alpha \text{-diimine})(\eta^{5} \text{-} C_{5} \text{Me}_{5})\text{ClIr}]^{+} + [\text{H}^{-}] \rightarrow [(\alpha \text{-diimine})(\eta^{5} \text{-} C_{5} \text{Me}_{5})\text{HIr}]^{+} + \text{Cl}^{-} (1)$$

 α -diimine = 2,2'-bipyridines, 1,10-phenanthrolines

However, the EPR spectroscopically established electron-transfer reactivity of many main-group-element hydride reagents³ may also result in reductive elimination of the halide from the substrate, especially in those

cases where a lowered coordination number is favored. e.g., for steric reasons. Examples for this reduction (eq 2) have been described for compounds $[(\alpha \text{-diimine})(\eta^5 \text{-}$

reduction:

$$[(RN=CHCH=NR)(\eta^{3}-C_{5}Me_{5})CIIr]^{+} + [H^{-}] \rightarrow [(RNCH=CHNR)(\eta^{5}-C_{5}Me_{5})Ir] + CI^{-} + H^{+} (2)$$

R = aryl, alkyl (in aprotic media);

R = 2,6-dialkylphenyl (in protic environment)

 C_5Me_5)ClIr](PF₆), where the α -diimine is the 1,4-disubstituted 1,4-diaza-1,3-butadiene RN=CHCH=NR with R = 2,6-dialkylphenyl.⁴ These systems yield the enediamido(2–) complexes [(RNCH=CHNR)(η^5 -C₅Me₅)Ir] with 16-valence-electron iridium(III) centers. The oxidation state assignments for the chelate ligand and, by implication, for the metal were based on structural analyses in combination with ab initio calculations.^{4a} This unusual reaction was attributed to strong axial shielding by the 2,6-dialkylphenyl substituents in the reduced species, which disfavors the presence of another ligand even as small as a hydride;^{4a} [(RNCH=CHNR)- $(\eta^5$ -C₅Me₅)Ir] (R = 2,6-dimethylphenyl), as already formed in an aqueous environment,^{4a} was found not to react with protons, and similar results were obtained with R = $2,\hat{6}$ -diisopropylphenyl.^{4b} We shall describe in this article that corresponding compounds can be obtained also from complexes with less shielding substituents R. however, only under careful exclusion of protons.

In addition, we report a further reaction alternative for this class of compounds, viz., the successive hydrogenation (eqs 3 and 4) of the unsaturated α -diimine chelate ligand in a protic environment. The changed

hydrogenation (and substitution):

$$[(RN=CHCH=NR)(\eta^{5}-C_{5}Me_{5})CIIr]^{+} + 2[H^{-}] + H^{+} \rightarrow [(RHNCH_{2}CH=NR)(\eta^{5}-C_{5}Me_{5})HIr]^{+} + Cl^{-} (3)$$
$$[(RHNCH_{2}CH=NR)(\eta^{5}-C_{5}Me_{5})HIr]^{+} + [H^{-}] + H^{+} \rightarrow [(RHNCH_{2}CH_{2}NHR)(\eta^{5}-C_{5}Me_{5})HIr]^{+} (4)$$

R = cyclohexyl (in protic medium)

^{(1) (}a) Muetteries, E. L. Transition Metal Hydrides; Dekker: New York, 1974. (b) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, 1999; p

 ^{(2) (}a) Ziessel, R. J. Chem. Soc., Chem. Commun. 1988, 16. (b)
 Ziessel, R. Angew. Chem. 1991, 103, 863; Angew. Chem., Int. Ed. Engl.
 1991, 30, 844. (c) Ziessel, R. J. Am. Chem. Soc. 1993, 115, 118. (d)
 Youinou, M.-R.; Ziessel, R. J. Organomet. Chem. 1989, 363, 197. (e)
 Ziessel, R.; Noblat-Chardon, S.; Deronzier, A.; Matt, D.; Toupet, L.;
 Balgroune, F.; Grandjean, D. Acta Crystallogr. 1992, B49, 515. (f) Caix,
 C.; Chardon-Noblat, S.; Deronzier, A.; Ziessel, R. J. Electroanal. Chem.
 1996, 403, 189. (g) Steckhan, E.; Herrmann, S.; Ruppert, R.; Dietz,
 E.; Frede, M.; Spika, E. Organometallics 1991, 10, 1568.
 (a) (a) Kaim, W.; Lubitz, W. Angew. Chem. 1983, 95, 915; Angew.
 Chem., Int. Ed. Engl. 1983, 22, 892; Angew. Chem. Suppl. 1983, 1209.
 (b) Kaim, W. Acc. Chem. Res. 1985, 18, 160. (c) Kaim, W. Top. Curr.
 Chem. 1994, 169, 231. (d) Astruc, D. Electron Transfer and Radical Processes in Transition-Metal Chemistry, VCH: New York, 1995; p 380.

^{(4) (}a) Greulich, S.; Kaim, W.; Stange, A.; Stoll, H.; Fiedler, J.; Zalis, S. *Inorg. Chem.* **1996**, *35*, 3998. (b) Berger, S.; Baumann, F., Scheiring, T.; Kaim, W. Z. Allg. Anorg. Chem. **2001**, *627*, 620.

pattern of reactivity was obtained by making just minor modifications, working in a protic solvent and using saturated cyclohexyl substituents at the 1,4-positions of the 1,4-diaza-1,3-butadiene ligand.

Not only have the noninnocent 1,4-diaza-1,3-butadiene ligands been used in complexes $[(\alpha$ -diimine)(η^5 -C₅-Me₅)ClM]⁺ (M = Rh, Ir), which are related to hydride transfer catalytic schemes^{2,5} but they are also increasingly popular as components of efficient polymerization catalysts.⁶ Their reactivity as coordinated ligands of catalytic species is therefore of some relevance.

In the following we report results from the reactions of compounds $[(RN=CHCH=NR)(\eta^5-C_5Me_5)CIIr](PF_6)$ (1) with hydride reagents. Since these results are compared with observations made previously for systems with R = 2,6-dialkylphenyl,⁴ we chose as starting compounds complex **1a**, with the nonaromatic and moderately bulky substituent R = cyclohexyl, and the structurally characterized complex **1b**, with the 2-alkylphenyl substituent R = 2-methylphenyl = *o*-tolyl.

Experimental Section

Instrumentation. ¹H NMR and ¹³C NMR spectra were taken on a Bruker AC 250 spectrometer, and infrared spectra were obtained using a Perkin-Elmer PE 684 spectrometer. Absorption spectra were recorded on a Bruins Instruments Omega 10 spectrophotometer. Cyclic voltammetry was carried out at a 100 mV/s standard scan rate in CH₃CN/0.1 M Bu₄-NPF₆ using a three-electrode configuration (glassy-carbon working electrode, Pt counter electrode, Ag/AgCl reference) and a PAR 273 potentiostat and function generator. The ferrocene/ ferrocenium couple served as internal reference.

 $[(RN=CHCH=NR)(\eta^5-C_5Me_5)CIIr](PF_6)$ (R = Cyclohexyl; 1a). A suspension of 254 mg (0.318 mmol) of [Ir(C5Me5)- $Cl_2]_2^7$ was obtained in 30 mL of methanol with the help of an ultrasonic bath. Adding 175 mg (0.80 mmol) of 1,4-dicyclohexyl-1,4-diaza-1,3-butadiene and stirring for 3 h at room temperature produced a clear red solution which was reduced to about 10 mL volume. An excess of a methanolic solution of Bu₄NPF₆ was added to yield a red precipitate, which was collected, washed with methanol and diethyl ether, and dried under vacuum. Yield: 393 mg (85%). Anal. Calcd for C₂₄H₃₉-ClF₆IrN₂P (mol wt 726.2): C, 39.58; H, 5.40; N, 3.85. Found: C, 39.08; H, 5.53; N, 3.85. ¹H NMR (CD₃CN): δ 1.17–2.45 (m, 20H, CH(R)), 1.70 (s, 15H, CH(C5Me5)), 4.16 (m, 2H, NCH-(R)), 8.75 (s, 2H, CH(imine)) ppm. $^{13}\mathrm{C}$ NMR (CD_3CN): δ 9.2 (CH₃(C₅Me₅)), 25.9, 26.5, 34.1, 35.4, 49.9, 72.9 (CH(R)), 93.3 (CCH₃(C₅Me₅)), 166.0 (CH(imine)) ppm. UV/vis (CH₃CN): λ_{max} (c) 515 (290), 388 (3920), 277 (5650) nm.

[(RN=CHCH=NR)(η^5 -C₅Me₅)Cllr](PF₆) (**R** = *o*-Tolyl; **1b**). A suspension of 208 mg (0.26 mmol) of [Ir(C₅Me₅)Cl₂]₂ was generated in 30 mL of methanol in an ultrasonic bath. Addition of 154 mg (0.65 mmol) of 1,4-bis(*o*-tolyl)-1,4-diaza-1,3-butadiene and stirring for 3 h at room temperature produced a clear green solution which was reduced to about a 10 mL volume. An excess of a methanolic solution of Bu₄NPF₆ was added to yield a green precipitate, which was collected, washed with methanol and diethyl ether, and dried under vacuum. Yieldd: 346 mg (90%). Anal. Calcd for C₂₆H₃₁ClF₆- IrN₂P (mol wt 744.2): C, 41.96; H, 4.20; N, 3.77. Found: C, 42.21; H, 4.28; N, 3.81. ¹H NMR (CD₃CN): δ 1.18 (s, 15H, CH₃(C₅Me₅)), 2.34 (s, 6H, CH₃(R)), 7.36–7.49 (m, 6H, CH(R)), 7.70 (dd, ³*J* = 7.5 Hz, 2H, CH(R)), 8.96 (s, 2H, CH(imine)) ppm. ¹³C NMR (CD₃CN): δ 8.44 (*C*H₃(C₅Me₅)), 18.21 (*C*H₃(R)), 95.39 (*C*CH₃(C₅Me₅)), 123.07, 128.04, 130.45, 132.30 (*C*H(R)), 148.50 (*C*N(R)), 170.57 (*C*H(imine)) ppm. UV/vis (CH₃CN): λ_{max} (ϵ) 590 (460), 408 (sh) (4260), 360 (4950), 292 (5030) nm.

[(RNCH=CHNR)(η^{5} -C₅Me₅)Ir] (R = Cyclohexyl; 2a). A solution of 73 mg (0.10 mmol) 1a in 20 mL of cold (-15 °C) acetone was treated with 136 mg (0.53 mmol) Bu₄NBH₄. After a rapid color change from red to orange, the volume was reduced to about 5 mL, and 3 mL of degassed H₂O was added. The air-sensitive orange precipitate was collected, washed with water, and dried under vacuum. Yield: 36 mg (65%). Anal. Calcd for C₂₄H₃₉IrN₂ (mol wt 547.8): C, 52.62; H, 7.18; N, 5.11. Found: C, 53.26; H, 7.18; N, 5.25. ¹H NMR (C₆D₆): δ 1.00–2.20 (m, 20H, CH₂(R)), 1.86 (s, 15H, CH₃(C₅Me₅)), 4.34 (m, 2H, CHN(R)), 7.33. (s, 2H, CH(imine)) ppm. ¹³C NMR (C₆D₆): δ 10.10 (*C*H₃(C₅Me₅)), 26.40, 27.10, 35.50, (CH₂(R)), 72.20 (*C*HN-(R)), 82.50 (*C*CH₃(C₅Me₅)), 129.00 (CH(imine)) ppm. UV/vis (CH₃CN): λ_{max} (ε) 424 (15 400), 234 (sh) nm.

[(RNCH=CHNR)(η⁵-C₅Me₅)**I**r] (**R** = *o*-Tolyl; 2b). A solution of 53.5 mg (0.072 mmol) of **1b** in 10 mL of cold (-15 °C) acetonitrile was treated with 37 mg (0.144 mmol) of Bu₄NBH₄. After 1 h of stirring the solvent was removed from the dark yellow solution and the residue extracted with *n*-hexane. Removal of *n*-hexane produced 14 mg (35%) of a very sensitive yellow-orange solid; an elemental analysis could not be obtained. Reaction of **1b** with Na[BH₃(CN)] also yielded **2b**. ¹H NMR (C₆D₆): δ 1.27 (s, 15H, CH₃(C₅Me₅)), 2.05 (s, 6H, CH₃-(R)), 7.02 (dt, ³J = 7.4 Hz, ⁵J = 1.5 Hz, 2H, H(R)), 7.1, 7.2 (d, ³J = 7.7 Hz, 4H, H(R)), 7.12 (s, 2H, H(imine)), 7.35 (d, ³J = 7.4 Hz, 2H, H(R)) ppm. ¹³C NMR (C₆D₆): δ 8.90 (*C*H₃(C₅Me₅)), 16.50 (*C*H₃(R)), 83.00 (*C*CH₃(C₅Me₅)), 125.20, 125.50, 125.70, 129.80, 132.60 (*C*H(R)), 132.80 (CN(R)), 157.40 (*C*HN(imine)) ppm. UV/vis (toluene): λ_{max} (ε) 430, 285 (sh), 230 (sh) nm.

 $[(RHNCH_2CH=NR)(\eta^5-C_5Me_5)HIr](PF_6)$ (R = Cyclohexyl; 3). A cooled solution (-15 °C) of 54.5 mg (0.075 mmol) of 1a in a mixture of 10 mL of ethanol and 2.5 mL of water was treated with 23.5 mg (0.375 mmol) of Na[BH₃(CN)]. Within 4 h the color changed from red to yellow; then the volume was slowly reduced until a light yellow precipitate began to form. This was collected, washed with degassed H₂O, and dried under vacuum. Yield: 28 mg (55%). Anal. Calcd for $C_{24}H_{42}F_6IrN_2P$ (mol wt 695.8): C, 41.43; H, 6.08; N, 4.03. Found: C, 42.44; H, 6.04; N, 4.32. ¹H NMR (CD₃CN): δ –10.80 (s, 1H, Ir-H), 0.99-3.42 (m, 20H, CH₂(R)), 1.80 (s, 15H, CH₃(C₅Me₅)), 3.61 (d, 2H, CHN(R)), 5.39 (s, 1H, NH(amine)), 7.81 (s, 1H, NH(imine)) ppm. ¹³C NMR (CD₃CN): δ 10.22 (CH₃(C₅Me₅)), 25.40, 25.70, 25.90, 26.30, 26.40, 26.50, 30.20, 31.80, 33.00, 35.30 (CH₂(R)), 60.38, 66.50, (CHN(R)), 72.00 (*C*H₂(amine)), 88.80 (*C*CH₃(C₅Me₅)), 168.30 (*C*H(imine)) ppm. UV/vis (CH₃CN): λ_{max} (ϵ) 335 (sh) nm. IR (KBr): ν 2069 cm⁻¹ (Ir-H).

[(RHNCH₂CH₂NHR)(η^5 -C₅Me₅)HIr][(BH₃(CN)] (R = Cyclohexyl; 4). Standing for 2 days and slow cooling of a solution as described above for **3** gave a small amount (ca. 3 mg) of yellowish crystals which were suitable for X-ray diffraction. The presence of an Ir-H bond was confirmed by IR spectroscopy in KBr: ν 2059 cm⁻¹.

Crystallography. Single crystals of **1b** were obtained through slow cooling of a solution in CH_3OH/CH_2Cl_2 (2/1 v/v); single crystals of compound **4** were obtained from the reaction solution. Crystallographic and refinement information is summarized in Table 1; a Siemens P4 diffractometer was used for data collection. The structures were solved using the programs

^{(5) (}a) Kölle, U.; Grätzel, M. Angew. Chem. **1987**, *99*, 572; Angew. Chem., Int. Ed. Engl. **1987**, *26*, 568. (b) Kölle, U.; Kang, B.-S.; Infelta, P.; Compte, P.; Grätzel, M. Chem. Ber. **1989**, *122*, 1869. (c) Reinhardt, R.; Kaim, W. Z. Anorg. Allg. Chem. **1993**, *619*, 1998.

<sup>F.; Compte, F.; Gratzer, M. Chem. Ber. 1969, 122, 1869. (c) Remnardt,
R.; Kaim, W. Z. Anorg. Allg. Chem. 1993, 619, 1998.
(6) (a) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414. (b) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc. 1996, 118, 267. (c) Ittel, S. D.; Johnason, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169.</sup>

⁽⁷⁾ White, C.; Thompson, S. J.; Maitlis, M. J. Chem. Soc., Dalton Trans. 1977, 1654.

Table 1.	Crystal Data and Structure Refinemen	it
	Information for Complex 4	

	1b	4
formula	CaeHatClFaIrNaP	CorHuzBIrNo
mol wt	744 15	592 70
temn K	183	183
wavelength Å	0 710 73	0 710 73
cryst syst	monoclinic	monoclinic
space group	$P2_1/c$	$P2_1/c$
a Å	8 0220(8)	13 030(2)
b Å	10.9726(11)	16.307(2)
c. Å	31.414(4)	12.373(4)
a. deg	90.00	90.00
β , deg	95.625(11)	90.53(3)
ν , deg	90.00	90.00
V. Å ³	2751.8(5)	2628.9(10)
Z	4	4
ρ (calcd), g cm ⁻³	1.796	1.490
abs coeff, mm ⁻¹	5.066	5.094
<i>F</i> (000)	1456	1188
cryst size, mm	$0.4 \times 0.3 \times 0.1$	$0.4 \times 0.1 \times 0.1$
θ range, deg	1.97 - 28.00	3.52 - 28.00
index ranges	$-10 \leq h \leq 10$,	$-17 \le h \le 17$,
-	$0 \leq k \leq 14$,	$-21 \leq k \leq 5$,
	$0 \le l \le 41$	$-16 \leq l \leq 16$
no. of rflns measd	6646	6538
no. of indep rflns	6646 (R(int) =	6261 (R(int) =
	0.0378)	0.0636)
abs cor	DIFABS	XABS2
refinement method	full-matrix	full-matrix
	least squares	least squares
no. of data/restraints/ params	6646/0/334	6261/0/276
goodness of fit on F^2	1.046	1.116
final R^a indices $(I > 2\sigma(I))$	R1 = 0.0345, wR2 = 0.0717	R1 = 0.0587, wR2 = 0.1328
R^a indices (all data)	R1 = 0.0555, wR2 = 0.0792	R1 = 0.0974, wR2 = 0.1479
largest diff peak and hole, e ${\rm \AA}^{-3}$	0.750 and -0.634	1.521 and -1.394
	(E) E) E	F (1

^{*a*} R|1 = $(\Sigma ||F_0| - |F_c||)/\Sigma |F_0|$; wR2 = $\{\Sigma [w(|F_0|^2 - |F_c|^2)^2]/\Sigma [w(F_0^4)]\}^{1/2}$.

SHELXTL PLUS and SHELXL 97,⁸ and heavy atoms were located via the Patterson procedure. The programs DIFABS⁹ and XABS2¹⁰ were used for absorption correction. The $[BH_3(CN)]^-$ anion in **4** was found to be disordered. Non-hydrogen atoms, except for those of the disordered cyanoboro-hydride in **4**, were refined anisotropically, and hydrogen atoms were introduced at appropriate positions with coupled isotropic temperature factors.

Results and Discussion

Reactivity. The starting compounds [(RN=CHCH= NR)(η^5 -C₅Me₅)CIIr](PF₆) (R = cyclohexyl (**1a**), *o*-tolyl (**1b**)) were obtained in the usual manner⁴ by reacting the corresponding 1,4-diazabutadiene ligand with [(η^5 -C₅Me₅)(μ -Cl)CIIr]₂.⁷ Related complexes with R = 2,6dimethylphenyl and 2,6-diisopropylphenyl have been structurally characterized; complex **1b** shows no unusual structure (see below).⁴ The compounds **1a**,**b** were reacted with borohydride reagents under different conditions, of which the following experiments gave clean results.

Figure 1. Cyclic voltammograms of complexes **1a** (–) and **2a** (– - -) in $CH_3CN/0.1$ M Bu_4NPF_6 at 500 mV/s scan rate (potential vs ferrocenium/ferrocene).

(1) Reaction of red **1a** with $(Bu_4N)(BH_4)$ at -15 °C in acetone yields the air-sensitive orange reduction product [(RNCH=CHNR)(η^{5} -C₅Me₅)Ir] (**2a**), identified by its high-field-shifted NMR signals. The resonances for the enediamido(2-) entity with 7.33 ppm (¹H NMR) and 129.0 ppm (¹³C NMR) are especially indicative.⁴ The intense absorption band at 424 nm is also typical for such metal/ligand π -delocalized "metallaheteroaromatic" systems.^{4,11} Compound **2a** is also the product of the familiar^{5,12} irreversible two-electron reduction of **1a**, as observed by cyclic voltammetry (Figure 1). The peak potentials are $E_{1c} = -0.86$ V for the chloride-dissociative reduction of **1a** to **2a** and $E_{1a} = -0.46$ V for the reoxidation (all values vs ferrocenium/ferrocene). In agreement with E_{1a} , the chemically isolated compound 2a itself is oxidized reversibly in a two-electron step at $E_{1/2} = -0.50$ V vs ferrocenium/ferrocene. Due to the stronger donor character of alkyl vs aryl substituents this latter value is slightly more negative than the -0.39V reported for the 1,4-bis(2,6-dimethylphenyl)-1,4-diazabutadiene analogue.4a

(2) Reaction of green **1b** with $Na[BH_3(CN)]$ or (Bu_4N) - (BH_4) at -15 °C in acetonitrile also produces the highly air-sensitive orange reduction product [(RNCH=CHNR)- $(\eta^5$ -C₅Me₅)Ir] (**2b**), characterized through its high-fieldshifted NMR signals. The diminished stability of **2b** in comparison to the higher substituted analogues⁴ reflects the decrease in axial shielding. Neutral 2b can also be generated through irreversible two-electron reduction of **1b**; the peak potentials at $E_{1c} = -0.84$ V and $E_{1a} =$ -0.43 V are close to those of the 1a/2a system. Compound **1b** exhibits a reversible $Ir^{III} \rightarrow Ir^{IV}$ oxidation at $E_{\rm ox} = 1.48$ V to $1b^+$ and an irreversible reduction of the two-electron-reduced intermediate $\mathbf{2b}$ at $E_{2a} = -2.73$ V. The latter value is almost 1 V more negative than the peak potential of -1.88 V for the reduction of free 1,4-bis(o-tolyl)-1,4-diaza-1,3-butadiene, confirming the extremely strong π -back-donation exerted by the (C₅-Me₅)Ir fragment.¹³

(3) Reaction of **1a** with Na[BH₃(CN)] at -15 °C in aqueous ethanol and workup within 4 h produced the light yellow compound [(RHNCH₂CH=NR)(η^{5} -C₅Me₅)-

⁽⁸⁾ Sheldrick, G. M. SHELXTL-PLUS: An integrated System for Solving, Refining and Displaying Structures from Diffraction Data; Siemens Analytical X-ray Instruments Inc., 1989. Sheldrick, G. M. SHELXL 97: A Program for Crystal Structure Determination; Universität Göttingen, Göttingen, Germany, 1997.
(9) Walker, N.; Stuart, D. Acta Crystallogr., Sect. A 1983, 39, 158.

⁽⁹⁾ Walker, N.; Stuart, D. Acta Crystallogr., Sect. A 1983, 39, 158.
(10) Parkin, S.; Moezzi, B.; Hope, H. J. Appl. Crystallogr. 1995, 28, 53.

⁽¹¹⁾ Zalis, S.; Greulich, S.; Kaim, W. To be submitted for publication. (12) Ladwig, M.; Kaim, W. *J. Organomet. Chem.* **1992**, *439*, 79.

Table 2. Selected Bond Distances (Å) and Angles(deg) for Compound 1b

Distances							
Ir-Cl	2.380(1)	Ir-C5	2.185(5)				
Ir-N1	2.067(4)	N1-C18	1.288(6)				
Ir-N2	2.082(4)	N2-C19	1.287(6)				
Ir-Cl	2.197(5)	C18-C19	1.446(7)				
Ir-C2	2.165(4)	N1-C11	1.448(6)				
Ir-C3	2.195(5)	N2-C20	1.444(6)				
Ir-C4	2.167(5)						
Angles							
N1-Ir-N2	75.83(16)	C19-N2-C20	119.5(4)				
Ir-N1-C18	117.4(4)	C11-N1-Ir	125.5(3)				
Ir-N2-C19	116.0(3)	C20-N2-Ir	124.5(3)				
N1-C18-C19	114.6(5)	N1-Ir-Cl	86.97(11)				
N2-C19-C18	116.2(5)	N2–Ir–Cl	86.48(11)				
C11-N1-C18	117.1(4)						

 $HIr](PF_6)$ (3). NMR and IR spectroscopy show the presence of a hydride ligand; however, the product has also undergone a partial hydrogenation of one of the imine functions. The sequence of Cl/H exchange and hydrogenation reaction has not been established; it probably depends on the proton availability.

(4) Prolonged reaction of **1a** with Na[BH₃(CN)] in aqueous ethanol gave a small amount of yellowish crystals which proved suitable for X-ray diffraction (Scheme 1). The infrared spectrum showed an Ir–H stretching band at 2059 cm⁻¹, slightly shifted in comparison to **3**. This compound was identified by X-ray crystallography as the fully hydrogenated species [(RHNCH₂CH₂NHR)(C₅Me₅)HIr][BH₃(CN)] (**4**), with the cyanotrihydridoborate anion.

Crystal Structure of 1b. The crystallographic data are summarized in Table 1; Table 2 contains selected bond parameters. Figure 2 shows the molecular structure of **1b**.

The molecular arrangement is rather similar to the structures of analogues with 1,4-bis(2,6-dialkylphenyl) substituents;⁴ the C₅Me₅ ligand is coordinated in a η^5 fashion, albeit at a slightly shorter distance. Less steric interference is also responsible for the decreased angle of 61° between the IrNCCN and C₅Me₅ planes; the bis-(2,6-dimethylphenyl) analogue has 69° ^{4a} (the bis(2,6-diisopropylphenyl) derivative exhibits a twisted chelate

Figure 2. Molecular structure of the cation of complex **1b** in the crystal form.

Figure 3. Molecular structure of the cation of complex **4** in the crystal form.

Table 3. Selected Bond Distances (Å) and Angles(deg) for Compound 4

	Dista	ances	
Ir-N1	2.165(8)	Ir-C5	2.214(9)
Ir-N2	2.136(8)	N1-C17	1.428(14)
Ir-C1	2.272(11)	N2-C18	1.404(14)
Ir-C2	2.236(10)	N1-C16	1.477(13)
Ir-C3	2.150(9)	N2-C19	1.494(12)
Ir-C4	2.159(9)	C17-C18	1.488(16)
	An	gles	
N1-Ir-N2	78.6(3)	N2-C18-C17	111.3(10)
Ir-N1-C17	107.9(7)	C16-N1-C17	118.9(9)
Ir-N2-C18	112.3(7)	C19-N2-C18	116.5(9)
N1-C17-C18	110.1(10)		

ring^{4b}). The *o*-tolyl substituents are slightly twisted (ca. 14°), with the methyl groups pointing away from the Cl ligand.

Crystal Structure of 4. The crystallographic data are summarized in Table 1; Table 3 contains selected bond parameters. Figure 3 shows the molecular structure of **4**.

The identity of the chelate ligand as an ethylenediamine derivative¹⁴ is clearly evident from the twist conformation of the five-membered chelate ring. The distances inside that ring confirm the single-bond character of N–C and C–C; in addition, the Ir–N bonds are lengthened from about 2.07 Å to ca. 2.15 Å, in agreement with the absence of any π -bonding contribu-

⁽¹³⁾ Bruns, W.; Kaim, W.; Ladwig, M.; Olbrich-Deussner, B.; Roth, T.; Schwederski, B. In *Molecular Electrochemistry of Inorganic, Bioinorganic and Organometallic Compounds*; Nato ASI Series C 385; Pombeiro, A. J. L., McCleverty, J., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1993; p 255.

⁽¹⁴⁾ Wilkinson, G. *Comprehensive Coordination Chemistry*, 1st ed.; Pergamon: Oxford, U.K., 1987.

tions. The general lengthening of intrachelate bonds and the nonplanar chelate ring conformation are accompanied by an increase of the bite angle from about 76° to 78.6(3)°. The presence of the hydride ligand at iridium can be inferred from the interplanar angle of 63.3° between the cyclopentadienide and the N1IrN2 planes. Similar effects occur for the chloro complexes,⁴ whereas $[(RNCH=CHNR)(\eta^5-C_5Me_5)Ir](R = 2,6-dimethylphenyl)$ exhibits an essentially perpendicular arangement for these planes.^{4a} The cyclopentadienide itself adopts a rather unsymmetrical coordination toward the metal with Ir-C distances ranging from 2.150(9) to 2.272(11) Å. Unsymmetrical bonding of C5Me5 has also been reported for $[(\alpha \text{-diimine})(C_5 \text{Me}_5)\text{Ir}]$ $(\alpha \text{-diimine} = 2,2'$ bipyridine-4,4'-dicarboxylic acid);^{2e} for the iridium(III) complex **4** this deviation from the ideal η^5 coordination probably reflects the σ donor effects from the hydride and the fully saturated ethylenediamine ligand.

Conclusion

The differences in the reactivity of the complexes $[(\alpha - diimine)(\eta^5-C_5Me_5)CIIr]^+$ vs borohydride reagents as illustrated by Scheme 2 can be attributed to substrate and media variations.

(1) Simple chloride/hydride exchange occurs when the chelate ligand is not easily reduced or hydrogenated: e.g., in the case of aromatic α -diimines.

(2) In the absence of protons the nonaromatic 1,4diaza-1,3-butadienes can undergo a reduction (electrontransfer reactivity) to enediamido(2–)–iridium(III) complexes [(RNCH=CHNR)(η^5 -C₅Me₅)Ir]. With axially shielding substituents R this reaction occurs even in protic media.⁴

(3) With a more normal 1,4-diaza-1,3-butadiene such as the dicyclohexyl derivative presented here the reac-

tion in protic medium yields partially or fully hydrogenated derivatives [(RHNCH₂CH=NR)(η^5 -C₅Me₅)HIr]⁺ and [(RHNCH₂CH₂NHR)(η^5 -C₅Me₅)HIr]⁺. Hydride and protons combine to H₂ equivalents which can apparently attack the nonaromatic imine bonds, perhaps catalyzed by the iridium species present.

Obviously, under such circumstances the 1,4-diaza-1,3-butadiene ligands are "noninnocent"^{4a,16} in more senses than one: they are not only capable of changing their effective charge but also sufficiently reactive to undergo hydrogenation. In the context of catalytic hydride generation, activation, and transfer schemes^{2,5,17} the latter, irreversible process would be undesired, leading to inactive complexes.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We also thank Dr. Wolfgang Schwarz for the crystallographic measurements.

Supporting Information Available: Tables of X-ray crystallographic data for **1b** and **4**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM010529K

⁽¹⁵⁾ For structures of related ruthenium(II) complexes see: Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. *Angew. Chem.* **1997**, *109*, 297; *Angew. Chem., Int. Ed.* **1997**, *36*, 285.

^{(16) (}a) Jörgensen, Chr. K. Modern Aspects of Ligand Field Theory; North-Holland: Amsterdam, 1971. (b) tom Dieck, H.; Diercks, R.; Stamp, L.; Bruder, H., Schuld, T. Chem. Ber. **1987**, *120*, 1943. (c) Scholz, J.; Dietrich, A.; Schumann, H.; Thiele, K.-H. Chem. Ber. **1991**, *124*, 1035.

⁽¹⁷⁾ Kaim, W. In *Abschlussbericht zu SFB 270: Wasserstoff als Energieträger*; Rebholz, H., Hahne, E., Eds.; Universität Stuttgart: Stuttgart, Germany, 1998; p 95 (ISBN 3-00-003757-8).