New Derivatives of Tetrahydroborate(1-), BH₃SiF₃⁻ and BH₂(SiF₃)₂⁻

By Sydney Brownstein

(Division of Chemistry, National Research Council, Ottawa, Ontario K1A OR9, Canada)

Summary Silicon tetrafluoride and tetrabutylammonium (TBA) tetrahydroborate react in methylene chloride solution to produce [TBA][BH₃SiF₃] and [TBA][BH₂-(SiF₃)₂].

Boron trifluoride is reported to react with the tetrahydroborate ion to yield BF₄⁻ and boranes.¹ The reaction of SiF₄ and BH₄⁻ has been mentioned but no details given.¹ The species SiF₄, BH₄⁻, BF₄⁻, BH₄SiF₄⁻, BH₃SiF₃⁻, and BH₂(SiF₃)₂⁻ are now proposed to explain the features of the ¹H, ¹⁹F, and ¹¹B n.m.r. spectra of solutions with a ratio of BH₄⁻ to SiF₄ of 2:1, 1:1, and 1:2. Their n.m.r. parameters are listed in the Table. Some closely related hydrogen analogues are BH₃GeH₃⁻² and (BH₃)₂PH₂⁻³

formation of BH₃SiF₃⁻ in the solution. Since SiF₄ is well known to form complexes with anions,⁴ it is assumed that the initial transient species is BH₄SiF₄⁻ but lack of fine structure from measurable spin coupling, perhaps because of rapid exchange, prevents a definite assignment.

After six months at room temperature for the 2:1 solution and two weeks for a 1:1 solution, in addition to the lines of BF_4 and BH_3SiF_3 in the ^{19}F spectrum there is a set of four triplets at $-112\cdot7$ p.p.m. There is a corresponding set of four apparent ^{1}H quintets at -0.75 and a triplet of ^{11}B septets at $55\cdot6$ p.p.m. These unambiguously identify the species $BH_2(SiF_3)_2$ in solution. As an example the ^{11}B n.m.r. spectrum of BH_3SiF_3 and $BH_2(SiF_3)_2$ is shown in the Figure. The reactions can be described by equations

TABLE. Magnetic resonance parameters of some silicon and boron species.

Species	δH^a	$\delta \mathrm{F_{si}}$	δF_{B}	$\delta \mathrm{B}$	$J_{\mathbf{B}-\mathbf{H}}$	$J_{\mathbf{F}-\mathbf{H}}$	$f_{\mathbf{B}-\mathbf{Si}-\mathbf{F}}$
BH ₄ -	-0.16			34.8	82		
BF_4			$-151 \cdot 1$	$-2\cdot 2$			
SiF ₄		-156.8					
BH ₄ SiF ₄ -	-0.34	-137.7					
$\mathrm{BH_3SiF_3}^-$	-0.52	-112.0		46.9	86	$6 \cdot 7$	20.9
$BH_2(SiF_3)_2^-$	-0.75	-112.7		$55 \cdot 6$	85	$5 \cdot 3$	$24 \cdot 3$

^a Chemical shifts are in p.p.m to low field from Me₄Si, CFCl₃, and BF₃OEt₂. Spin couplings are in Hz.

A freshly prepared methylene chloride solution with 2 equiv. of [TBA][BH₄] (TBA = tetrabutylammonium) for each SiF₄ has only a single sharp ¹⁹F n.m.r. line at -137.7 p.p.m. and a broad line at -0.34 in the ¹H n.m.r. spectrum. Upon standing at room temperature, hydrogen is evolved and a set of four, overlapping ¹⁹F quartets is observed at -112.0 p.p.m., a set of four ¹H quartets at -0.52, and a quartet of quartets at 46.9 p.p.m. in the ¹¹B resonance spectrum. These results unambiguously identify the

(1) and (2) although this is not meant to specify anything about the mechanism of the reaction.

$$BH_4^- + 4BH_4SiF_4^- \rightarrow 4BH_3SiF_3^- + BF_4^- + 4H_2$$
 (1)

$$2BH_3SiF_3^- \to BH_2(SiF_3)_2^- + BH_4^-$$
 (2)

These reactions appear unique to SiF₄ with CH₂Cl₂ as solvent. Rapid decomposition of BH₄⁻ occurs in CCl₄ and CHCl₃ and a very slow reaction with CH₂Cl₂. [TBA][BH₄]

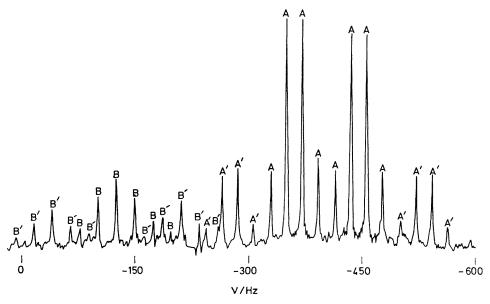


FIGURE. ¹¹B N.m.r. spectrum of some B-H species: (A) [TBA][BH₂SiF₃]; (B) [TBA][BH₂(SiF₃)₂].

J.C.S. CHEM. COMM., 1980

is insoluble in diethyl ether and reacts differently with SiF. when tetrahydrofuran is used as solvent. The reaction of GeF₄ with BH₄⁻ in methylene chloride solution gives BF₄⁻, identified by its 19F n.m.r. spectrum, and a pale yellow solid, identified as orthorhombic germanium difluoride from its X-ray powder pattern. No hydrogen-containing species

were found with PF_3 , PF_5 , AsF_3 , and WF_6 . [TBA][BH₃SiF₃] and [TBA][BF₄] were isolated as solids by evaporation of all readily volatile materials after a short time from the reaction of [TBA][BH₄] with an

excess of SiF₄ in methylene chloride solution. The i.r. spectrum has peaks at 2330 (B-H stretch) and 820 cm⁻¹ Si-F stretch). We did not succeed in the separation of $[TBA][BF_4] \quad and \quad [TBA][BH_3SiF_3], \quad but \quad an \quad elemental$ analysis of the solid product for boron, silicon, and fluorine agrees with a ratio of five [TBA][BH₃SiF₃] to one [TBA]- $[BF_4].$

(Received, 26th October 1979; Com. 1142.)

B. D. James and M. G. H. Wallbridge, Progr. Inorg. Chem., 1970, 11, 152.
D. S. Rustad and W. L. Jolly, Inorg. Chem., 1968, 7, 213.
E. A. Dietz, K. W. Morse, and R. W. Parry, Inorg. Chem., 1976, 15, 1.
P. A. W. Dean and D. F. Evans, J. Chem. Soc. A, 1970, 2569.