STRUCTURE OF CYANODELPHIN, A TETRA-*p*-HYDROXYBENZOATED ANTHOCYANIN FROM BLUE FLOWER OF *DELPHINIUM HYBRIDUM*

Tadao KONDO,^{+*} Kanako SUZUKI, Kumi YOSHIDA,⁺⁺ Kaori OKI, Minoru UEDA, Minoru ISOBE and Toshio GOTO.

+Chemical Instrument Center, Nagoya University and Laboratory of Organic Chemistry, Faculty of Agriculture, Nagoya University, Chikusa, Nagoya 464-01, Japan

++School of Life Studies, Sugiyama Jogakuen University, Hoshigaoka, Chikusa, Nagoya 464, Japan

Abstract: Structure of cyanodelphin from blue petals of *Delphinium hybridum* was determined. It contains delphinidin nucleus, four molecules of *p*-hydroxybenzoic acid and seven molecules of bexoses.

Flowers of *Delphinium*, which have various colored petals *i. e.* white, red, violet and blue, are widely cultivated in the world. In 1915 Willstätter isolated a pigment, delphinin, from reddish purple petals of *Delphinium consolida* and proposed the structure to be di-(p-hydroxybenzoyl)delphin,¹) but, in 1964, Harborne doubted existence of *p*-hydroxybenzoyl gruop in its molecule.²) Asen re-examined the pigment of blue larkspur cv "Dark blue Supreme" in 1975 and reported the structure to be delphinidin 3-di-(p-hydroxybenzoyl)-glucosylglucoside and bluing in the flower by copigmentation.³) Recently we isolated violdelphin⁴) from violet flower of *Delpinium* cv "Black Night" and determined the structure to be delphinidin 3-*O*-rutinoside-7-*O*-(6-*O*-(4-*O*-(6-*O*-*p*-hydroxybenzoylglucosyl)-*p*-hydroxybenzoyl) glucoside.⁵) In this paper we will describe the complete structure of cyanodelphin isolated from blue flower, *Delphinium* hybridum cv "Blue Springs", which contains four *p*-hydroxybenzoic acids in the molecule. The structure of cyanodelphinin is different from those pigments in purple petals reported previously.

Fresh blue petals of *Delphinium hybridum* (3.1 Kg) was frozen with liq. N₂ and pulverized by a blender. The powder was extracted with aq. 70% CH₃CN containing 3% trifluoroacetic acid (TFA). The extract was condensed and chromatographed on an Amberlite XAD-7 column using stepwise elution from aq. 0.5% TFA to aq. CH₃CN containing 0.5% TFA. The crude pigment was purified by repeated precipitation as follows; to the crude pigment aq. 10% TFA was added and ultrasonicated, then precipitates formed were collected by centrifugation to give pure cyanodelphin $(1)^{6}$ as TFA salts (4.63 g).

¹H NMR of 1⁷) (m/z 1901)⁸) in TFA-*d*-CD₃OD showed existence of delphinidin nucleus, assigned by means of ¹H-¹H COSY from basis on the signal at 8.69 ppm as H-4,⁹) four molecules of *p*-hydroxybenzoic acid and seven molecules of hexoses. Partial hydrolysis of 1 with 1N NaOH-CH₃OH at 0 °C gave bisdeacylcyanodelphin (2, m/z 1499),⁶,⁷) tetrakisdeacylcyanodelphin (3, m/z 1097),⁶,⁷) 4-O-(6-O-*p*hydroxybenzoyl- β -D-glucopyranosyl)-*p*-hydroxybenzoic acid (4), 4-O- β -D-glucopyranosyl-*p*-hydroxybenzoic acid (5) and *p*-hydroxybenzoic acid (6).

¹H NMR of the tetrakisdeacylate 3 in 10% TFAd-CD₃OD showed delphinidin and five hexoses in the molecule. One of five hexoses was determined to be α -L-rhamunoside by comparison with the signals of sugar moleties of violdelphin.⁵) In order to separate the highly overlapping signals at sugar region, 3 was derived to

*: NOE's by irradiating the anomeric protons

6376

the pertrifluoroacetate (7) by treatment with trifluoroacetic anhydride (TFAA).¹⁰⁾ By ¹H NMR of 1D-HOHAHA spectra of 7 irradiating at each anomeric proton, four hexoses were determined to be β -glucopyranosides from the vicinal couplings $(J_{1,2}=7.5\text{Hz}, \text{ and } J_{2,3}=J_{3,4}=J_{4,5}=9.0\text{Hz})$. The sugar linkages of \blacktriangle , \bigtriangleup and \bigcirc could be clarified by NOE difference spectra (Scheme). Irradiation of the anomeric proton of \Box and \bigcirc enhanced the signals of H-2 and 3 of O and • simultaneously, so the glycosyl position of both 🗖 and O -sugar was obscure whether 2-OH or 3-OH. Since the chemical shifts of signals of H-3 of ●(4.42 ppm) and O(4.26 ppm) are observed about 0.8 ppm higher field than that of H-2 of \bullet (5.41 ppm) and O(5.13 ppm), the glycosyl position of \Box and \bigcirc -glucose was determined to be the OH-3 of \bigcirc and \bigcirc -glucose, respectively. Thus, the structure of 3 must be $3-O-(6-O-(\alpha-L-rhamunosyl)-\beta-D-glucopyranosyl)-7-O-(3-O-(\beta-D-glucopyranosyl) \beta$ -D-glucopyranosyl)- β -D-glucopyranosyl)delphinidin.

¹H NMR analysis revealed that bisdeacylcyanodelphin (2) is composed with tetrakisdeacylcyanodelphin (3), one newly observed hexose (β -glucopyranoside, \mathbf{X}), and two *p*-hydroxybenzoic acid. Partial alkaline hydrolysis of 2 gave 3 and 4. The -CH₂- signals of \bullet -glucose of 2 appeared at 0.6-0.9 ppm lower field than that of tetrakisdeacylcyanodelphin (3), indicating that 6-OH of \bullet is acylated with 4. Thus, the structure of 2 was determined as shown in Scheme. By complete assignment of ¹H NMR of 1 using 1D and 2D HOHAHA and NOE spectra, the composition of 1 was clarified to be 2, two p-hydroxybenzoic aicd (6) and one glucose (\blacksquare). The sugar \blacksquare also has the same pattern linkage to two *p*-hydroxybenzoic acids as component 4. Comparing the chemical shifts of the -CH₂- signals of \Box -glucose of 1 with those of 2, the -CH₂- of \Box -sugar appeared at lower field (4.80 ppm and 4.39 ppm), indicating that the p-hydroxybenzoyl group of 4 is attached to 6-OH of \Box . hydroxybonzoyl- β -D-glucopyranosyl)-p-hydroxybenzoyl)- β -D-glucopyranosyl)- β -D-glucopyranosyl)-6-O-(4-O- $(6-O-phydroxybenzoyl-\beta-D-glucopyranosyl)-p-hydroxybenzoyl)-\beta-D-glucopyranosyldelphinidin.$

1 was very stable in a neutral ad, solution (ca 2×10^{-5} M), and the color was remaining for more than one month, while the diacylate 2 was as unstable as violdelphin and 3 was more unstable than 2.

Acknowledgements; The authers thank the finanncial support from the Salt Science Research Foundation and from the Ministry of Education, Science and Culture, Japan (Grand-in-Aid for Scientific Research on Priority Areas No. 02250103).

References and Notes

- Willstätter, R.; Mieg W. Ann. Chem., 1915, 408, 61. 1.
- Harborne, J.B. Phytochemistry, 1964, 3, 151. 2.
- Asen S; Stewart, R. N.; Norris, K. H. Phytochemistry, 1975, 14, 2677. 3.
- 4. Delphinin may be identical with violdelphin.
- Kondo, T; Oki, K.; Yoshida, K.; Goto, T. Chem. Lett., 1990, 137. Electron absorption, λ_{max} nm (ϵ), of 1, 2, and 3 in 0.1% HCl-McOH 5.
- 6.
- 1: 548 nm (26100), 250 (54000); 2: 548 (23000), 250 (24000), 3: 540 (30900) 282 (14800)
- 7. Assignments of the ¹H NMR Spectra of 1, 2, and 3 (in 10% TFAd-CD3OD at 30°C, 500MHz)

	1			2			7***		
A-4 A-6 A-8 A-2',6'	8.69 6.71 7.12 7.89	s br.s s s	(2H)	8,68 6.69 7,18 7,83	s br.s s s	(2H)	8.86 7.75 7.77 8.50	br.s s br.s s	(2H)

۱- ۲	5.31	d	7.5	5.33	d	7.5	6.50	đ	7.5
-2	2 3.88	dd	9.0,7.5	3.91	dd	7.5, 9.0	5.71	dd	9.0, 7.0
-3	3 3.62	L	9.0	3.63	t	9.0	5.60	t	9.0
1	3.43	t,	9.0	3.44	t	9.0	5.80	[9.0
-5	5 3.77	dd	9.0, 7.0	3.79	ddd	9.0, 7.5, 2.0	4.42	000	9.0, 5.5, 2.0
(-e	xa 4.16	br.d	12.0	4.18	aa	12.0, 2.0	4.08	00	12.0, 2.0
-6	5b 3.69	dd	12.0, 7.0	3.70	dd	12.0, 7.5	3.78	aa	12.5, 5.5
[-]	5.38	d	7.5	5.42	d	7.5	5.77	br.d	/.5
-2	2 3.84	m		3.90	m		5.41	aa	9.0, 7.5
-3	3.84	m		3.90	m		4.42	t	9.0
• { 4	3.58	t	9.0	3.61	t	9.0	5.38	t	9.0
-5	5 4.08	br.t	9.0	4.13	dt	9.0, 2.5	4.45	ddd	9.0, 6.0, 2.5
	xa 4.99	br.d	12.0	5.04	dd	12.0, 2.5	4.65	dd	12.0, 2.5
`-{	6b 4.29	dd	12.0, 9.0	4.28	dd	12.0, 9.0	4.52	dd	12.0, 6.0
۱- ۲	l 4.81	S		4.86	S		4.86	d	1.5
-2	2 3.92	br. s		3.96	br.s		5.38	br.d	4.0
_∧J-3	3.73	dd	9.0, 2.5	3.73	br.d	12.0	5.48	dd	10.0, 4.0
] ⊿	3.41	t	9.0	3.47	ι	12.0	5.21	dd	10.0, 9.0
-5	5 3.63	dq	9.0, 7.0	3.64	m		4.05	dq	9.0, 7.0
- L.	ia 1.25	d	7.0	1.25	d	7.0	1.25	d	7.0
-1	4.63	d	7.5	4.77	đ	7.5	4.88	d	7.5
-2	2 3.53	br. d	9.0	3.58	dd	9.0, 7.5	5.13	dd	9.0, 7.5
-3	3.47	t	9.0	3.66	t	9.0	4.26	t	9.0
0 { 4	3.37	t	9.0	3.48	t	9.0	5.21	t	9.0
-5	5 3.25	ddd	9.0, 7.5, 2.0	3.45	ddd	9.0, 4.5, 1.5	4.05	ddd	9.0, 5.0, 3.0
	xa 3.84	dd	12.0, 2.0	3.96	dd	12.0, 1.5	4.48	m	
<u> </u>	5b 3.60	dd	12.0, 7.5	3.73	dd	12.0, 4.5	4.48	m	
ا- م	4.60	d	7.5	4.62	d	7.5	4.88	d	7.5
-2	2 3.51	dd	9.0, 7.5	3.33	dd	9.0, 7.5	5.17	đd	9.0, 7.5
-3	3.44	t	9.0	3.43	t	9.0	5.51	t	9.0
□┤ ₄	3.39	t	9.0	3.32	t	9.0	5.29	t	9.0
-5	5 3.77	ddd	9.0, 7.0, 2.0	3.53	ddd	9.0, 6.0, 2.0	4.13	ddd	9.0, 7.0, 4.0
	5a 4.80	dd	12.0, 2.0	3.92	dd	12.0, 2.0	4.51	dd	12.0, 7.0
<u> </u>	6b 4.39	dd	12.0, 7.0	3.67	dd	12.0, 6.0	4.45	dd	12.0, 4.0
ا- م	5.06	d	7.5						
-2	2 3.56	m							
-3	3.56	m							
_∎< 4	4 3.45	t	9.0						
	5 3.86	ddd	9.0, 7.5, 2.0						
	ia 4.69	dd	12.0, 2.0						
<u> </u>	5b 4.36	dd	12.0, 7.5						
ا- م	4.50	br.d	7.5	4.42	d	7.5			
-2	2 3.56	m		3.47	dd	9.0, 7.5			
-3	3 3.56	m		3.53	t	9.0			
_ X { ∡	3.36	t	9.0	3.36	ι	9.0			
2-	5 3.85	dı	9.0, 2.0	3.53	dt	9.0, 2.0			
-	ia 4.64	dd	12.0. 2.0	4.46	dd	12.0. 2.0			
	ib 4.03	dd	12.0. 9.0	3.99	dd	12.0, 9.0			
I-2	.6' 7.83	• d	8.5	7.42	d	8.5			
Ĩ-3	5' 6.83	* d	8.5	6.49	d	8.5			
й -2	6 7.46		8.5	7.90	đ	8.5			
11 -3	5 6.51	•* d	8.5	6.84	đ	8.5			
111-2	6' 7.95	∗ d	8.5	0.0	~				
111-2	'5' 7 12*	r d	8.5						
IV-2		** d	8.5						
		-							

*: Determined by NOE's. **: determined by HMBC. ***: This sample was measured in CDCl₃ at 25 °C. FABMS was carried out using a matrix of 1N HCl-glycerol. Nilsson, E. Chemica Scripta, 1973, 4, 49.

8.

d

8.5

<u>9</u>.

6.87**

IV-3'5'

Goto, T.; Kondo, T.; Imagawa, H.; Takase, S.; Atobe, M.; Miura, I. Chem. Lett., 1981, 883.; Ranganathan, M.; Balarm, P. Org. Mag. Res., 1980, 13, 220. 10.

(Received in Japan 29 July 1991)