Tetraphenyl- and Tetratolylantimony Complexes with N,N-Dialkyldithiocarbamate Ligands: Synthesis, X-Ray Diffraction Analysis, and ¹³C and ¹⁵N CP/MAS NMR Studies

V. V. Sharutin^{*a*}, M. A. Ivanov^{*b*}, A. V. Gerasimenko^{*c*}, A. V. Ivanov^{*b*}, A. P. Pakusina^{*a*}, O. N. Antsutkin^{*d*}, W. Forsling^{*d*}, and G. Gröbner^{*e*}

^a Blagoveshchensk State Pedagogical University, ul. Lenina 104, Blagoveshchensk, 675000 Russia

^b Institute of Geology and Nature Management, Amur Scientific Center, Far East Division, Russian Academy of Sciences, Blagoveshchensk, Russia

^c Institute of Chemistry, Far East Division, Russian Academy of Sciences, pr. Stoletiya Vladivostoka 159, Vladivostok, 690022 Russia

^d Luleä University of Technology, S-971 87, Luleä, Sweden

^e Umeä University, S-901 87, Umeä, Sweden

Received April 28, 2005

Abstract—Crystalline tetraphenylantimony and tetratolylantimony complexes with *N*,*N*-dialkyldithiocarbamate ligands $[Sb(C_6H_5)_4(S_2CNR_2)]$ (R = CH₃, C₂H₅, and C₃H₇ and R₂ = (CH₂)₆) were synthesized by ligand exchange reactions and studied by ¹³C and ¹⁵N CP/MAS NMR spectroscopy. X-ray diffraction analysis revealed that the complex $[Sb(n-CH_3-C_6H_4)_4\{S_2CN(C_3H_7)_2\}]$ exists as the single molecular form, while $[Sb(C_6H_5)_4\{S_2CN(CH_2)_6\}]$ exists as two molecular conformers. The ¹³C and ¹⁵N signals were assigned to the positions of the atoms in the isomeric structures $[Sb(C_6H_5)_4\{S_2CN(CH_2)_6\}]$ in terms of different degrees of double bonding in the formally single =N–C(S)S– bond.

DOI: 10.1134/S1070328406060017

Organoantimony compounds are of interest as biocides, fungicides, components of catalysts, antioxidants, etc. [1]. That is why the synthesis of new organoantimony compounds and investigations of their structures and properties are important lines of modern coordination chemistry.

In this study, we obtained heteroligand complexes of tetraphenyl-[Sb(C₆H₅)₄(S₂CNR₂)] (R = CH₃ (I), C₂H₅ (II), and C₃H₇ (III) and R₂ = (CH₂)₆ (IV)) and tetra(*p*-tolyl)antimony [Sb(*n*-CH₃-C₆H₄)₄{S₂CN(C₃H₇)₂}] (V) and studied them by ¹³C and ¹⁵N CP/MAS NMR spectroscopy. Complexes IV and V were structurally characterized by X-ray diffraction data. Conformational isomerism was discovered in complex IV: its unit cell includes two molecular conformers of the complex. The ¹³C and ¹⁵N signals were assigned to the structural positions of the respective atoms of the dithiocarbamate groups in the resolved molecular isomers of complex IV.

EXPERIMENTAL

Complexes I and II were synthesized as described in [2, 3] and by ligand exchange reactions from pentaphenylantimony and bis(N,N-dialkyldithiocarbam-ato-S,S')triphenylantimony.

Synthesis of (*N*,*N*-dipropyldithiocarbamato-*S*,*S*')tetra(*p*-tolyl)antimony(V) (V). A solution of penta(*p*-tolyl)antimony (0.65 g) in benzene was added to a solution of bis(*N*,*N*-dipropyldithiocarbamato-*S*,*S*')tri(*p*-tolyl)antimony (0.50 g) in benzene. The reaction mixture was heated at 90°C for 1 h and cooled. The solvent was removed by evaporation and the residue was recrystallized from toluene–heptane (1 : 1). The yield of complex V was 0.90 g (78%), $T_{\rm m} = 151^{\circ}$ C.

For C35H42NS2Sb

anal. calcd. (%):	63.44;	H, 6.34;	2.11.
Found (%):	63.06;	6.13;	2.03.

IR (v, cm⁻¹): 1260 s, 1200 s, 1140 s, 1100 s, 1010 m, 910 m.

(*N*,*N*-Dipropyldithiocarbamato-*S*,*S*')tetraphenylantimony(V) (III) was obtained analogously. The yield of complex III was 83%, $T_m = 141^{\circ}$ C. For C₃₁H₃₄NS₂Sb

anal. calcd. (%):	61.39;	H, 5.61;	N, 2.31.
Found (%):	61.27;	Н, 5.74;	N, 2.22.

IR (v, cm⁻¹): 1480 s, 1200 s, 1140 s, 1105 s, 1050 m, 1000 m.

(*N*,*N*-Cyclohexamethylenedithiocarbamato-*S*,*S*')tetraphenylantimony(V) (IV) was synthesized by a reaction between aqueous solutions of tetraphenylantimony chloride and Na{S₂CN(CH₂)₆} · 2H₂O and recrystallized from benzene–heptane (1 : 1) as described in [2, 3]. The yield of complex IV was 57%, $T_{\rm m} = 153^{\circ}$ C.

For C₃₁H₃₂NS₂Sb

anal. calcd. (%):	61.59;	Н, 5.30;	N, 2.32.
Found (%):	61.44;	Н, 5.17;	N, 2.14.

IR (v, cm⁻¹): 1270 s, 1200 s, 1160 s, 1060 s, 970 s, 950 s, 880 s.

The starting sodium dialkyldithiocarbamates were characterized by ¹³C and ¹⁵N CP/MAS NMR spectroscopy:

 $Na{S_2CN(CH_3)_2} \cdot xH_2O$ (Aldrich). ¹³C NMR,

δ: 209.7 (51)*; 207.4 (43)* (-S₂CN=); 47.5 (39)*; 47.0 (31)* (-CH₃). ¹⁵N NMR, δ: 116.7 (=N–).

Na{S₂CN(C₂H₅)₂} · 3H₂O (Fluka). ¹³C NMR, δ : 206.5 (51)* (–S₂CN=); 48.6 (71)* (=NCH₂–); 13.2 (–CH₃). ¹⁵N NMR, δ : 139.1 (=N–).

Na{S₂CN(CH₂)₆} · 2H₂O. ¹³C NMR, δ : 206.3 (-S₂CN=); 60.3, 55.5 (1 : 1) (=NCH₂-); 29.8, 27.0, 26.2, 24.9 (1 : 1 : 1 : 1) (-CH₂-). ¹⁵N NMR, δ : 135.2 (=N-).

IR spectra were recorded on a Hitachi-215 spectrometer (Nujol, NaCl plates).

¹³C and ¹⁵N MAS NMR spectra were recorded on CMX-360 (Varian/Chemagnetics Infinity-Plus) and CMX-400 pulse spectrometers (Chemagnetics Infinity) operating at 90.52 and 40.59 MHz (superconducting magnets with $B_0 = 8.46$ and 9.40 T, respectively; Fourier transform). The ¹³C–¹H and ¹⁵N–¹H cross polarization techniques were used; ¹³C–¹H and ¹⁵N–¹H dipolar interactions were suppressed by proton decoupling in a magnetic field with the corresponding proton resonance frequency [4].

In ${}^{13}C/{}^{15}N$ MAS NMR experiments, samples (~70/~350 mg) of the complexes were packed into ZrO₂ rotors 4.0/7.5 mm in diameter. The spinning rates were 8500 to 9800/3450 to 3760(1) Hz; the number of scans was 4620 to 10 000/2600 to 3700; the proton

 $\pi/2$ pulse durations were 5.4/3.5 to 5.0 µs; the ¹H–¹³C/¹H–¹⁵N contact times were 1.5/1.5 to 2.5 ms; the pulses were spaced at 3.0 to 8.0/3.0 to 5.0 s. Isotropic ¹³C and ¹⁵N chemical shifts δ (ppm) are referenced to a line of crystalline adamantane used as the external standard (δ = 38.56 ppm relative to tetramethylsilane [5]) and to crystalline NH₄Cl, respectively (δ = 0 ppm; –341 ppm on the absolute scale [6, 7]). The width of the reference line at δ = 38.56 ppm (2.4 Hz) for crystalline adamantane served as an indicator of the magnetic field uniformity.

The δ values were corrected for drift of the magnetic field strength during the measurements (its frequency equivalents for the ¹³C/¹⁵N nuclei were 0.098/0.033 Hz/h). The chemical shifts and the integrated intensity ratios for overlapping signals in the ¹³C NMR spectra were additionally refined by fragment-by-fragment mathematical modeling with consideration of the line positions and widths and the contributions from the Lorentz and Gauss components to the line shapes.

X-ray diffraction analysis of complexes IV and V was performed on a Bruker SMART 1000 CCD diffractometer (prismatic single crystals; MoK_{α} radiation, $\lambda = 0.71073$ Å, graphite monochromator; crystal– detector distances 50 and 45 mm) at 296(2) and 173(1) K, respectively. Reflections were collected in sets composed of 906, 600, and 350 frames for $\varphi = 0^\circ$, 90°, and 180°, respectively. In the ω scan mode, the scan step was 0.2° and the frame exposure time was 10 s. Absorption corrections were applied from the indices of the equivalent reflections. Structures IV and V were solved by the direct method and refined by the least-squares method in the full-matrix anisotropic approximation (on F^2) for non-hydrogen atoms. The hydrogen atoms were located geometrically and refined in the rider model. The collected data were edited and the unit cell parameters were refined with the SMART and SAINT-Plus programs [8]. Calculations for structure determination and refinement were performed with the SHELXTL/PC programs [9].

Selected crystallographic parameters of structures **IV** and **V** and a summary of data collection and refinement are given in Table 1. Atomic coordinates and thermal parameters are listed in Table 2. Bond lengths and angles are given in Table 3.

RESULTS AND DISCUSSION

In this study, we proposed a new method for the synthesis of tetraarylantimony N,N-dialkyldithiocarbamates by treating bis(N,N-dialkyldithiocarbamato-S,S')triarylantimony with pentaarylantimony in a solution of an aromatic hydrocarbon:

 $Ar_5Sb + Ar_3Sb(S_2CNR_2)_2 \longrightarrow 2Ar_4SbS_2CNR_2$,

Ar = Ph and n-CH₃-C₆H₄; R = CH₃, C₂H₅, and C₃H₇.

^{*}Refers to the asymmetric ¹³C-¹⁴N doublets, Hz.

Doromotor	Value					
Parameter	IV	V				
Μ	604.45	662.57				
Crystal system	Monoclinic	Orthorhombic				
Space group	P21/c	Pbca				
<i>a</i> , Å	18.804(3)	12.215(1)				
b, Å	10.324(1)	19.102(2)				
<i>c</i> , Å	29.614(4)	27.654(3)				
β, deg	91.979(2)	90				
<i>V</i> , Å ³	5746(1)	6452(1)				
Ζ	8	8				
ρ calcd, g/cm ³	1.397	1.364				
μ, mm ⁻¹	1.125	1.008				
<i>F</i> (000)	2464	2736				
Crystal shape (size, mm)	Prism $(0.40 \times 0.30 \times 0.20)$	Prism $(0.32 \times 0.17 \times 0.10)$				
θ scan range, deg	3.80-28.01	3.55–26.02				
Ranges of h , k , and l indices	$-24 \le h \le 23, -10 \le k \le 13, -37 \le l \le 39$	$-15 \le h \le 10, -20 \le k \le 23, -33 \le l \le 34$				
Number of measured reflections	35552	34088				
Number of independent reflections	13764 ($R_{\rm int} = 0.0381$)	6338 ($R_{\rm int} = 0.060$)				
Number of reflections with $I > 2\sigma(I)$	10784	4699				
Number of parameters refined	631	358				
<i>R</i> factors $(F^2 > 2\sigma(F^2))$	$R_1 = 0.0443, wR_2 = 0.0892$	$R_1 = 0.0482, wR_2 = 0.1037$				
<i>R</i> factors for all reflections	$R_1 = 0.0623, wR_2 = 0.0957$	$R_1 = 0.0721, wR_2 = 0.1156$				
GOOF	1.076	1.031				
Residual electron density (min/max), $e/Å^3$	-0.944/0.764	-0.698/1.362				

Vol. 32

No. 6

2006

Table 1. Selected crystallographic parameters and a summary of data collection and refinement for structures IV and V

Note that antimony derivatives of the general formula Ar_4SbX (X is the monodentate organic or inorganic ligand) have been obtained analogously in [10].

The ¹³C NMR spectra of crystalline antimony complexes **I–IV** (Fig. 1; Table 4) show resonance signals due to the =NC(S)S– groups and the alkyl substituents at the N atom in the dithiocarbamate ligands and signals due to the =CH– and =C= fragments in four aromatic rings C₆H₅–. The considerable broadening of the signals for the C atoms directly bound to the metal (δ 163– 166 ppm) is due to interactions with "quadrupole" ¹²¹Sb (I = 5/2, 57.25 at %) and ¹²³Sb nuclei (I = 7/2, 42.75 at %). A comparison of the ¹³C and ¹⁵N chemical shifts for the =NC(S)S– groups in antimony complexes and the corresponding sodium dithiocarbamates (Dtc) suggests that the covalent bonding of Dtc ligands

RUSSIAN JOURNAL OF COORDINATION CHEMISTRY

increases the shielding of both carbon and nitrogen nuclei.

The signals for the =NC(S)S– fragment are structurally most informative. The ¹³C NMR spectra of complexes I–III show singlets for this fragment (Figs. 1a–1c; Table 4), while the corresponding signal in the spectrum of complex IV appears as a 1 : 1 doublet (Fig. 1d). Therefore, complexes I–III exist in single molecular forms, while complex IV in the crystalline state is represented by two isomers. This correlates with the presence of a single signal in the ¹⁵N NMR spectra of complexes II and III (Figs. 2a, 2b) and two signals of equal intensities in the spectrum of complex IV (Fig. 2c). To verify the existence of the isomeric forms, we carried out X-ray diffraction analysis of structure IV.

Table 2. Atomic coordinates (×10⁴) and isotropic equivalent thermal parameters U_{equiv} for structures IV and V

Atom	x	у	z	$U_{\rm equiv}, Å^2$	Atom	x	у	z	$U_{\rm equiv}, Å^2$
				Γ	V				
Sb(1)	4692.8(1)	2715.2(2)	3685.53(7)	0.03986(7)	C(36)	6970(4)	6705(8)	4010(3)	0.159(4)
Sb(2)	9845.0(1)	4897.9(2)	3755.63(7)	0.03796(6)	C(37)	7226(4)	6457(8)	4507(3)	0.130(2)
S (1)	4245.0(5)	215.3(8)	3638.8(3)	0.0473(2)	C(38)	7837(3)	7270(6)	4681(2)	0.102(2)
S(2)	3665.0(5)	2099.6(9)	4283.5(3)	0.0528(2)	C(39)	10369(2)	5084(3)	3116(1)	0.0464(8)
S(3)	9321.5(6)	7351.4(8)	3728.8(3)	0.0551(2)	C(40)	10278(2)	4191(4)	2772(1)	0.068(1)
S(4)	9028.6(6)	5502.8(9)	4465.5(3)	0.0561(2)	C(41)	10595(3)	4354(5)	2365(1)	0.086(2)
N(1)	3020(2)	-90(3)	4045(1)	0.0526(7)	C(42)	11000(3)	5427(6)	2290(2)	0.079(1)
N(2)	8314(2)	7689(3)	4326(1)	0.0683(9)	C(43)	11088(2)	6339(5)	2624(2)	0.071(1)
C(1)	3586(2)	660(3)	3992(1)	0.0448(8)	C(44)	10783(2)	6153(4)	3032(1)	0.0567(9)
C(2)	2931(2)	-1356(4)	3822(2)	0.066(1)	C(45)	10035(2)	2954(3)	3997(1)	0.0418(7)
C(3)	2484(2)	-1299(5)	3386(2)	0.079(1)	C(46)	10219(2)	2758(3)	4449(1)	0.0537(9)
C(4)	1781(3)	-590(5)	3407(2)	0.087(1)	C(47)	10294(2)	1524(4)	4622(2)	0.071(1)
C(5)	1854(3)	850(5)	3479(2)	0.089(2)	C(48)	10200(2)	472(4)	4343(2)	0.077(1)
C(6)	1953(2)	1305(5)	3958(2)	0.085(2)	C(49)	10024(2)	645(4)	3895(2)	0.069(1)
C(7)	2389(2)	402(4)	4265(2)	0.072(1)	C(50)	9940(2)	1869(3)	3723(1)	0.0557(9)
C(8)	4768(2)	4699(3)	3909(1)	0.0532(9)	C(51)	8815(2)	4421(3)	3441(1)	0.0491(8)
C(9)	4643(4)	4976(4)	4355(2)	0.103(2)	C(52)	8391(2)	3493(4)	3624(2)	0.065(1)
C(10)	4668(4)	6237(5)	4510(2)	0.129(3)	C(53)	7739(2)	3169(6)	3418(2)	0.093(2)
C(11)	4832(3)	7216(4)	4231(2)	0.098(2)	C(54)	7513(3)	3803(7)	3035(2)	0.101(2)
C(12)	4959(3)	6965(4)	3796(2)	0.079(1)	C(55)	7929(3)	4729(6)	2847(2)	0.090(2)
C(13)	4920(2)	5707(4)	3624(2)	0.065(1)	C(56)	8581(2)	5039(4)	3048(1)	0.065(1)
C(14)	5393(2)	2445(3)	3129(1)	0.0459(8)	C(57)	10776(2)	5630(3)	4139(1)	0.0427(7)
C(15)	5378(2)	3239(4)	2749(1)	0.0586(9)	C(58)	11404(2)	4983(4)	4068(1)	0.0531(9)
C(16)	5782(3)	2935(5)	2382(1)	0.077(1)	C(59)	12027(2)	5309(4)	4304(1)	0.067(1)
C(17)	6174(3)	1841(5)	2378(2)	0.080(1)	C(60)	12016(3)	6302(5)	4616(1)	0.072(1)
C(18)	6191(2)	1036(5)	2746(2)	0.074(1)	C(61)	11406(3)	6956(4)	4687(1)	0.072(1)
C(19)	5815(2)	1344(4)	3123(1)	0.0571(9)	C(62)	10779(2)	6630(3)	4450(1)	0.0563(9)
C(20)	3768(2)	3035(3)	3236(1)	0.0488(8)			V		
C(21)	3688(2)	2341(4)	2833(1)	0.061(1)	Sb	7953.7(2)	2438.9(1)	3507.74(7)	0.02823(5)
C(22)	3098(3)	2558(5)	2547(2)	0.079(1)	S (1)	9556.2(7)	3343.2(5)	3924.9(3)	0.0382(2)
C(23)	2595(3)	3428(6)	2658(2)	0.094(2)	S(2)	8493.6(7)	2173.7(4)	4448.1(3)	0.0334(2)
C(24)	2664(2)	4118(5)	3048(2)	0.088(2)	Ν	9389(2)	3263(1)	4888(1)	0.0310(6)
C(25)	3252(2)	3934(4)	3340(2)	0.063(1)	C(1)	9174(2)	2960(2)	4465(1)	0.0296(7)
C(26)	5507(2)	2074(3)	4183(1)	0.0434(7)	C(2)	9055(3)	2948(2)	5353(1)	0.0410(9)
C(27)	5450(2)	1059(3)	4479(1)	0.0535(9)	C(3)	7864(4)	3075(2)	5481(2)	0.068(1)
C(28)	6018(2)	728(4)	4766(1)	0.066(1)	C(4)	7473(4)	3792(2)	5449(2)	0.077(2)
C(29)	6644(3)	1407(5)	4753(2)	0.075(1)	C(5)	10054(3)	3905(2)	4916(1)	0.0395(9)
C(30)	6708(3)	2420(5)	4457(2)	0.078(1)	C(6)	11260(3)	3741(2)	4967(1)	0.045(1)
C(31)	6139(2)	2759(4)	4175(1)	0.061(1)	C(7)	11971(3)	4394(2)	4972(2)	0.058(1)
C(32)	8837(2)	6923(3)	4187(1)	0.0508(8)	C(11)	6953(3)	3292(2)	3787(1)	0.0325(8)
C(33)	8117(3)	8890(5)	4090(2)	0.094(2)	C(12)	6898(3)	3912(2)	3526(1)	0.0359(8)
C(34)	7557(4)	8711(7)	3720(2)	0.123(2)	C(13)	6248(3)	4456(2)	3691(1)	0.0394(9)
C(35)	6899(4)	8015(8)	3845(3)	0.138(3)	C(14)	5647(3)	4409(2)	4113(1)	0.0390(9)

Table 2. (Contd.)

Atom	x	у	Z	$U_{\rm equiv}, Å^2$	Atom	x	у	Z	$U_{\rm equiv}, Å^2$
C(15)	5693(3)	3778(2)	4364(1)	0.0397(9)	C(33)	8926(3)	3364(2)	2112(1)	0.0370(8)
C(16)	6331(3)	3226(2)	4203(1)	0.0392(9)	C(34)	8015(3)	3339(2)	1816(1)	0.0360(8)
C(17)	4954(3)	5012(2)	4284(2)	0.054(1)	C(35)	7072(3)	3042(2)	2001(1)	0.0444(9)
C(21)	9249(2)	1715(2)	3310(1)	0.0293(7)	C(36)	7034(3)	2788(2)	2475(1)	0.0404(9)
C(22)	10294(3)	1676(2)	3508(1)	0.0363(8)	C(37)	8038(3)	3623(2)	1308(1)	0.051(1)
C(23)	11062(3)	1224(2)	3316(1)	0.0414(9)	C(41)	6676(2)	1668(1)	3534(1)	0.0261(7)
C(24)	10812(3)	790(2)	2933(1)	0.0374(9)	C(42)	6901(2)	988(2)	3682(1)	0.0292(7)
C(25)	9759(3)	815(2)	2744(1)	0.0375(9)	C(43)	6095(3)	485(2)	3704(1)	0.0328(8)
C(26)	8997(3)	1283(2)	2926(1)	0.0338(8)	C(44)	5022(3)	642(2)	3578(1)	0.0295(7)
C(27)	11643(3)	288(2)	2716(1)	0.053(1)	C(45)	4779(2)	1325(2)	3436(1)	0.0286(7)
C(31)	7940(2)	2827(2)	2773(1)	0.0306(7)	C(46)	5593(3)	1835(2)	3417(1)	0.0302(8)
C(32)	8888(3)	3115(2)	2580(1)	0.0367(8)	C(47)	4153(3)	76(2)	3575(1)	0.0412(9)

Structure **IV** is made up of two crystallographically independent molecules $[Sb(C_6H_5)_4\{S_2CN(CH_2)_6\}]$ (Fig. 3; Table 3). In either molecule, the antimony atom is in the distorted octahedral environment $[C_4S_2]$. In the equatorial plane, the Sb atom coordinates the Dtc ligand through two S atoms and two most firmly bound phenyl fragments. Two other, looser phenyl fragments are in the axial positions. The axial angles CSbC appreciably deviate from 180° in both molecules (169.0° and 169.6°).

The bidentate coordination of the Dtc ligands gives rise to four-membered chelate rings SbS₂C. Although chelate rings of this type are usually planar, the torsion angles in the fragment SbS₂C of structure IV indicate its substantial nonplanarity. The dihedral angles between the SbSC planes are 164.0° (Sb(1) in molecule A) and -168.3° (Sb(2) in molecule B). The dihedral angles between the SbS₂ and CS₂ planes are 160.9° (A) and -166.1° (B). Thus, the four-membered chelate rings are folded along both the diagonals S-S and Sb-C. The distance between the opposite S atoms (S…S 2.960 and 2.965 Å) are appreciably shorter than the Sb…C distance (3.129 and 3.131 Å). In the sixmembered C_6H_5 rings, the C–C bond lengths range from 1.34 to 1.396 Å and the CCC angles are close to 120°, which is characteristic of the sp^2 -hybridized orbitals of the C atom (117.2°-121.9°).

In dithiocarbamate ligands, the N–C(S)S bond is substantially shorter than the N–CH₂ bond, which suggests a partially double character of the formally single bond in the former case ("contamination" of the sp^2 -hybridized state of the N atom with the sp^3 -one). However, one of the carbon atoms (C(7) and C(38)) in both C₂NC(S)S fragments deviates from its plane.

A comparative analysis of the X-ray diffraction and NMR data revealed a structural similarity of molecules A and B and, nevertheless, allowed them to be classified as conformational isomers (when a polyatomic molecular system reaches equilibrium in two or more energy-close configurations). The most substantial differences between the conformers under discussion are in the dithiocarbamate ligands. In molecule A, the Dtc ligand is coordinated in the anisobidentate manner since one Sb–S bond (2.717 Å) is stronger than the other (2.741 Å) to within the error of determination. In contrast, this ligand in molecule B is virtually isobidentate (Sb-S 2.721 and 2.724 Å) and the bonds are generally stronger (Table 3). The strengths of the corresponding carbon–carbon bonds (C(3)–C(4) and C(36)–C(37), C(4)-C(5) and C(35)-C(36) in the cyclic fragments $N(CH_2)_6$ of molecules A and B somewhat differ as well (Table 3). The seven-membered ring in molecule B is also more distorted because of the larger scatter of the C–C bond lengths (1.442–1.553 Å) as compared to that in molecule A (1.501–1.522 Å).

Structure V consists of a single independent molecule $[Sb(n-CH_3-C_6H_4)_4 \{S_2CN(C_3H_7)_2\}]$ (Fig. 4; Table 3). The molecular structures of complexes V and IV are similar. The polyhedron $[SbC_4S_2]$ of the antimony atom is a distorted octahedron. Its equatorial

Vol. 32 No. 6 2006

Table 3. Bond lengths *d*, bond angles ω , and torsion angles ϕ in complexes IV and V

Bond	<i>d</i> , Å								
IV									
Molecule	А	Molecule	В	Molecule	A	MoleculeB			
Sb(1)–C(8)	2.156(3)	Sb(2)–C(39)	2.169(3)	C(11)–C(12)	1.346(7)	C(41)–C(42)	1.366(7)		
Sb(1)–C(14)	2.162(4)	Sb(2)–C(45)	2.155(3)	C(12)–C(13)	1.396(5)	C(40)–C(41)	1.374(6)		
Sb(1)–C(20)	2.179(3)	Sb(2)–C(51)	2.185(3)	C(14)–C(19)	1.387(5)	C(45)-C(46)	1.386(5)		
Sb(1)-C(26)	2.188(3)	Sb(2)–C(57)	2.180(3)	C(14)–C(15)	1.393(5)	C(45)-C(50)	1.392(4)		
Sb(1)–S(1)	2.7169(9)	Sb(2)–S(4)	2.7238(10)	C(15)–C(16)	1.382(6)	C(49)-C(50)	1.369(5)		
Sb(1)–S(2)	2.741(1)	Sb(2)–S(3)	2.7211(10)	C(16)–C(17)	1.349(7)	C(48)–C(49)	1.370(6)		
S(1)–C(1)	1.711(4)	S(4)–C(32)	1.714(4)	C(17)–C(18)	1.368(6)	C(47)–C(48)	1.372(6)		
S(2)–C(1)	1.723(3)	S(3)–C(32)	1.719(4)	C(18)–C(19)	1.381(5)	C(46)–C(47)	1.378(5)		
N(1)–C(1)	1.330(4)	N(2)-C(32)	1.338(5)	C(20)–C(25)	1.386(5)	C(51)-C(56)	1.387(5)		
N(1)–C(2)	1.471(5)	N(2)–C(38)	1.471(6)	C(20)–C(21)	1.395(5)	C(51)–C(52)	1.369(5)		
N(1)–C(7)	1.464(5)	N(2)–C(33)	1.464(6)	C(21)–C(22)	1.389(6)	C(52)–C(53)	1.392(6)		
C(2)–C(3)	1.516(6)	C(37)–C(38)	1.500(8)	C(22)–C(23)	1.354(7)	C(53)-C(54)	1.363(8)		
C(3)–C(4)	1.514(6)	C(36)–C(37)	1.553(10)	C(23)–C(24)	1.361(7)	C(54)–C(55)	1.365(8)		
C(4)–C(5)	1.507(7)	C(35)–C(36)	1.442(9)	C(24)–C(25)	1.392(6)	C(55)-C(56)	1.382(6)		
C(5)-C(6)	1.501(7)	C(34)–C(35)	1.489(9)	C(26)–C(31)	1.385(5)	C(57)–C(58)	1.380(5)		
C(6)–C(7)	1.522(7)	C(33)–C(34)	1.505(7)	C(26)–C(27)	1.374(5)	C(57)–C(62)	1.384(4)		
C(8)–C(13)	1.376(5)	C(39)–C(40)	1.382(5)	C(27)–C(28)	1.385(5)	C(61)–C(62)	1.391(5)		
C(8)–C(9)	1.378(6)	C(39)–C(44)	1.378(5)	C(28)–C(29)	1.370(6)	C(60)–C(61)	1.355(6)		
C(9)-C(10)	1.381(6)	C(43)–C(44)	1.369(5)	C(29)–C(30)	1.372(6)	C(59)-C(60)	1.381(6)		
C(10)–C(11)	1.348(8)	C(42)–C(43)	1.370(7)	C(30)–C(31)	1.381(5)	C(58)-C(59)	1.384(5)		
Angle	ω, deg	Angle	ω,deg	Angle	ω, deg	Angle	ω, deg		
C(8)Sb(1)C(14)	108.7(1)	C(45)Sb(2)C(39)	107.5(1)	C(1)N(1)C(2)	122.9(3)	C(32)N(2)C(38)	121.2(4)		
C(8)Sb(1)C(20)	95.0(1)	C(39)Sb(2)C(51)	94.0(1)	C(7)N(1)C(2)	115.3(3)	C(33)N(2)C(38)	116.0(4)		
C(14)Sb(1)C(20)	92.8(1)	C(45)Sb(2)C(51)	93.6(1)	N(1)C(1)S(1)	121.0(3)	N(2)C(32)S(4)	120.2(3)		
C(8)Sb(1)C(26)	92.5(1)	C(39)Sb(2)C(57)	92.7(1)	N(1)C(1)S(2)	119.9(3)	N(2)C(32)S(3)	120.3(3)		
C(14)Sb(1)C(26)	92.5(1)	C(45)Sb(2)C(57)	91.9(1)	S(1)C(1)S(2)	119.1(2)	S(4)C(32)S(3)	119.5(2)		
C(20)Sb(1)C(26)	169.0(1)	C(57)Sb(2)C(51)	169.6(1)	N(1)C(2)C(3)	113.5(3)	N(2)C(38)C(37)	113.4(5)		
C(8)Sb(1)S(1)	159.3(1)	C(39)Sb(2)S(4)	159.70(9)	C(4)C(3)C(2)	116.3(4)	C(38)C(37)C(36)	116.2(6)		
C(14)Sb(1)S(1)	91.98(9)	C(45)Sb(2)S(4)	92.65(9)	C(5)C(4)C(3)	114.1(4)	C(35)C(36)C(37)	119.8(7)		
C(20)Sb(1)S(1)	82.73(9)	C(51)Sb(2)S(4)	82.0(1)	C(6)C(5)C(4)	116.8(4)	C(36)C(35)C(34)	118.0(6)		
C(26)Sb(1)S(1)	87.44(9)	C(57)Sb(2)S(4)	89.02(9)	C(5)C(6)C(7)	114.8(4)	C(35)C(34)C(33)	116.3(6)		
C(8)Sb(1)S(2)	93.6(1)	C(39)Sb(2)S(3)	93.83(9)	N(1)C(7)C(6)	112.0(4)	N(2)C(33)C(34)	113.7(4)		
C(14)Sb(1)S(2)	157.51(9)	C(45)Sb(2)S(3)	158.61(9)	C(13)C(8)C(9)	118.5(4)	C(44)C(39)C(40)	117.2(4)		
C(20)Sb(1)S(2)	82.2(1)	C(51)Sb(2)S(3)	83.00(9)	C(13)C(8)Sb(1)	122.9(3)	C(40)C(39)Sb(2)	122.5(3)		
C(26)Sb(1)S(2)	89.29(9)	C(57)Sb(2)S(3)	88.66(9)	C(9)C(8)Sb(1)	118.6(3)	C(44)C(39)Sb(2)	120.2(3)		
S(1)Sb(1)S(2)	65.69(3)	S(3)Sb(2)S(4)	65.98(3)	C(8)C(9)C(10)	120.6(5)	C(43)C(44)C(39)	121.9(4)		
C(1)S(1)Sb(1)	86.8(1)	C(32)S(4)Sb(2)	86.6(1)	C(11)C(10)C(9)	120.6(5)	C(44)C(43)C(42)	119.7(4)		
C(1)S(2)Sb(1)	85.8(1)	C(32)S(3)Sb(2)	86.6(1)	C(12)C(11)C(10)	119.6(4)	C(41)C(42)C(43)	119.8(4)		
C(1)N(1)C(7)	121.0(3)	C(32)N(2)C(33)	122.2(4)	C(11)C(12)C(13)	121.3(5)	C(42)C(41)C(40)	120.1(4)		
C(1)N(1)C(2)	122.9(3)	C(32)N(2)C(38)	121.2(4)	C(8)C(13)C(12)	119.3(4)	C(41)C(40)C(39)	121.4(4)		
C(7)N(1)C(2)	115.3(3)	C(33)N(2)C(38)	116.0(4)	C(19)C(14)C(15)	117.9(4)	C(46)C(45)C(50)	118.0(3)		
N(1)C(1)S(1)	121.0(3)	N(2)C(32)S(4)	120.2(3)	C(19)C(14)Sb(1)	118.6(3)	C(46)C(45)Sb(2)	119.3(2)		

RUSSIAN JOURNAL OF COORDINATION CHEMISTRY Vol. 32 No. 6 2006

Table 3. (Contd.)

Angle	ω, deg	Angle	ω, deg	Bond	<i>d</i> , A	Bond	<i>d</i> , A
C(15)C(14)Sb(1)	123.0(3)	C(50)C(45)Sb(2)	122.6(3)	C(6)–C(7)	1.521(5)	C(41)–C(42)	1.389(4)
C(16)C(15)C(14)	120.4(4)	C(49)C(50)C(45)	120.9(4)	C(11)–C(12)	1.387(4)	C(41)–C(46)	1.399(4)
C(17)C(16)C(15)	120.7(4)	C(50)C(49)C(48)	120.1(4)	C(11)–C(16)	1.383(5)	C(42)–C(43)	1.377(4)
C(16)C(17)C(18)	120.0(4)	C(49)C(48)C(47)	120.2(4)	C(12)–C(13)	1.384(5)	C(43)–C(44)	1.390(4)
C(17)C(18)C(19)	120.3(4)	C(48)C(47)C(46)	119.9(4)	C(13)–C(14)	1.383(5)	C(44)–C(45)	1.394(4)
C(18)C(19)C(14)	120.5(4)	C(47)C(46)C(45)	120.9(4)	C(14)–C(15)	1.392(5)	C(44)–C(47)	1.515(4)
C(25)C(20)C(21)	118.6(3)	C(52)C(51)C(56)	118.8(4)	C(14)–C(17)	1.506(5)	C(45)–C(46)	1.392(4)
C(25)C(20)Sb(1)	121.0(3)	C(56)C(51)Sb(2)	120.5(3)	C(15)–C(16)	1.385(5)		
C(21)C(20)Sb(1)	120.3(3)	C(52)C(51)Sb(2)	120.7(3)	Angle	ω, deg	Angle	ω, deg
C(22)C(21)C(20)	119.9(4)	C(51)C(52)C(53)	120.7(5)	C(21)SbC(11)	167.0(1)	C(15)C(14)C(17)	121.9(3)
C(23)C(22)C(21)	120.6(5)	C(54)C(53)C(52)	119.5(5)	C(31)SbC(11)	94.2(1)	C(16)C(11)C(12)	118.9(3)
C(22)C(23)C(24)	120.4(4)	C(53)C(54)C(55)	120.6(5)	C(31)SbC(21)	89.3(1)	C(16)C(15)C(14)	121.4(3)
C(23)C(24)C(25)	120.5(5)	C(54)C(55)C(56)	119.9(5)	C(41)SbC(11)	95.4(1)	C(22)C(21)Sb	127.1(2)
C(20)C(25)C(24)	119.9(5)	C(55)C(56)C(51)	120.4(5)	C(41)SbC(21)	95.8(1)	C(26)C(21)Sb	114.3(2)
C(27)C(26)C(31)	119.1(3)	C(58)C(57)C(62)	118.6(3)	C(41)SbC(31)	105.1(1)	C(21)C(26)C(25)	121.0(3)
C(27)C(26)Sb(1)	126.3(3)	C(62)C(57)Sb(2)	126.2(3)	C(11)SbS(1)	77.82(8)	C(22)C(23)C(24)	121.4(3)
C(31)C(26)Sb(1)	114.5(2)	C(58)C(57)Sb(2)	115.2(2)	C(21)SbS(1)	89.28(8)	C(23)C(22)C(21)	120.4(3)
C(26)C(27)C(28)	120.3(4)	C(57)C(62)C(61)	120.0(4)	C(31)SbS(1)	100.23(8)	C(23)C(24)C(25)	118.2(3)
C(29)C(28)C(27)	120.1(4)	C(60)C(61)C(62)	120.6(4)	C(41)SbS(1)	154.16(8)	C(23)C(24)C(27)	122.3(3)
C(28)C(29)C(30)	120.2(4)	C(61)C(60)C(59)	120.4(4)	C(11)SbS(2)	86.37(8)	C(25)C(24)C(27)	119.6(3)
C(29)C(30)C(31)	119.8(4)	C(60)C(59)C(58)	119.1(4)	C(21)SbS(2)	86.89(8)	C(26)C(21)C(22)	118.4(3)
C(30)C(31)C(26)	120.6(4)	C(57)C(58)C(59)	121.3(4)	C(31)SbS(2)	163.79(8)	C(26)C(25)C(24)	120.6(3)
Angle	φ, deg	Angle	φ, deg	C(41)SbS(2)	90.93(8)	C(32)C(31)Sb	119.4(2)
$\overline{C(2)N(1)C(1)S(1)}$	2.2(5)	C(33)N(2)C(32)S(3)	1.8(5)	S(2)SbS(1)	64.00(2)	C(36)C(31)Sb	123.3(2)
C(2)N(1)C(1)S(2)	-177.4(3)	C(33)N(2)C(32)S(4)	-178.0(3)	C(1)S(1)Sb	84.7(1)	C(31)C(36)C(35)	121.0(3)
C(7)N(1)C(1)S(1)	-166.6(3)	C(38)N(2)C(32)S(3)	172.5(1)	C(1)S(2)Sb	88.9(1)	C(32)C(33)C(34)	121.1(3)
C(7)N(1)C(1)S(2)	13.8(5)	C(38)N(2)C(32)S(4)	-7.4(5)	C(1)NC(2)	122.2(3)	C(33)C(32)C(31)	121.8(3)
Sb(1)S(1)C(1)N(1)	164.4(3)	Sb(2)S(3)C(32)N(2)	-168.2(3)	C(1)NC(5)	121.2(3)	C(33)C(34)C(35)	117.7(3)
Sb(1)S(2)C(1)N(1)	-164.6(3)	Sb(2)S(4)C(32)N(2)	168.2(3)	C(5)NC(2)	116.5(3)	C(33)C(34)C(37)	121.7(3)
S(1)Sb(1)C(1)S(2)	164.0(3)	S(3)Sb(2)C(32)S(4)	-168.3(3)	NC(1)S(1)	121.4(2)	C(34)C(35)C(36)	121.2(3)
Sb(1)S(1)S(2)C(1)	160.9(3)	Sb(2)S(3)S(4)C(32)	-166.1(3)	NC(1)S(2)	120.0(2)	C(35)C(34)C(37)	120.6(3)
		V		S(2)C(1)S(1)	118.6(2)	C(36)C(31)C(32)	117.2(3)
Bond	<i>d</i> , A	Bond	<i>d</i> , A	NC(2)C(3)	113.7(3)	C(42)C(41)Sb	120.5(2)
Sb-C(11)	2.179(3)	C(21)–C(22)	1.391(4)	C(4)C(3)C(2)	116.9(4)	C(46)C(41)Sb	121.5(2)
Sb-C(21)	2.171(3)	C(21)–C(26)	1.380(4)	NC(5)C(6)	111.7(3)	C(42)C(41)C(46)	117.9(3)
Sb-C(31)	2.162(3)	C(22)–C(23)	1.381(5)	C(5)C(6)C(7)	112.8(3)	C(42)C(43)C(44)	120.8(3)
Sb-C(41)	2.147(3)	C(23)–C(24)	1.381(5)	C(12)C(11)Sb	118.8(2)	C(43)C(42)C(41)	121.6(3)
Sb-S(1)	2.8542(9)	C(24)–C(25)	1.389(5)	C(16)C(11)Sb	122.3(2)	C(43)C(44)C(45)	118.3(3)
Sb-S(2)	2.7303(8)	C(24)–C(27)	1.519(5)	C(11)C(16)C(15)	120.5(3)	C(43)C(44)C(47)	120.5(3)
S(1)–C(1)	1.727(3)	C(25)–C(26)	1.384(5)	C(13)C(12)C(11)	119.9(3)	C(45)C(44)C(47)	121.2(3)
S(2)-C(1)	1.717(3)	C(31)–C(32)	1.389(4)	C(13)C(14)C(15)	117.1(3)	C(45)C(46)C(41)	120.4(3)
N-C(1)	1.331(4)	C(31)–C(36)	1.383(4)	C(13)C(14)C(17)	120.9(3)	C(46)C(45)C(44)	120.9(3)
N-C(2)	1.479(4)	C(32)–C(33)	1.379(5)	C(14)C(13)C(12)	122.2(3)	· · · · · · · · · · · · · · · · · · ·	
N-C(5)	1.472(4)	C(33)–C(34)	1.382(5)	Angle	φ, deg	Angle	φ, deg
C(2)–C(3)	1.517(6)	C(34)–C(35)	1.384(5)	S(1)C(1)NC(2)	179.1(2)	S(2)C(1)NC(5)	174.6(2)
C(3)–C(4)	1.452(6)	C(34)–C(37)	1.507(5)	S(1)C(1)NC(5)	-5.8(4)	S(2)SbC(1)S(1)	160.7(2)
C(5)–C(6)	1.512(5)	C(35)–C(36)	1.396(5)	S(2)C(1)NC(2)	-0.5(4)	SbS(2)S(1)C(1)	157.2(2)

RUSSIAN JOURNAL OF COORDINATION CHEMISTRY Vol. 32 No. 6 2006

Fig. 1. ¹³C MAS NMR spectra of polycrystalline complexes **I–IV** of the general formula $[Sb(C_6H_5)_4(S_2CNR_2)]$: $R = (a) CH_3$, $(b) C_2H_5$, and $(c) C_3H_7$; $(d) R_2 = (CH_2)_6$. The numbers of scans/spinning rates (Hz) are (a) 4560/5500, (b) 10 000/9200, (c) 7700/9100, and (d) 10 000/8500. Sidebands due to the spinning are asterisked.

plane is made up of the bidentate *N*,*N*-dipropyldithiocarbamate ligand and two most firmly bound monodentate *p*-tolyl ligands. The looser tolyl ligands are in the axial positions. The axial CSbC angle in the octahedron is 167.0°, appreciably deviating from ideal 180°. The dipropyldithiocarbamate ligand is coordinated in the anisobidentate manner since one Sb–S bond (2.7303 Å) is substantially shorter than the other (2.8542 Å). The coordination of the dithiocarbamate ligand gives rise to a four-membered chelate ring SbS₂C.

The torsion angles in this ring suggest its nonplanar geometry (Table 3). This is confirmed by the dihedral angles between two SbSC planes (160.7°) and between the SbSS and SSC planes (157.3°). As with complex **IV**, the four-membered chelate ring in complex **V** is

Fig. 2. ¹⁵N MAS NMR spectra of polycrystalline complexes **II–IV** of the general formula $[Sb(C_6H_5)_4(S_2CNR_2)]$: R = (*a*) C₂H₅ and (*b*) C₃H₇; (*c*) R₂ = (CH₂)₆. The numbers of scans/spinning rates (Hz) are (*a*) 3052/3450, (*b*) 2600/3760, and (*c*) 3700/3760.

folded along the Sb–C and S–S diagonals. The S…S distance (2.961 Å) is shorter than the Sb…C one (3.129 Å). In the six-membered rings p-CH₃–C₆H₄, the C–C bonds (1.377–1.399 Å) are on average somewhat longer than in phenyl rings. The CCC angles are not strictly equal to 120° (117.1°–122.3°). The fragment C₂N–C(S)S (Table 3) is virtually planar (the C(5) atom slightly deviates from the plane) and the N–C(S)S bond is short.

Assignment of ¹³C and ¹⁵N NMR signals to the atoms in the isomeric molecular forms of complex IV was based on different degrees of double bonding in the fragments =N-C(S)S-[11-14]. The partial double bond character causes the electron density transfer from the N atom toward the -C(S)S- group; as the result, the electron shielding of the N nucleus diminishes, while that of the C atom increases. The N(1)-C(1) bond in molecule A (1.330 Å) is slightly stronger than in molecule B (N(2)–C(32) 1.338 Å). Therefore, the bond order in molecule A is higher and the electron density shift =N \longrightarrow C(S)S- is more considerable. Thus, the ¹⁵N NMR signal at δ 123.0 ppm should be assigned to the less shielded N(1) atom, while the signal at δ 120.0 ppm, to the N(2) atom. Analogously, the ¹³C NMR signals at δ 201.4 and 201.9 ppm

Fig. 3. Structures of two molecules (a) A and (b) B in complex IV.

Fig. 4. Structure V with atomic thermal displacement ellipsoids (50% probability).

RUSSIAN JOURNAL OF COORDINATION CHEMISTRY Vol. 32 No. 6 2006

Table 4. ¹³ C and ¹³ N chemical shifts δ (ppm) for complexes I–IV with reference to TMS and N _H 4Cl, respectively.

Complex	δ ¹³ C					
Complex	-S ₂ CN=	=NCH ₂ -	-CH ₂ -	-CH3-	C ₆ H ₅ -	-N=
$\frac{[Sb(C_6H_5)_4\{S_2CN(CH_3)_2\}]}{(I)}$	201.7			47.3, 46.1 (1 : 1)	166, 147.1, 139.9, 135.3, 131.4, 128.8, 125.3	
$[Sb(C_{6}H_{5})_{4}\{S_{2}CN(C_{2}H_{5})_{2}\}]$ (II)	198.9	49.3		14.4, 12.8 (1 : 1)	163, 144.5, 143.2, 136.4, 134.0, 130.2, 129.8, 128.47, 128.1, 126.9	127.3
$[Sb(C_{6}H_{5})_{4}\{S_{2}CN(C_{3}H_{7})_{2}\}]$ (III)	201.2	57.4, 56.7 (1 : 1)	20.9, 20.1 (1:1)	12.2, 11.3 (1 : 1)	*, 147.1, 143.8, 135.9, 134.0, 132.2, 129.8, 129.0, 128.3, 126.6	123.3
$[Sb(C_{6}H_{5})_{4}\{S_{2}CN(CH_{2})_{6}\}]$ (IV)	201.9, 201.4 (1:1)	59.1, 58.5, 56.8, 55.7 (1:1:1:1)	28.4, 27.4, 26.4, 24.5, 23.9 (1:1:2:2:2)		163, 146.9, 146.6, 145.2, 140.5, 136.6, 135.8, 134.3, 131.3, 130.7, 130.0, 129.0, 128.4, 127.2, 126.8, 126.2	123.0, 120.0 (1 : 1)

* The chemical shift was not determined because of broadening of the ${}^{13}C$ NMR signal for the =C-Sb group.

were assigned to the more and less shielded carbon nuclei (C(1) and C(32), respectively).

396

ACKNOWLEDGMENTS

A.V. Ivanov acknowledges the financial support of the Agricola Research Center at the Luleä University of Technology (Sweden).

This work was supported by the Far East Division of the Russian Academy of Sciences (grant no.-05-III-G-04-060 for basic and applied research of young scientists (2005)).

REFERENCES

- 1. *Khimicheskaya entsiklopediya* (Chemical Encyclopaedia), Zefirov, N.S., Ed., Moscow: Bol'shaya Ros. Entsiklopediya, 1995.
- Sharutin, V.V., Sharutina, O.K., Platonova, T.P., et al., *Zh. Obshch. Khim.*, 2002, vol. 72, no. 9, p. 1465.
- Sharutin, V.V., Sharutina, O.K., Platonova, T.P., et al., *Koord. Khim.*, 2003, vol. 29, no. 1, p. 13.
- 4. Pines, A., Gibby, M.G., and Waugh, J.S., *J. Chem. Phys.*, 1972, vol. 56, no. 4, p. 1776.

- Earl, W.L., VanderHart, D. L., J. Magn. Reson., 1982, vol. 48, no. 1, p. 35.
- 6. Ratcliffe, C.I., Ripmeester, J.A., and Tse, J.S., *Chem. Phys. Lett.*, 1983, vol. 99, no. 2, p. 177.
- Mason, J., *Encyclopaedia of Nuclear Magnetic Resonance*, Grant, D.M. and Harris, R.K., Eds., New York: Wiley, 1996, vol. 5, p. 3222.
- 8. SMART and SAINT-Plus. Versions 5.0, Data Collection and Processing Software for the SMART System, Bruker AXS Inc., Madison (WI, USA), 1998.
- SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, Bruker AXS Inc., Madison (WI, USA), 1998.
- Sharutin, V.V., Senchurin, V.S., Sharutina, O.K., et al., *Zh. Obshch. Khim.*, 1996, vol. 66, no. 10, p. 1755.
- 11. Ivanov, A.V., Rodyna, T.A., and Antzutkin, O.N., *Polyhedron*, 1998, vol. 17, no. 18, p. 3101.
- Ivanov, A.V., Kritikos, M., Antzutkin, O.N., and Forsling, W., *Inorg. Chim. Acta*, 2001, vol. 321, nos. 1–2, p. 63.
- 13. Ivanov, A.V. and Antzutkin, O.N., *Polyhedron*, 2002, vol. 21, nos. 27–28, p. 2727.
- 14. Ivanov, A.V. and Antzutkin, O.N., *Top. Curr. Chem.*, 2004, vol. 246, p. 271.