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Abstract: We describe the preparation, by the means of an initial
fluorodesulfurization reaction, of 2-trifluoromethoxy acetophenone
as well as b-trifluoromethoxystyrenes derivatives. The synthesis
and reactivity of these compounds are discussed in relation to the
perturbation induced by the aliphatic trifluoromethoxy group.
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The preparation and study of trifluoromethyl ethers is cur-
rently the subject of intense research owing to the peculiar
properties of this substituent, close to those of fluorine or
chlorine, but with increased lipophilicity and a moderate
steric bulk, accompanied by interesting conformational
plasticity.1,2 Moreover trifluoromethyl ethers are usually
stable under strongly acidic or basic conditions.3 Howev-
er, these observations can only be strictly applied to the
aromatic series as very little is known concerning the be-
havior of, and the properties induced by a trifluo-
romethoxy substituent in the aliphatic series. This is easily
explained by the few available methods for the introduc-
tion of this group on aliphatic positions and explains
therefore the poor number of compounds previously de-
scribed in the literature.

The story of aliphatic trifluoromethyl ethers began during
the sixties with Aldrich and Sheppard disclosure of the
reaction of alkyl fluoroformates with SF4.

4 Meanwhile,
the addition reactions of CF3OF or CF3OCl to double
bonds or diazoketones gave access to unique trifluo-
romethoxylated structures.5 Much more recently, exten-
sion of the fluorodesulfurization reaction6 to the specific
case of xanthates enabled the introduction of a trifluo-
romethoxy group on an aliphatic substrate, under relative-
ly mild conditions, accessible to the common chemist.7,8

This gave a new impetus to the preparation of functional-
ized trifluoromethyl ethers as exemplified by a series of
recent patents from a Merck group describing a novel gen-
eration of ‘green’ and highly efficient fluorinated surfac-
tants,9 and our own work concerning the preparation of 2-
trifluoromethoxyethyl triflate and its derivatives,10 as well
as an easy entry to a-trifluoromethoxylated esters and
their Knoevelagel-like adducts.11 Very recently, some
progress has been made for the direct introduction of the

trifluoromethoxy entity on organic molecules including
those which are functionalized, either via direct trifluo-
romethylation of alcohols with trifluoromethyloxonium
salts,12 stabilization and use of the formerly elusive
CF3OH,13 and a new method for the generation of the tri-
fluoromethoxide anion.14

Despite all these recent advances, no laboratory-scale
convenient methods for the preparation of simple mole-
cules such as a-trifluoromethoxyketones or b-trifluo-
romethoxystyrenes appear in the literature. We thought
that the synthesis and the study of the reactivity of these
molecules will bring some new knowledge about the very
poorly known influence of a trifluoromethoxy group on
aliphatic structures.

We selected the fluorodesulfurization reaction of a xan-
thate for the introduction of the trifluoromethoxy
group.7,15 Based on our earlier experience,10 the possible
participation of adjacent functionalities during the fluo-
rodesulfurization process led us to believe that the pres-
ence of a carbonyl group should be avoided during this
reaction. Moreover, the known propensity of ketones to
furnish ketene dithioacetals under basic conditions used
for the formation of xanthates reinforced this opinion.16

The keto functionality should thus be preferably intro-
duced after the fluorination step. We guessed that the
presence of a phenyl group, providing a benzylic position
susceptible to further oxidation, could constitute an entry
point for the introduction of the requisite carbonyl group
while not interfering with the fluorination reaction. Based
on these considerations phenethyl alcohol (1a) was select-
ed as the starting material for our study (Scheme 1).

Formation of the xanthate 2a from phenethyl alcohol
readily occurred (75% yield) under phase-transfer condi-
tions.17 Further fluorodesulfurization of xanthate 2a af-
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forded a mixture of trifluoromethyl ether 3a12 and its
para-brominated derivative 3b8 in various relative
amounts (1:1 to 3:1) depending on the exact reaction con-
ditions (time and temperature). These two compounds
could be partially separated either by column chromatog-
raphy or by tedious distillation. Nevertheless, more con-
veniently, the debromination can occur cleanly by direct
treatment of the mixture with butyllithium. The overall
yield for 3a from 2a was 58% in the latter case.18

As explained above, we thought that the benzylic position
in 3a could be easily amenable to keto functionality. How-
ever, all attempts to oxidize this position with powerful
reagents (PCC, CrO3/H2SO4, KMnO4, RuO2/NaIO4,
Mn2O7)

19,20 failed, showing the strong deactivating effect
of the trifluoromethoxy group. Contrary to the aromatic
series where the inductive deactivating power of OCF3

may be counter balanced by its resonance electron-donat-
ing effect, no such compensation seems possible in the
aliphatic series.21,22

In an effort to enhance the reactivity of the benzylic posi-
tion towards oxidation, we also investigated the fluo-
rodesulfurization of para-methoxyphenethyl alcohol (1b,
Scheme 1). Using the same reaction sequence as before:
formation of a xanthate 2b (75%), followed by fluorode-
sulfurization, the dibromo compound 3c was obtained in
84% yield. Unfortunately, this compound could not be de-
brominated cleanly with BuLi.

However, we were pleased to find that the benzylic posi-
tions in 3a or 3c while deactivated for oxidation were still
susceptible to radical reactions (Scheme 2).

Scheme 2 Benzylic bromination

Ethers 3a or 3c could thus selectively be mono (96% and
91% yield, respectively) or dibrominated (99% and 80%
yield), by radical bromination with one or three equiva-
lents of NBS ensuring a potential entry point to the wanted
ketone.23,24 Effective access to the trifluoromethoxylated
acetophenone 625 was further secured either from mono-
brominated ether 4a26 or the dibrominated derivative 4b
(Scheme 3).

Scheme 3 Preparation of a-trifluoromethoxy acetophenone

Transformation of monobrominated ether 4a to the corre-
sponding alcohol 5 (not isolated) was readily accom-
plished with calcium carbonate in a mixed solvent system
in 88% crude yield.27 Ensuing oxidation of the crude
benzylic alcohol 5 to ketone 6 occurred uneventfully us-
ing classical PCC conditions (85% yield).19

In a more straightforward way, dibrominated ether 4b
could be directly converted to acetophenone derivative 6
(94% yield) upon hydrolysis in an acidic medium.28,29

The a-functionalization of the carbonyl group of ace-
tophenone 6 and its derivatives was further studied
(Table 1).

Attempted direct conversion of 6 to its silyl enol ether de-
rivative 9 using Et3N failed,30 showing the poor acidity of
the a-protons in the presence of a trifluoromethoxy group.
However, the potassium enolate derived from ketone 6
was converted in high yield (99%) to 9 as the single Z-iso-
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stage even with an excess of halogenating agent (entries 3
and 4).32 Further dichlorination to 7c from 6 or dibromi-
nation to 7d from 7b could be effected under basic condi-
tions (entries 5 and 6).
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Table 1 Further Functionalization of Acetophenone Derivatives

Entry R Reagent Product Yield (%)a

1 6 H TBSClb 9 99
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The benzylic brominated derivatives 4a–c, readily made
available by this work, led us also to consider a facile ac-
cess to the series of trifluoromethoxystyrenes (Scheme 4).

Scheme 4 Access to trifluoromethoxylated styrenes

Under the action of the non-nucleophilic base DBU, in re-
fluxing diethyl ether, we observed a clean dehydrobromi-
nation reaction of 4a–c leading to the corresponding b-
trifluoromethoxystyrene derivatives 10a–c in good yield
(73–92%) as isomeric mixtures.33 Like in the case of silyl
enol ether 9, the stereochemistry of these compounds was
ascertained by 1H NMR NOE experiments. These mole-
cules proved to be quite stable and did not polymerize
when kept at room temperature in the laboratory. This sta-
bility was reflected upon our failure to obtain any adducts
during attempted Diels–Alder reactions with common
dienes like dimethyl-2-butene or cyclopentadiene. This
behavior is in line with our recent observation that the tri-
fluoromethoxy group acts as a fluorine twin in Diels–
Alder reactions,34 and the known very poor reactivity of
fluorinated styrenes under such conditions.35

The b-brominated styrene 10b seemed an attractive sub-
strate for further functionalization of the double bond by
coupling reactions. We were thus pleased to find that
Suzuki coupling36 of the E-isomer of 10b with 3,5-dime-
thylbenzene boronic acid, as an example, occurred readily
to give the styrene 11 (85% yield), opening the way
to more elaborate trifluoromethoxy-bearing substrates
(Scheme 5).37

Scheme 5 Suzuki coupling

In conclusion, on aliphatic chains the long range inductive
deactivating power of the trifluoromethoxy group seems
to be the main factor influencing the reactivity of neigh-
boring positions. This is in contrast to the case of aromatic
substrates where this effect may be compensated by the
resonance electron-donating effect. Nevertheless, the use
of radical reactions, which are still operative, enabled us to
prepare a representative example of a-trifluoromethoxy-
ketones and study its reactivity. Some intermediates were
also easily transformed to new b-trifluoromethoxysty-

renes with promising potential for further functionaliza-
tion by coupling reactions.
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(37) Preparation of a-(3,5-Dimethylphenyl)-b-
trifluoromethoxystyrene (11)
A mixture of bromostyrene 10b (212 mg, 0.8 mmol), 
Pd(PPh3)4 (44 mg, 0.5 mol%), 3,5-dimethylbenzene boronic 
acid (144 mg, 0.96 mmol), Cs2CO3 (520 mg, 1.6 mmol), 
distilled H2O (0.32 mL), and toluene (8 mL) was stirred for 
2 h at reflux. The solution was extracted with Et2O (4 × 10 
mL). Drying of the organic layers (MgSO4), followed by 
concentration and flash chromatography (SiO2, pentane) 
gave 199 mg (85%) of pure 11 as a colorless oil. 1H NMR 

(200 MHz, CDCl3): d = 2.20 (s, 6 H, 2 CH3), 6.66 (s, 1 H, 
CH), 6.82 (s, 2 H, 2 CHar), 6.87 (s, 1 H, CHAr), 7.15 (m, 2 
H, CHAr), 7.21 (m, 3 H, CHAr). 

13C NMR (50 MHz, CDCl3): 
d = 21.3 (2 CH3), 121.6 (q, JCF = 256 Hz, C), 127.7 (2 CHar), 
128.1 (CHAr), 128.3 (2 CHAr), 128.6 (2 CHAr), 129.8 (CHAr), 
130.7 (C), 130.8 (q, JCF = 3.8 Hz, CH), 135.3 (C), 137.8 (C), 
138.3 (C). 19F NMR (188 MHz, CFCl3): d = –60.63. Anal. 
Calcd (%) for C17H15F3O: C, 69.85; H, 5.17. Found: C, 
70.09; H, 5.27.
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