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As pointed out in a recent review, metal-mediated olefin
oxidation is still a subject of great interest.[1] Various classes of
mechanisms have been envisaged for different metal systems.
Among these, that involving metallaoxetanes (1-metalla-2-
oxacyclobutanes) as a key intermediate in the oxygen-transfer
reaction has been recently corroborated by experimental
evidence.[2] While an oxametallacycle has been identified as
the crucial surface intermediate in the ethylene epoxidation
on Ag,[3] a platinaoxetane, obtained from the reaction of a
platinum(ii) oxo complex with norbornene, has been structur-
ally characterized.[4] The same oxo complex has been found to
stoichiometrically oxidize ethylene to acetaldehyde, thus
providing a rare example of alkene oxidation by isolated
late-transition-metal oxo complexes.[5] Metallaoxetanes have
also been obtained from the reaction of iridium(i) and
rhodium(i) alkene complexes with molecular oxygen or
hydrogen peroxide.[6]

Gold oxo species are likely to be involved in oxidations
catalyzed by gold supported on metal oxides,[7] as, for
example, in the direct epoxidation of propene with molecular
oxygen.[7d,8] As soluble oxo complexes are valuable models for
species involved in heterogeneous catalytic oxidation systems,
we studied the reactions of a series of gold(iii) oxo com-
plexes[9] with olefins.[10] The model reaction of [Au2(bipy

R)2(m-
O)2](PF6)2 (bipyR= 6-R-2,2’-bipyridine; see Scheme 1 for R)
with styrene yielded novel cationic gold(i) alkene complexes
[Au(bipyR)(h2-CH2=CHPh)](PF6) and oxygenated styrene
derivatives.[11,12] After these encouraging results, we searched
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for the supposed oxametallacyclic intermediate.[13] A growing
number of papers have appeared on the homogeneous gold-
catalyzed addition of oxygen nucleophiles to C�C multiple
bonds of alkynes or alkenes.[14] Active gold–alkyne (gold–
alkene) and cyclic organogold species, which have been
suggested as key intermediates in the C�O bond formation,
[14f, i–n,q] have never been isolated.

Herein we describe the reaction of [Au2(bipy
R)2(m-O)2]-

(PF6)2 [1-(PF6)2: R=Me (1a), CHMe2 (1b), CH2CMe3 (1c),
C6H3Me2-2,6 (1d)] with the strained cyclic alkenes norbor-
nene (nb) and 2,5-norbornadiene (nbd) to give alkene
complexes and unprecedented metallaoxetanes
(Scheme 1).[15] A dinuclear complex [Au2(bipy

R)2(m-h
2,h2-

nbd)](PF6)2 [2-(PF6)2: R=Me (2a), CHMe2 (2b), CH2CMe3

(2c)] with a bridging nbd ligand is the main product of the
reaction as shown by NMR spectra and other analytical data;
signals attributable to trace amounts of a second species are
sometimes observed in the 1H NMR spectra.

In the case of the nb derivatives, the 1H NMR spectra
indicate the presence of two species, the ratio of which
depends on the preparative conditions and the nature of the
substituent of the bipyridine ligand. The main product is the
alkene complex [Au(bipyR)(nb)](PF6) [3-PF6: R=Me (3a),
CHMe2 (3b), CH2CMe3 (3c), C6H3Me2-2,6 (3d)]. When
signals from the minor species, 4, are not observed in the
1H NMR spectrum, as in the case of the 6-(2,6-xylyl)-2,2’-
bipyridine derivative, 4 is detected in the mass spectrum in
which, besides the molecular ion, M+, corresponding to the
nb complex (3d), a peak of low to medium intensity is found
at [M+16]+. Under comparable preparative conditions,
significant amounts of the latter species are obtained from
1a-(PF6)2.

[15] To separate the two species, different methods
were employed in the case of the 6-methyl-2,2’-bipyridine
(bipyMe) derivatives 3a-PF6 and 4a-PF6. Crystals of 3a-PF6

and 4a-PF6, obtained by slow diffusion of diethyl ether into an
acetonitrile solution of the mixture, were separated and
subjected to X-ray diffraction analyses. Although full refine-
ment of the structure of 3a-PF6 has not been accomplished,

the main feature of the coordination geometry has been
established.[16] The second species, 4a-PF6 , proved to be the
auraoxetane, [Au(bipyMe)(k2-O,C-2-oxynorbornyl)](PF6).

[17]

The structure consists of the packing of 4a cations and PF6

anions in the molar ratio of 1:1 with normal van der Waals
contacts. The molecular structure of 4a is shown in Figure 1.
The gold atom has a square-planar coordination environment
with a slight square-pyramidal distortion; maximum devia-
tions from the best plane are + 0.024(8) and �0.027(1) @ for
O and Au atoms, respectively. Carbon atom C13 lies in the
metal coordination plane, and the oxametallacycle is strictly
planar, as reported for other late-transition-metal metal-
laoxetanes.[18] The Au�O bond length of 1.967(7) @ is very

similar to the Au�O bond lengths
of 1.971(4) and 1.960(6) @ found in
[Au(bipy)(OMe)2](PF6),

[19] and the
Au�C12 separation of 2.055(8) @
is comparable with the Au�C bond
length of 2.028(7) @ found in
[Au{N2C10H7(CMe2CH2)-6}Cl]+

(5), in which N2C10H7(CMe2CH2)-6
is a cyclometalated 6-tert-butyl-
2,2’-bipyridine ligand.[20] The Au�
N1 and Au�N2 bonds (2.026(6)
and 2.183(6) @, respectively) can
be compared with corresponding
interactions in 5 (1.976(5) and
2.151(5) @, respectively).

As the isolation of oxametalla-
cycles is unprecedented in the
chemistry of gold, we tried to
synthesize 4a-PF6 in better yields
in order to study its reactivity.[21] In

Scheme 1. Oxo complexes 1-(PF6)2 (only the trans isomer is depicted; 1a and 1b are mixtures of the
cis and trans isomer) and products of the reaction with 2,5-norbornadiene, 2-(PF6)2, and with
norbornene, 3-PF6 and 4-PF6.

Figure 1. Molecular structure (ORTEP) of cation 4a. Ellipsoids are
drawn at the 30% probability level. Principal bond lenghts [D] and
angles [8]: Au–N1 2.026(6), Au–N2 2.183(6), Au–O 1.967(7), Au–C12
2.055(8), C12–C13 1.550(14), C13–O 1.433(12); N1-Au-N2 78.2(3),
N1-Au-C12 103.9(3), N1-Au-O 172.9(3), N2-Au-O 108.2(3), N2-Au-C12
177.7(3), C12-Au-O 69.6(3), Au-C12-C13 91.2(5), C12-C13-O 100.7(7),
C13-O-Au 98.5(6).
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reactions using different ratios of nb to 1a-(PF6)2 and
at different concentrations of 1a-(PF6)2 , in both
CH3CN and in CH3CN/H2O, we established a general
trend.[22] During the reaction of trans-[1c-(PF6)2] (the
most soluble complex) with nb in CD3CN, we
observed by 1H NMR spectroscopy that the ratio of
3 to 4 remains unchanged. Signals for 3c-PF6 and 4c-
PF6 were detected after about 40 h (3c-PF6/4c-PF6=

2:1); a resonance at d= 9.58 ppm (d, JH-H= 1.9 Hz),
which is typical of an aldehyde proton, appeared at
the same time. Isolation of the organic fraction
obtained from the same reaction in MeCN identified
exo-2,3-epoxynorbornane (6)[23] as the main product
accompanied by at least three aldehydes, 7, 8, and
9.[24] The main aldehyde species was cyclopentane-
1,3-dicarbaldehyde (7, M+ 126)[25] , the others were
likely to be 3-methylene-cyclopentane carbaldehyde
(8, M+ 110)[26] and 3-methyl-2-cyclopentene carbal-
dehyde (9, M+ 110). The epoxide and the dialdehyde
were also the main products of the same reaction in
MeCN in the presence of a small amount of water
(3%). When a larger amount was added (� 10%), a
6:1 mixture of cis-endo-2,3-norbonanediol (10) and
trans-2,3-norbonanediol (11) is obtained. GC–MS
and LC–MS analyses showed peaks of M+= 128,
which correspond to C7H12O2.

Formation of the epoxide in solution and direct
loss of a C7H10O fragment from the molecular ion of
[Au(bipyMe)(C7H10O)]+ in the gas phase—shown by
the FAB mass spectrum of 4a—point to the oxaaura-
cycle 4 being the origin of both the oxygenated
products and the olefin complex 3. Accordingly, the
olefin complex 3a-PF6, 2,3-epoxynorbornane (6), and
small amounts of aldehydes 8 and 9 were slowly
formed when a MeCN solution of 4a-PF6 was treated with
excess nb.[27] To the best of our knowledge, elimination of an
epoxide from an isolated oxametallacycle has never been
previously observed.[1,2b] Aldehydes or ketones are formed by
isolated RhIII and IrIII 2-metalla-oxetanes.[6e,f, 28] Plausible
reaction pathways for the formation of the auraoxetane, 4,
and the alkene complex, 3, are given in Scheme 2.

Attempts to obtain 4a by reaction of 3a with O2
[6a] or

H2O2
[6b–d] in neutral MeCN solution were unsuccessful: partial

decomposition of the alkene complex was observed in both
cases.

Complexes 4a–4c are the first isolated auraoxacyclobu-
tanes. Their formation by the reaction of gold oxo complexes
with alkenes may lead to a better understanding of the
oxidation of olefins mediated by late-transition-metal com-
plexes. Moreover, both the gold(i) alkene complex and the
auraoxetane provide evidence for intermediates in the gold-
catalyzed addition of oxygen nucleophiles to alkenes and
alkynes.
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