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Abstract: The Bu(III)-catalyzed reaction of n-benzyloxyaldrhydes with the (K)- %hydroxyhutanoate- 
derived kctcne silyl acctal is shown to provide a higher level of both “anti” diaslereofacial selection 
and rather unusual anti diastereoselection, compared with the conventional ‘IV&-promoted version. 
The aldol adducts are elaborated to the carbapenern intermediates. 

Development of stereoselective catalysis of aldol-type reactions is the current subject of intense activities.l% 2 

Recently we have reported that europium(ll1) complexes (NMR shift reagents) exhibit efficient and unique 

catalysis for the aldol reaction of aldehydes with ketene silyl acetals (KSA) in particular.3, 4 In a continuation of 

the.se studies. we became intcrcsttd in the stcrcochemistty of the lanthanirie-catalyze(f aldol reaction with KSA of 

methyl (R)-7_hydrvxyhutanc,irtt: (1 ), 21 cornpour~d 11mt has attracted much attention as a chiral building block, 

r.specially for carbapenern synthesis. 5 Our major concern here is how the sense and degree of the catalytic 

reaction are different from those of the conventional TiCI4.promoted version.6 Disclosed herein is that the 

Eu(fod)x- and Pr(fod)j-catalyzed reaction of benzyloxyacetaldehyde with the chiral KSA (2) provides a 

remarkably high level of rather unusual 2,3-anti diastereoselection together with a high 1.2-“anti” facial selection 

to afford selectively 3b which is readily converted to the carbapenem intermediate 4 (Scheme 1). 
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The reaction of the aldehyde with 1.2 equiv. of 2 (100% @ was carried out in the presence of Ln(fod)J (5 

mol%) in CII2C12 at -40 “C for several hours, The crude products were desilylated with 1N HCl in THF. Table 

1 summarizes the stereoisomer distributions thus observed, The stereochemical assignments were made on the 

basis of ‘H NMR analysis of their acetonide derivatives 6% 7 and the stereoisomeric ratios were determined by 

capillary GLC analysis. 
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Table 1. Ln(fod)g - Catalyzed Aldol Reactions of Benzyloxyacetaldehyde with (R)-2. 

Entry Catalyst 3~. ~._ _ I__ 3h : (3c+3d)Q Yield(%)b ._~ 

1 Pr(fod)3 1 : 97 : 2 71 

2 Eu(fod)g 0 : 96 : 4 62 

3 Ho(fod)i 19 : 81 : 0 82 

4 Yb(fod)s 23 : 67 : 10 78 

5 Tic14 (1.0 equiv.)“’ 27 : 38 : 3.5 90 

a) The ratios were determined by capillary GLC (Urban IIR 20M, SO m). h) Refers to the 

combined yield after a short-column chromatography, c) The reaction was carried out at -78 “C. 

Inspection of the data in Table 1 reveals that the present catalytic reaction exhibits a much higher level of 1,2- 

“anti” facial selection along with a high level of rather unusual 2,3-anti diastereoselection, compared with the 

TiC14-promoted counterpart (entry 5). Of particular interest and value is the remarkably high 2,3_anti selectivity 

(entries 1 and 2) which contrasts with the high 2,3-syn selectivity observed in the similar catalytic reaction of 

benzaldehyde (Scheme 2). This difference is explicable in terms of the concept of chelation vs. non-chelation 

control as follows. 

Scheme 2 
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TiCl, (1 .O equiv.) 85 : 8 : 7 (75%) 

While the 2,3-syn selectivity of the benzaldehyde reaction (non-chelation) is easily explained in terms of the 

widely recognized antiperiplanar transition state (A), the 2,3-anti selectivity of the benzyloxyacetaldehyde reaction 

(chelation) is best rationalized in terms of the rarely precedented synperiplanar transition state (B), analogous to 

the transition state previously proposed for the Eu-catalyzed reactions of a chiral a-henzyloxyaldehyde with 

achiral KSA’S.~ 

A --+ I,2-“antiq’, 2,3-syn B + 1,2 “anti”, 2,3-anti 

To test this transition state model, we also carried out the double-asymmetric aldol reactions of (f?)- or (S)-2 

with (S)-2-benzyloxypropanal (6) with the prediction that the (R)-2/(S)-6 would be a matched pair in the present 
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catalytic process, while (S)-Z/(S)-6 was a matched pair in the Tit&promoted version.6 Indeed, we found that 

the catalytic reaction of (R)-2 with (S)-6 afforded the aldol adduct 7b ( 1,2-“anti”, 2,3-anti.) in a remarkably high 

selectivity, whereas the (S)-2/(S)-6 pair provided an almost 1:l mixture of the aldols 8b and 8d (Scheme 3).8 

The almost exclusive formation of 7b is best understandable as a result of the favorable double 

stereodifferentiation in the synperiplanar transition state (C). Thus, it is likely that the chelation-controlled 

catalytic aldol reaction proceeds preferentially through the synperiplanar transition state in general. 

Scheme 3 

c Pr(fod), (5 mol%) 95 : 5 (52%) 
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The transformation of aldols 3b and 7b to the corresponding p-lactam was carried out in the same manner as 

previously reported 9 (Scheme 4). Thus, 3b was converted, after selective silylation, to the hydroxamate 11 

which was then cyclized under the Mitsunobu condition to afford P-lactam 4. Likewise, aldol7b was elaborated 

to P-lactam 13. Both 4 and 13 are useful synthetic intermediates for carbapenem synthesis.9 

Scheme 4 
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Reagents, conditions and yields: a) 2.0 equiv of r-BuMqSiCI. 2.5 equiv of irnidazole, DMF, rt, 3 h; 65% for 3b; 93% for 
7b; h) 6.0 equiv of MeON HCI. 6.0 equiv of Me3AI, toluene. II, 2 h; 88% for 9: 82% for IO; c) 3.0 equiv of Ph3P, 
3.0 equiv of Me@CN=NCO@Ie, THF, 0 “C, 1.5 h; 82% for 11: 68% for 12. 

In summary, we have demonstrated that the Eu(fod)s- or Pr(fod)s-catalyzed aldol reaction of a- 

benzyloxyaldehydes with the chiral KSA (2) provides a high level of both diastereo- and diastereofacial selection 

through the rarely precedented synperiplanar transition state. Furthermore, the catalytic asymmetric aldol reaction 

is shown to provide a new and efficient method for the asymmetric synthesis of carbapenem intermediates. 

Further application of lanthanide catalysis is in progress, 
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