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Abstract: The Eu(IIT)-catalyzed reaction of a-benzyloxyaldehydes with the (R)-3-hydroxybutanoate-
derived ketene silyl acetal is shown to provide a higher level of both "anti" diastereofacial selection
and rather unusual anti diastereoselection, compared with the conventional TiCls-promoted version.
The aldol adducts are elaborated to the carbapenem intermediates.

Development of stercoselective catalysis of aldol-type reactions is the current subject of intense activities.!. 2
Recently we have reported that europium(iT) complexes {(NMR shift reagents) exhibit efficient and unique
catalysis for the aldol reaction of aldehydes with ketene silyl acetals (KSA) in particular.3.4 In a continuation of
these studies, we became interested in the stercochemistry of the lanthanide-catalyzed aldol reaction with KSA of
methyl (R)-3-hydroxybutanoate (1), a compound that has attracted much attention as a chiral building block,
especially for carbapenem synthesis.3 Our major concern here is how the sense and degree of the catalytic
reaction are different from those of the conventional TiCly-promoted version.® Disclosed herein is that the
Eu(fod)i- and Pr(fod)i-catalyzed reaction of benzyloxyacetaldehyde with the chiral KSA (2) provides a
remarkably high level of rather unusual 2,3-anti diastereoselection together with a high 1,2-"anti" facial selection
1o afford selectively 3b which is readily converted to the carbapenem intermediate 4 (Scheme 1).
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The reaction of the aldehyde with 1.2 equiv. of 2 (100% Z)6 was carried out in the presence of Ln(fod)s (5
mol%) in CHyCly at -40 °C for several hours. The crude products were desilylated with 1N HClin THF. Tuble
| surnmarizes the stereoisomer distributions thus observed, The stereochemical assignments were made on the
basis of TH NMR analysis of their acetonide derivatives & 7 and the stereoisomeric ratios were determined by
capillary GLC analysis.
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Table 1. Ln({fod)3 - Catalyzed Aldol Reactions of Benzyloxyacetaldehyde with (R)-2.

Entry Catalyst 3a_ : 3b  :(3c+3d)? Yield(%)?
1 Pr{fod)s 1 97 2 71

2 Eu(fod)y 0 : 96 4 62

3 Ho(fod)s 19 : 81 : 0 82

4 Yb(fod)s 23 ¢ 67 : 10 78

5 TiCly(1.0equivy¢ 27 . 38 35 90

@) The ratios were determined by capillary GLC (Urbon HR 20M, 50 m). &) Refers to the
combined yield afier a short-column chromatography. c) The reaction was carried out at -78 °C.

Inspection of the data in Table 1 reveals that the present catalytic reaction exhibits a much higher level of 1,2-
"anti" facial selection along with a high level of rather unusual 2,3-anti diastereoselection, compared with the
TiCls-promoted counterpart (entry 5). Of particular interest and value is the remarkably high 2,3-anti selectivity
(entries 1 and 2) which contrasts with the high 2,3-syn selectivity observed in the similar catalytic reaction of
benzaldehyde (Scheme 2). This difference is explicable in terms of the concept of chelation vs. non-chelation
control as follows.

Scheme 2
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While the 2,3-syn selectivity of the benzaldehyde reaction (non-chelation) is easily explained in terms of the
widely recognized antiperiplanar transition state (A), the 2,3-anti selectivity of the benzyloxyacetaldehyde reaction
(chelation) is best rationalized in terms of the rarely precedented synperiplanar transition state (B), analogous to
the transition state previously proposed for the Eu-catalyzed reactions of a chiral t-benzyloxyaldehyde with
achiral KSA'sA4
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To test this transition state model, we also carried out the double-asymmetric aldol reactions of (R)- or (§)-2
with (§)-2-benzyloxypropanal (6) with the prediction that the (R)-2/(5)-6 would be a matched pair in the present
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catalytic process, while (5)-2/(5)-6 was a matched pair in the TiCls-promoted version.® Indeed, we found that
the catalytic reaction of (R)-2 with (§)-6 afforded the aldol adduct 7b { 1,2-"anti", 2,3-anti) in a remarkably high
selectivity, whereas the (5)-2/(5)-6 pair provided an almost 1:1 mixture of the aldols 8b and 8d (Scheme 3)8
The almost exclusive formation of 7b is best understandable as a result of the favorable double
stereodifferentiation in the synperiplanar transition state (C). Thus, it is likely that the chelation-controlled
catalytic aldol reaction proceeds preferentially through the synperiplanar transition state in general.
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The transformation of aldols 3b and 7b to the corresponding f-lactam was carried out in the same marnner as
previously reported 9 (Scheme 4). Thus, 3b was converted, after selective silylation, to the hydroxamate 11
which was then cyclized under the Mitsunobu condition to afford B-lactam 4. Likewise, aldol 7b was elaborated
to B-lactam 13. Both 4 and 13 are useful synthetic intermediates for carbapenem synthesis.?

Scheme 4
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Reagents, conditions and yiclds: a) 2.0 equiv of 1-BuMe2SiCl, 2.5 equiv of imidazole, DMF, rt, 3 h; 65% for 3b; 93% for
7b: b} 6.0 equiv of MeONH7 HC, 6.0 equiv of Me3Al, toluene, rt, 2 h; 88% for 9; 82% for 10; ¢) 3.0 equiv of Ph3P,
3.0 equiv of MeOCN=NCO9Me, THF, 0 °C, 1.5 h; 82% for 11; 68% for 12.

In summary, we have demonstrated that the Eu(fod)3- or Pr(fod)s-catalyzed aldol reaction of -
benzyloxyaldehydes with the chiral KSA (2) provides a high level of both diastereo- and diastereofacial selection
through the rarely precedented synperiplanar transition state. Furthermore, the catalytic asymmetric aldol reaction

is shown to provide a new and efficient method for the asymmetric synthesis of carbapenem intermediates,
Further application of lanthanide catalysis is in progress,
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