METAL-ORGANIC COMPOUNDS Acta Cryst. (1998). C54, 13-15 # 1-[Chloro(diphenylphosphino)gold(I)-P]-2-phenyl-1,2-dicarba-closo-dodecaborane(12)† M. Anna McWhannell, Georgina M. Rosair and Alan J. Welch Department of Chemistry, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland. E-mail: chegmr@bonaly.hw.ac.uk (Received 10 July 1997; accepted 3 October 1997) ## **Abstract** The title compound, $1-[(C_6H_5)_2PAuCl]-2-(C_6H_5)-1$, 2-closo- $C_2B_{10}H_{10}$ or $[AuCl\{(C_6H_5)_2P(C_8H_{15}B_{10})\}]$, is the first reported derivative of $1-[(C_6H_5)_2P]-2-(C_6H_5)-1$, 2-closo- $C_2B_{10}H_{10}$. The conformation of the cage phenyl group is comparable with the parent carbaboryl-phosphine, however, the $(C_6H_5)_2PAuCl$ substituent is less tilted from an idealized radial position on C1 due to a balance between two opposing sets of intramolecular forces. The P—Au—C1 fragment adopts the expected linear geometry. #### Comment The title compound, (I), arises from the coordination of 1-diphenylphosphino-2-phenyl-1,2-dicarba-closo-do-decaborane(12) (McWhannell et al., 1996) to an {AuCl} fragment, and results in the first reported derivative of the parent carbaborylphosphine. The structural study of (I) (Fig. 1) reveals the expected near icosahedral geometry of the $\{C_2B_{10}\}$ cage. The conformation of the phenyl substituent is described by a θ value of 15.15° (θ is defined as the modulus of the average C_{Ph} — C_{Ph} — C_{cage} — C_{cage} torsion angle; Cowie et~al., 1994) com- † Alternative name: chloro{diphenyl[2-phenyl-1,2-dicarba-closo-do-decaboran-1-yl(12)]phospine-P}gold(I). pared with 1.15° in 1-diphenylphosphino-2-phenyl-1,2-dicarba-closo-dodecaborane(12) (McWhannell et al., 1996). The C1—C2 distance of 1.744 (13) Å and the P1—C1 distance of 1.902 (11) Å are comparable with those in the parent phosphine, 1.744 (8) and 1.876 (7) Å, respectively (McWhannell et al., 1996). The PPh₂AuCl substituent is distorted from an idealized radial position on C1, the B12···C1—P1 angle Fig. 1. The molecular structure of (I) shown with 40% probability displacement ellipsoids for non-H atoms. The cage-numbering scheme can be seen in this and Fig. 2. The phenyl-ring C atoms are numbered in sequence. Fig. 2. A view down the C1···B12 vector showing the distortion of the phosphine away from the radial position at C1. having a value of 175.2 (5)°. However, this deformation is less pronounced than in the parent phosphine, where B12···C1—P1 is equal to 168.0 (3)°. Presumably a balance is struck between intramolecular crowding at the phosphorus-bound phenyl rings-H3,5 interface and further intramolecular crowding involving the {AuCl} fragment and the cage—phenyl substituent. The P—Au—Cl fragment shows the linearity usually associated with bicoordinate gold(I) complexes. The {AuCl} fragment lies above the C2—B6 connectivity (shown in Fig. 2), reinforcing the prediction of the position of the phosphorus lone pair in the parent carbaborylphosphine. ### **Experimental** A solution (273 K) of 1-PPh₂2-Ph-1,2-closo-C₂B₁₀H₁₀ (0.50 g, 1.24 mmol) (McWhannell et al., 1996) in dichloromethane (10 ml) was added to a solution (273 K) of AuCl(SC₄H₈) (0.39 g, 1.24 mmol) (Uson et al., 1989) in dichloromethane (20 ml). The resulting mixture was allowed to warm to room temperature with stirring over a period of 1 h. The solution was then reduced to ca 3 ml in vacuo and, on addition of petroleum ether (333-353 K, 10 ml), a white precipitate was formed. This solid was isolated by filtration and washed with petroleum ether (333-353 K) before being dried in vacuo (yield: 0.63 g, 80%). Crystals were grown by slow diffusion of a dichloromethane solution layered with petroleum ether (333-353 K) in a 1:3 ratio. Analysis calculated for C₂₀H₂₅AuB₁₀ClP: C 37.7, H 3.9%; found: C 37.4, H 4.2%. H FT-NMR (400.1 MHz, TMS): δ (p.p.m.) 8.25–7.13 (m, Ar-H). ¹¹B-{¹H} FT-NMR (128.4 MHz, BF₃.Et₂O): δ (p.p.m.) 1.35 (1B), -2.16(1B), -9.58 (8B). ${}^{31}P-\{{}^{1}H\}$ FT-NMR (162.0 MHz, $H_{3}PO_{4}$): δ (p.p.m.) 51.4 (s). NMR spectra were recorded from a CDCl₃ solution at 293 K on a Brüker DPX400 spectrometer. ### Crystal data | Mo $K\alpha$ radiation | |---| | $\lambda = 0.71073 \text{ Å}$ | | Cell parameters from 28 | | reflections | | $\theta = 4.89 - 12.35^{\circ}$ | | $\mu = 6.095 \text{ mm}^{-1}$ | | T = 293 (2) K | | Plate | | $0.62 \times 0.44 \times 0.15 \text{ mm}$ | | Colourless | | | | | # D_m not measured Data collection | Data collection | | |--------------------------------------|---------------------------------| | Siemens P4 diffractometer | $R_{\rm int} = 0.068$ | | ω scans | $\theta_{\rm max} = 25^{\circ}$ | | Absorption correction: | $h = -1 \rightarrow 11$ | | by integration | $k = -1 \rightarrow 17$ | | $T_{\min} = 0.147, T_{\max} = 0.619$ | $l = -21 \rightarrow 21$ | | 5694 measured reflections | 3 standard reflections | | 4366 independent reflections | every 97 reflections | | 2887 reflections with | intensity decay: 5.77% | | $I > 2\sigma(I)$ | • | #### Refinement ``` Refinement on F^2 (\Delta/\sigma)_{\text{max}} = -0.001 \Delta \rho_{\text{max}} = 0.979 \text{ e Å}^{-3} R[F^2 > 2\sigma(F^2)] = 0.051 wR(F^2) = 0.116 \Delta \rho_{\min} = -1.756 \text{ e Å}^{-3} Extinction correction: none S = 1.050 4366 reflections Scattering factors from 298 parameters International Tables for H atoms constrained Crystallography (Vol. C) w = 1/[\sigma^2(F_o^2) + (0.0432P)^2] where P = (F_o^2 + 2F_c^2)/3 ``` Table 1. Selected geometric parameters (Å, °) | Au1—P1
Au1—C11
P1—C41
P1—C31
P1—C1
C1—B4
C1—B5
C1—B6
C1—B3
C1—C2
C2—C21
C2—B11
C2—B7
C2—B6
C2—B3
B3—B4 | 2.232 (3)
2.279 (3)
1.816 (11)
1.822 (10)
1.902 (11)
1.670 (15)
1.707 (14)
1.734 (15)
1.744 (13)
1.506 (14)
1.71 (2)
1.72 (2)
1.74 (2)
1.76 (2)
1.76 (2)
1.78 (2) | B5—B10
B5—B6
B6—B10
B6—B11
B7—B12
B7—B11
B7—B8 | 1.75 (2)
1.75 (2)
1.77 (2)
1.77 (2)
1.77 (2)
1.77 (2)
1.76 (2)
1.80 (2)
1.76 (2)
1.78 (2)
1.76 (2)
1.76 (2)
1.76 (2)
1.76 (2)
1.76 (2)
1.76 (2)
1.76 (2) | |---|--|--|--| | | | | | | P1—Au1—C11
C41—P1—C31
C41—P1—C1
C31—P1—C1
C41—P1—Au1
C31—P1—Au1 | 175.84 (12)
108.8 (5)
102.8 (5)
106.4 (5)
111.9 (4)
112.4 (4) | B6—C1—P1 | 113.9 (3)
122.5 (7)
122.5 (7)
116.6 (7)
116.6 (7)
117.4 (7) | The cage H atoms were constrained to idealized positions (B—H 1.10 Å). The isotropic displacement parameters of the cage H atoms were defined as $1.2U_{\rm iso}$ of the bound cage atom. The $U_{\rm iso}$ parameters of the phenyl H atoms were defined as $1.2U_{\rm iso}$ of the bound C atom. The largest remaining feature (-1.77 e ų) in the difference map is 1.09 Å from Au1. Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1994). Program(s) used to refine structure: SHELXTL/PC. Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXTL/PC. The authors thank Heriot–Watt University for the provision of a University Studentship (MAM), the EPSRC for a Postdoctoral Fellowship (GMR) and the Callery Chemical Company for a generous gift of $B_{10}H_{14}$. Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1516). Services for accessing these data are described at the back of the journal. #### References Cowie, J., Reid, B. D., Watmough, J. M. S. & Welch, A. J. (1994). J. Organomet. Chem. 481, 283–293. McWhannell, M. A., Rosair, G. M., Welch, A. J., Teixidor, F. & Viñas, C. (1996). Acta Cryst. C52, 3135–3138. Sheldrick, G. M. (1994). SHELXTUPC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Uson, R., Laguna, A. & Laguna, M. (1989). Inorg. Synth. 26, 86-91. Acta Cryst. (1998). C54, 15-16 # cis-Diamminechloro(2,5-dimethylbenzoxazole-N¹)platinum(II) Nitrate Gerson F. Restrepo, Charles L. Barnes, Mayra E. Cádiz, Eneida Olivero And Songping D. Huang d* ^aDepartment of Physics, University of Puerto Rico, San Juan, PR 00931, USA, ^bDepartment of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA, ^cDepartment of Chemistry, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, USA, and ^dDepartment of Chemistry, University of Puerto Rico, San Juan, PR 00931, USA. E-mail: huang@zintl.chem.uprr.pr (Received 20 December 1996; accepted 3 May 1997) #### **Abstract** In the title compound, $[PtCl(NH_3)_2(C_9H_9NO)]NO_3$, the complex cation features square-planar coordination around the Pt atom, with a mean deviation of 0.0007(5) Å. The aromatic 2,5-dimethylbenzoxazole ring is planar with a mean deviation of 0.008(8) Å. The dihedral angle between these two ring planes is $71.0(2)^\circ$. # Comment Triamino-Pt^{II} complexes of the form cis-[PtCl(NH₃)₂L] with N-donor heterocyclic L ligands have been studied for their potential antitumor activities (Hollis, Amundsen & Stern, 1981). The ligands used for such complexes are often imidazoles, thiazoles and benzoxazoles (Gomez et al., 1988). Modifications to these compounds may lead to a better understanding of the role that the ligand plays in improving the antitumor activity and water solubility of the complexes (Muir et al., 1992). 2.5-Dimethylbenzoxazole (Me₂BO) is potentially an ambidentate ligand and has been reported to be coordinated through its O atom to Pt^{II} in the [PtCl₂(Me₂BO)₂] complex based on IR spectroscopic data (Massacessi, Pinna & Ponticelli, 1981). We synthesized the title compound, (I), in order to clarify the coordination mode of the ligand. The X-ray crystallographic analysis revealed that 2.5-dimethylbenzoxazole coordinates to the PtII center through the N-donor atom. The crystal lattice consists of NO₃ anions and [PtCl(NH₃)₂(Me₂BO)]⁺ cations linked by hydrogen bonds between the nitrate ion and coordinated ammonia molecules [N(3)···O(3) 2.917 (3) and $N(2) \cdots O(2) \ 3.081 \ (3) \ \text{Å}$]. The $[PtCl(NH_3)_2(Me_2BO)]^+$ cation features square-planar coordination around the Pt atom, with a mean deviation of 0.0007 (5) Å (Fig. 1). Two ammonia ligands arrange themselves in a cis fashion. The Pt-N bond trans to the Cl atom exhibits a longer bond distance [2.042 (7) Å] than that cis to the Cl atom [2.007 (8) Å]. The aromatic Me₂BO ring is planar with a mean deviation of 0.008 (8) Å. The dihedral angle between these two planes is 71.0(2)°. The other bond distances are in the normal range. Fig. 1. An *ORTEPII* (Johnson, 1976) representation of the title compound showing 50% probability displacement ellipsoids. # **Experimental** The detailed synthesis of the title compound will be published elsewhere. Slow evaporation of a dichloromethane solution of the compound at room temperature afforded pale-yellow single crystals of X-ray quality. Crystal data $[PtCl(NH_3)_2(C_9H_9NO)]NO_3$ $M_r = 473.78$ Mo $K\alpha$ radiation $\lambda = 0.7107 \text{ Å}$