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Abstract Proanthocyaniding of the A—type exhibit identical tH NMR
coupling constants (Js,4 = 3.5 Hz) irrespective of the relative configurations of
their C-rings. The selective tH NOE association of 3—H (C-ring) to either
6—H(D) or 8-H(A) permits unequivocal differentiation of (4,8)-linked analogues
with respectively 3,4-trans or 3,4-cis configurations of these heterocyclic rings.

Since the first isolation! and structural elucidation®® of proanthocyanidin A~2 1 [(—)-epicatechin-{(44 +
8, 20 + 0 » 7){~)-epicatechin|, a variety of analogues possessing the doubly-linked unit of either (26,40)- 1
or (2a,40)-configuration 3 has been reported4—7. These compounds invariably display 3JHH =34 Hz2 for

3— and 4-H (C-ring), a phenomenon which by reference to X-ray data for procyanidin A-2 ] and 3C NMR
comparisons, has consequently been accepted to indicate 3,4-trans relative configuration for all known
compounds in this class of naturally occurring condensed tannins. Consideration, however, of the structure
of a putative A-type proanthocyanidin with 3,4-¢is configuration 4 in conjunction with the conformational
rigidity of the bicyclic ring system indicates very similar dihedral angles between 3— and 4—H(C) in both
3,4-trans 5 and 3,4-cis 6 homologues which should thus lead to almost identical coupling constants for these
protons. We now disclose evidence demonstrating the inability to differentiate between these configura-
tions in A-type proanthocyanidins on the basis of tH NMR coupling constants. In addition a method based
on selective 1H NOE asgociation of 3—H(C) permitting such differentiation is described.

As part of our study of the basecatalyzed pyran rearrangements of proa.nthocya.nidinss, (—)-robinetini-
dol-(43,8)-(+)-catechin mono-O-methyl ether 7 was treated with 0.1M Na;CO3; — 0.IM NaHCOj3 buffer
solution (pH 10.0) for 3 h at 50°C under nitrogen containing traces of oxygen. Column chromatography of
the mixture using Sephadex LH-20/ethanol afforded amongst othersa, (—)-robinetinidol-(473 -+ 8, 26+ 0 » 7)-
(+)-catechin mono-O-methyl ether 4 in 18% yield. Its 1H NMR spectrum9 at 300 MHz in (CD3)2CO exhi-
bited the characteristic AB-system [64.07, 4.15, both d, J3.5 Hz; 3— and 4-H(C) respectively] associated
with A-type proa.nthocyanidinsz. The (26,4f)-orientation and hence the absolute configuration depicted in
formulation 4 was confirmed by a high-amplitude positive Cotton effect at 240 nm in the CD spectrumm.

aDetails of the remaining compounds will be published elsewhere.
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Newman projections along the C-4/C-3 axis of the A-type proanthocyanidins 1, and 4
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Scheme: Proposed route to the formation of the A-type prorobinetinidin 4
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This novel compound, represents both the first A-type analogue of the 5-deoxy (A—ring) oligoflavanoids and
also the first entry amongst this class of proanthocyaniding with a 3,4-cis Cring configuration. The me-
chanism for its formation via an intermediate qmnone—methlde 8 (Scheme) is similar to that established for
the conversion of procyamdm B—2 to procyanidin A—4

Comparison of the tH NMR data of the A-type prorobinetinidin 4 and those of the peracetate 2_12 of
procyanidin A—2 1 revealed the conspicuous identity of their 3— and 4—H coupling constants (J3,4 = 3.5 Hz
for both 2 and 4). This observation prompted assessment of the potential of the powerful 1H NOE techni-
que towards differentiation of A-type analogues exhibiting 3,4-trens or 3,4-cis configuration of their C-rings.
Besides the stereochemically insignificant'® NOE association of 3—H(C) with 2— and 6~H(B) in both 2 and
4, this proton showed a selective NOE effect to 6~H(D) (86.47, s, 1.0%) in the procyanidin A—2 derivative 2
ONLY. In the A-type 3,4-cis prorobinetinidin 4, however, 3—H(C) exhibited selective association with both
5—and 8—H(A) (67.07, d, J8.5 Hz; .33, d, J2.5 Hz; 1.0 and 1.3% resp.), the corresponding effect between
3-H(C) and 8-H(A) (86.79, d, J2.5 Hz) being conspicuously absent in the procyanidin A—2 peracetate 2.
These highly selective NOE associations of 3—H(C) to 5— and 8—H(A) in 4 and of 3—H(C) to 6~H(D) in 2
are only permitted for an azial 3-proton in the former case and for an equatorial 3-proton in the latter
instance hence facilitating the unambiguous assignment of the 3,4-relative configuration in the A-type
proanthocyaniding. Dreiding models furthermore indicate that the NOE associations should be independent
of the 2— and 4—C absolute configuration i.e applicable also to analogues of type 3 with (2a,4a)-configura-
tion.
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The magnitude of J3,4 is not influenced by derivatization of procyanidin A—2 (see ref. 2).

These effects, however, confirm the chemical shift of 3-H(C) (see ref. 11).
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