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Abstract: Allylsilanes are prepared by simple metathetical cross-coupling of terminal olefins with 
allyltrimethylsilane. Allyltrimethylsilane coupling with re-substituted terminal olefins (styrenes, l- 
phenyl- 1,3-butadiene, and acrylonitrile) proceeds in excellent yield and very high selectivity. Lower, 
but still useful, selectivities are observed for allyltrimethylsilane/alkyl olefin cross-metathesis 
reactions. 

Allylsilanes are an important class of carbon nucleophiles in organic synthesis possessing a number of 
favorable traits including stability, ease of handling, and versatile reactivity. 1 Olefination (Scheme 1) is an 
attractive route for allylsilane synthesis if the organosilane component is readily obtained. Allylsilanes can be 
prepared by Wittig olefination (Scheme 1A) using the Seyferth-Fleming phosphorane, 2 Ph3P=CHCH2SiMe3 
(1), as the organosilane reagent; generation of the phosphorane reagent is reasonably straightforward and the 
Wittig olefination reaction is fairly general)  We report here that allylsilanes can also be prepared by olefin 
metathesis (Scheme 1B) using allyltrimethylsilane, CH2=CHCH2SiMe3 (2), as the organosilane reagent. A 
notable advantage of olefin metathesis is the use of off-the-shelf organosilane reagent (as opposed to in situ 

generated 1). 
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The successful application of olefin metathesis to allylsilane synthesis hinges on the cross-metathesis 
selectivity of the coupling reaction. In previous studies we observed high cross-metathesis selectivity for the 
coupling of styrenes 4 or acrylonitrile 5 with sterically small, alkyl-substituted olefins. We reasoned that 
selectivity arose from the preferential reaction of the most stable alkylidene in solution (aryl- or cyano- 
substituted) with the most nucleophilic olefin. Hyperconjugative C-Si electron donation from the CH2SiMe3 
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Table  1. Cross-Metathesis Reactions of re- and Alkyl-substituted Olefins 
2 mol% 

R ~  + ~ T M S  Mocatalyst,. R J ~ T M S  + R. . . .~  R 
2 eq DME. 4 h (undesired) 

Entry R Yield a Trans:Cis b RCH=CHR a (%) 

1 Ph 85 (92) d trans 0 c 

2 p-MeC6H4 83 trans 0 c 

3 p-MeOC6H4 61 trans 0 c 

4 o-NO2C6H4 40 trans 0 c 

5 PhCH=CH 80 4.2:1 0 c 

6 CN 76 e 1:4.7 0 c 

7 (CH2)2CO2Bn 61 3.0:1 30 

8 o-MeOC6H4CH2 73 3.2:1 7 c 

9 (CH2)3OPh 72 2.6:1 5 c 

I0 (CH2)3Br 60 3.1:1 19 

11 (CH2)2Br 45 2.8:1 12 

12 (CH2)3CH(OMe)2 55 2.7:1 5 

13 (CH2)4OTBS 56 2.8: I 19 

14 (CH2)3OTBS 54 3.8: I 10 

15 (CH2)2OTBS 62 3.2:1 23 

16 (CH2)4OBn 66 2.6:1 6 e 

17 (CH2)3OBn 60 4.6:1 26 c 

18 (CH2)2OBn 67 3.7:1 8 e 

19 (CH2)3CN 62 4.9:1 14 

20 (CH2)2CN 37 4.4:1 15 

21 CH2CN 34 4.1:1 0 c 

.a) Reported yields are for pure, isolated products. A small amount of the product of aUyltrimethyl- 

silane self-metathesis (ca. 5-7% yield) was observable in crude product mixtures, b) Determined by 1H 
NMR with the aid of homonuclear decoupling, c) Estimated from IH NMR of crude product mixture. 
d) Yield in parenthesis is for a reaction run in Et20 in the presence of 4 mol% PPh 3. e) 5 mol% catalyst 
used (CH2CI 2 solvent), see reference 5. 

substituent of allyltrimethylsilane should enhance olefin nucleophilicity (eq 1) but should have little or no 
effect on alkylidene stability. Thus, allyltrimethylsilane might be expected to undergo selective cross- 

metathesis with x-substituted olefins such as styrene or acrylonitrile. When various x-substituted olefins were 

treated with allyltrimethy|silane in the presence of Schrock's molybdenum catalyst Mo(CHCMe2Ph) -  
(NAr)[OCMe(CF3)2]2 (3, 2-5 mol%) 6 high cross-metathesis selectivity was in fact observed (Table 1, entries 
1-6). 7,8 
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Metathetical coupling of allyltrimethylsilane with small, alkyl-substituted olefins might not be expected 
to be highly selective since neither olefin possesses a good alkylidene stabilizing substituent. When alkyl- 
substituted olefins were reacted with allyltrimethylsilane (2 equiv) in the presence of catalyst 3 (2 mol%) 
smaller, but still useful, levels of cross-metathesis selectivity were observed as illustrated in Table 1 (entries 7- 
2 I).8 For these reactions we found that a coordinating solvent like dimethoxyethane (DME) was necessary to 
provide reasonable yield and selectivity. 9, 10 The ratio of cross-metathesis to self-metathesis of the alkyl 
olefin, ranges from 2.0:1 to 11:1, with a 3:1 ratio being typical. 

For allyltrimethylsilane cross-metathesis reactions the crude reaction mixture is composed of up to three 
additional components which must be separated from the desired cross-metathesis product: self-coupled 
allyltrimethylsilane (5-7%), self-coupled alkyl olefin (see Table 1), and unreacted alkyl or aryl olefin (5-10%). 
Unreacted alkyl or aryl olefin has similar polarity to the desired product and often cannot be removed by 
conventional flash chromatography. We found that the use of silica gel containing 15% (by weight) silver 
nitrate 1: allowed for easy removal of unreacted starting material, along with the other two reaction byproducts. 

In the one example that we examined, we found that increasing the size of the alkyl groups on the 
allyltrialkylsilane reagent can increase trans selectivity without diminishing the overall yield. Thus, the cross- 
metathesis of phenyl 4-pentenyl ether with allyltriisopropylsilane gave 7.6 : I trans/cis selectivity (eq 2). 

$iR3 SiR 3 
SiR3oPh ~ O P h ~  (2) 

2 mol% 3 

R =  Me 2.6 : 1 (72%yie ld)  

R =/-Pr 7.6 : 1 (77 % yield) 

The cross-metathesis selectivity observed in the alkyl olef'm/allyltrimethyls!lane coupling reactions 
suggests that the CH2SiMe3 substituent not only enhances the reactivity of an olefin via electron-donation but 
also diminishes the reactivity of an alkylidene via steric hindrance. 12 Were this not the case, self-metathesis of 
allyltrimethylsilane (used in two-fold excess) would be observed to a much larger extent. Cross-metathesis 
selectivities obtained from the data given in Table 1 give some indication of relative olef'm reactivities in the 
product-forming step. Allyltrimethylsilane appears to be slightly (1.02-7.2 times) more reactive 13 than small, 
alkyl-substituted olefins and substantially (> 20 times) more reactive than ~-substituted olefins. 

In conclusion, we have reported an operationally simple method for conversion of terminal olefins to 
allylsilanes in good yields using stable, readily available allyltrimethylsilane as the organosilane reagent. The 
results presented herein demonstrate the potential of electron-rich oleftns as cross-metathesis substrates. The 
cross-metathesis selectivity reported herein may also apply to other allylmetal substrates and perhaps to other 
classes of electron-rich olefins.t 4 
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