THE INTERACTION OF NIOBIUM AND VANADIUM CYCLOPENTADIENYL COMPLEXES WITH SUBSTITUTED HYDRAZINES

M. JIMENEZ-TENORIO and G. J. LEIGH*

AFRC Institute of Plant Science Research, Nitrogen Fixation Laboratory, University of Sussex, Brighton BN1 9RQ, U.K.

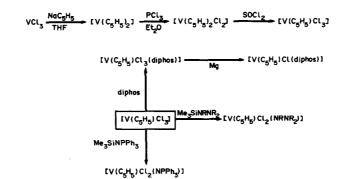
Abstract—The hydrazido(1–) complexes $[V(\eta^5-C_5H_5)Cl_2(NRNR_2)]$ and $[Nb(\eta^5-C_5H_5)Cl_3(NRNR_2)]$ (NRNR₂ = NMeNMe₂ or NPhNH₂) were synthesized by reaction of $[V(\eta^5-C_5H_5)Cl_3]$ or $[Nb(\eta^5-C_5H_5)Cl_4]$ with either the lithium- or trimethylsilyl-substituted hydrazine. The interaction of $[V(\eta^5-C_5H_5)Cl_3]$ with diphos (diphos = dppe or dmpe) in Et₂O yields the adducts $[V(\eta^5-C_5H_5)Cl_3(diphos)]$. Complexes such as $[Nb(C_5H_5)(diphos)_2]$ and $[V(C_5H_5)Cl(diphos)]$ are the reaction products of the reduction under N₂ of $[Nb(\eta^5-C_5H_5)Cl_4]$ and $[V(\eta^5-C_5H_5)Cl_3]$, either with Na(Hg) or Mg in the presence of phosphines or diphosphines. No stable dinitrogen complexes were isolated.

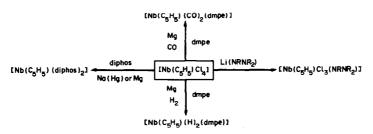
The reaction of $[Ti(\eta^5-C_5H_5)Cl_3]$ with trimethyl-silyl-substituted hydrazines allows the isolation of hydrazido(1-) complexes, $[Ti(\eta^5-C_5H_5)Cl_2(NRNR_2)]$ (NRNR₂ = NMeNMe₂, NH₂NPh, NH NMe₂, etc.), which exhibit side-on coordination of the hydrazine fragment.^{1,2} We also prepared complexes containing ligands such as RNN⁻ or R₂NN²⁻, which correspond to putative intermediates in the process of conversion of dinitrogen to ammonia and/or hydrazine.

The recent discovery of a vanadium-containing nitrogenase³ prompted us to extend this work to vanadium, and also to niobium.

The starting material, $[V(\eta^5-C_5H_5)Cl_3]$, is not as easily accessible as $[Ti(\eta^5-C_5H_5)Cl_3]$.⁴ We eventually optimized a three step synthesis pattern for the preparation of $[V(\eta^5-C_5H_5)Cl_3]$ in reasonable yields.

 $[V(\eta^5-C_5H_5)Cl_3]$ reacts with trimethylsilyl-substituted hydrazines to give the hydrazido(1-) complexes $[V(C_5H_5)Cl_2(NRNR_2)]$, which have been characterized by IR and EPR spectroscopy, and by analyses. The phosphineiminate complex, $[V(C_5H_5)Cl_2(NPPh_3)]$, can be prepared in an analogous fashion from $[V(C_5H_5)Cl_3]$ and Me₃Si NPPh₃. Side-on coordination is expected in the


[Nb(η^5 -C₅H₅)Cl₄], prepared as described in literature from NbCl₅ and Sn(C₅H₅)Bu $_3^n$ in dichloromethane, ⁵ reacts with Li(NRNR₂) in THF yielding diamagnetic [Nb(η^5 -C₅H₅)Cl₃(NRNR₂)] (NRNR₂ = NMeNMe₂ or NPhNH₂). [Nb(η^5 -C₅H₅)Cl₃(NMeNMe₂)] is stable in solution, as inferred from its NMR spectrum. However, [Nb(C₅H₅)Cl₃(NPhNH₂)] behaves in a different way, and seems to lose the cyclopentadienyl ligand on standing in THF solution at room temperature.


We also have studied the reactions of $[V(C_5H_5)Cl_3]$ with phosphines and diphosphines. The complexes $[V(C_5H_5)Cl_3(diphos)]$ (diphos = dppe or dmpe) can be prepared in high yields from $[V(C_5H_5)Cl_3]$ and the diphosphine in ether. However, the reaction with PMe₃ is accompanied by decomposition. Presumably reduction of vanadium(IV) to lower oxidation states occurs, and no stable adduct is isolated. The EPR spectra of the $[V(C_5H_5)Cl_3(diphos)]$ complexes show well-defined eight-line patterns with lines broadened due to coupling with phosphorus.

The synthesis of new vanadium and niobium dinitrogen complexes was pursued. Reductions of [V(C₅H₅)Cl₃] and [Nb(C₅H₅)Cl₄] under different conditions yielded no dinitrogen complexes, but

hydrazide(1 –) complexes, as occurs with titanium compounds, but end-on coordination is likely for $[V(\eta^5-C_5H_5)Cl_2(NPPh_3)]$, due to the bulk of the $NPPh_3^-$ ligand.

^{*} Author to whom correspondence should be addressed.

Scheme of reactions.

other low oxidation-state complexes of vanadium and niobium were readily isolated. For example, the reduction of $[V(C_5H_5)Cl_3(dppe)]$ with Mg under N_2 , leads to the complex $[V(C_5H_5)Cl(dppe)]$. $[Nb(C_5H_5)Cl_4]$ is reduced either with Na(Hg) or Mg in the presence of a diphosphine yielding [Nb $(C_5H_5)(diphos)_2$]. The reduction of $[Nb(C_5H_5)Cl_4]$ with Mg under CO in the presence of dmpe produces $[Nb(C_5H_5)(CO)_2(dmpe)]$. Reduction under H_2 affords red crystals analysing as $[Nb(C_5H_5)(H)_2(dmpe)]$, which are not yet fully characterized.

REFERENCES

- I. A. Latham, G. J. Leigh and D. L. Hughes, J. Chem. Soc., Dalton Trans. 1986, 393.
- 2. I. A. Latham, G. J. Leigh, G. Huttner and I. Jibril, J. Chem. Soc., Dalton Trans. 1986, 385.
- 3. R. L. Robson, Nature 1985, 322, 388.
- 4. R. D. Gorsich, J. Am. Chem. Soc. 1958, 80, 4774.
- M. J. Bunker, A. de Cian, M. L. H. Green, J. J. E. Moreau and N. Singaporia, J. Chem. Soc., Dalton Trans. 1980, 2155.
- J. Nieman and J. H. Teuben, Organometallics 1986, 5, 1149.