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ABSTRACT: A mild, modular, and practical catalytic sys-
tem for synthesis of the highly privileged phenethylamine 
pharmacophore is reported. Using a unique combination 
of organic catalysts to promote the transfer of electrons 
and hydrogen atoms, this system performs direct hy-
droarylation of vinyl amine derivatives with a wide range 
of aryl halides (including aryl chlorides). This general and 
highly chemoselective protocol delivers a broad range of 
arylethylamine products with complete regiocontrol. The 
utility of this process is highlighted by its scalability and 
the modular synthesis of an array of bioactive small mol-
ecules. 

 The arylethylamine scaffold is a key pharmacophore in 
endogenous neurotransmitters, natural products and 
pharmaceuticals that accomplish a wide range of important 
functions (a small sampling of which are provided in Figure 1). 
While this molecular scaffold can be produced through a range 
of classical technologies (e.g. amino acid decarboxylation or 
reductive amination) that utilize functionalized precursors, the 
ability to access this structural array with modular flexibility 
remains limited. Specifically, catalytic methods for direct 
arylethylamine synthesis from readily available synthons where 
alteration of the aryl unit, ethyl skeleton, and nitrogen atom 
would be particularly powerful if they utilized readily available 
starting materials. Toward this aim, significant progress has 
been made in intermolecular anti-Markovnikov styrene 
hydroamination using N,N-dialkylamines,1–4 N-arylamines,5 
and sulfonamides.6,7 As a complement to these technologies, we 
became interested in developing a process for hydroarylation of 
vinylamine derivatives, where flexible substitution of nitrogen 
would be possible. The utility of this method would be partially 
driven by its ability to deliver the desired products with 
complete anti-Markovnikov selectivity and good functional 
group compatibility, while employing widely available 
precursors. We envisioned that a mechanism for reductive 
activation of aryl halides to the corresponding radicals and 
intermolecular addition could be utilized to accomplish these 
goals. 
 Aryl radicals are highly reactive intermediates that readily 
engage a range of unsaturated systems.8,9 As an alternative to 
arenediazonium salt-based approaches, single electron 
reduction of aryl halides using photoredox catalysts10,11 is a 
powerful method for aryl radical formation from stable starting 
materials.12–19 Building on previous results by Stephenson,12 
Konig,20,21 and Read de Alaniz and Hawker, we have shown that  

 

Figure 1. Modular Catalytic Strategies for Arylethylamine 
Synthesis 

pyridyl radicals (accessed via pyridyl halide reduction) undergo 
chemoselective intermolecular coupling with either electron-
defficient22,23 or electron-rich olefins,24,25 and Weaver has 
reported a number of processes involving azolyl or 
perfluoroaryl radicals.16 However, because aryl halide 
reduction potentials are very negative and the resulting aryl 
radicals undergo rapid reduction through hydrogen atom 
transfer (HAT), general translation of these findings to aryl 
systems has yet to materialize.  
 From the outset, we recognized two elements that would be 
critical to the success of the proposed transformation: a 
powerful catalytic reductant (capable of aryl halide activation) 
and a catalytic hydrogen atom source (such that the rate of aryl 
radical addition to vinylamines would be competitive with 
reduction pathways involving HAT). Accordingly, we reasoned 
that the highly-reducing N-phenylphenothiazine (PTH) and 
cyclohexanethiols (CySH) could operate in concert through 
transferring electrons and hydrogen atoms, respectively, as 
illustrated in Figure 2. Specifically, iodobenzene (E1/2

0 = –1.51 
to –2.20 V vs. SCE)12 activation via single electron transfer 
(SET) from photoexcited PTH (E1/2* = –2.10 V vs. SCE)14 
would give rise to the corresponding radical anion. Rapid 
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Figure 2. Proposed Dual-Catalytic Mechanism for Intermolecular Radical Hydroarylation. 

mesolytic fragmentation would expel iodide, thereby delivering 
the neutral phenyl radical. Regioselective intermolecular 
addition to the vinylcarbamate substrate would deliver the 
nucleophilic  a-carbamoyl radical, which would undergo 
polarity-matched HAT from the electrophilic thiol catalyst.26 
This event would concurrently furnish the desired product 1 and 
the thiyl species CyS•. Finally, regeneration of both catalysts 
(via HAT and SET events) would liberate the innocuous 
byproducts CO2 and NaI. 
 In practice, we found that iodobenzene effectively reacts with 
tert-butylvinylcarbamate (2.5 equivalents) in the presence of 5 
mol% of each catalyst and 3 equivalents of sodium formate 
under irradiation with blue light in 5% H2O/DMSO, affording 
the desired adduct as a single regioisomer (82% isolated yield) 
Control experiments indicated that all of the reaction 
components are required for effective conversion of the starting 
materials. This mechanistic proposal is supported by Stern-
Volmer experiments, and an experiment with alternating light-
dark periods (optimization and mechanistic experiments are 
given in the SI). To more accurately interrogate the potential 
contributions of short radical chains to the observed results,27 
we measured the quantum yield of this process. While Φ = 0.29 
is most consistent with a photosensitized mechanism, radical 
chains may contribute to product formation. 
 Further evaluation revealed that the aryl iodide scope of this 
transformation is broad. As shown in Table 1, iodobenzene and 
derivatives that contained chloride or triflate substituents 
reacted smoothly with complete retention of the electrophilic 
cross coupling handles (1–3, 70–88% yield). Electron-poor 
arenes were excellent substrates here, and the para-
trifluoromethyl and -carboxymethyl groups were not affected (4 
and 5, 85% and 73% yield, respectively). Electron-releasing 
substituents (methoxy, carbamate, hydroxy) were tolerated, 
although yields of the desired products were slightly lower (6–
9, 60–72%). These results are in line with the assertion that the 
aryl radical SOMO lies within the plane of the arene, such that 
the presence of electron-donating or -withdrawing substituents 
does not significantly impact reactivity.28 We also found that 
substitution is tolerated at various positions around the aryl ring 
and, as expected, acidic elements did not negatively impact 
reaction efficiency. 

 Also demonstrated in Table 1 is the ability of this mechanistic 
blueprint to tolerate substitution of the olefinic partner on 
nitrogen (11) and at the b-position (12). Hydroarylation of a 
cyclic encarbamate, derived from cyclohexanone through vinyl 
triflate formation and subsequent C–N coupling with tert-
butylcarbamate, occurred in moderate yield 42%, delivering 13 
as a mixture of diastereomers (1:1 dr). Further, this strategy is 
useful for synthesis of complex saturated nitrogen heterocycles, 
through transformation of endocyclic enecarbamate substrates. 
Specifically, the 3-arylpiperidine (14) framework was 
accessible under this paradigm, albeit in diminished yield 
(42%). This is noteworthy because this particular motif has 
proven challenging to access directly, where 3-arylpyridine 
reduction or a lactam a-arylation and reduction sequence were 
utilized in the development of Zejula.29,30 Likewise, a 
dihydropyridine derivative underwent hydroarylation to afford 
3-phenylpyrrolidine 15 in 53% yield.  
 Given our experience with the complications associated with 
intermolecular heteroaryl radical coupling, we were pleased to 
find that halogenated heteroaromatics were good substrates 
under these conditions. Intermolecular coupling of 3-
iodopyridine with the same vinylamine derivatives afforded 
pyridylethylamines 16–20 in comparable yields (43–90% 
yield). Moreover, these conditions generally activate a range of 
other halogenated pyridines, where regiospecific radical 
formation enables alkylation of the 2-, 3-, or 4-position in 66–
91% yield. As demonstrated before, iodide cleavage occurs 
with excellent fidelity, even in the presence of chloride 
substituents. Pyridylethylamines 26–28 were produced in good 
yield without overreduction products, thus retaining the ability 
to perform subsequent cross-coupling or nucleophilic aromatic 
substitution (SNAr) reactions. In addition, products 26 and 28 
further illustrate the ability of this system to tolerate ortho-
substitution. Incorporation of other nitrogen-containing 
heterocyclic units was seamless, where reduction of 
halogenated pyrimidine (24 and 25), quinoline (29), or pyrazine 
(30) substrates resulted in acceptable amounts of alkylated 
products.  
The outlined dual catalytic process employs inexpensive 
organic compounds as catalysts and reagents. Moreover, it is  
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Table 1. Photocatalytic Radical Hydroarylation of Vinyl Amine Derivatives: Substrate Scopea 

 
aReaction conditions: Iodoarene (1.0 mmol), olefin (2.5 mmol), PTH (5 mol%), CySH (5 mol%), sodium formate (3.0 mmol), 
5% (v/v) H2O/DMSO (10.0 mL), blue light, 16 h; isolated yields given. bReaction was conducted on 0.5 mmol scale (1-chloro-
4-iodobenzene). cN-1-Naphthylphenothiazine (5 mol%) was used in place of PTH. dOlefin (1.0 mmol) was used as limiting 
reagent with 5.0 mmol 3-iodopyridine. eCorresponding heteroaryl bromide was used as aryl substrate.

highly tolerant of important functional groups and completely 
selective for the linear hydroarylation regioisomers. However, 
we recognize that the requirement for aryl iodide substrates as 
radical precursors is suboptimal because they are relatively 
expensive in comparison to the corresponding aryl bromides or 
chlorides. While these substrate classes are cheaper and more 

accessible, they are more difficult to reduce (with aryl chloride 
reduction potentials being the most negative throughout this 
series). However, as demonstrated earlier by Read de Alaniz 
and Hawker,14 reductive activation of these classes can be 
performed using PTH. Indeed, activated chlorobenzene 
derivatives couple readily with the benchmark vinyl carbamate  
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Scheme 1. Hydroarylation Reactions of Aryl Chlo-
rides and Basis for Intermolecular Reactivitya 

 
aReactions conducted as in Table 1 using the indicated aryl 
chloride. bReaction performed on 0.5 mmol scale. cReaction 
performed on 10 mmol scale. dProduct ratios were determined 
using GC with an internal standard. 
 
under standard conditions. As indicated in Scheme 1, 4-
chlorobenzonitrile and ethyl-2-chlorobenzoate (E1/2

0 = –2.00 to 
–2.10 V vs. SCE)31 were effectively converted to the 
corresponding arylethylamines (31 and 32: 86% and 88% yield, 
respectively), but chlorobenzene (E1/2

0 = –2.79 V vs. SCE)31 
conversion was slower (28% yield after 16 h) where the mass 
balance was largely comprised of unreacted chlorobenzene. 
 Alkylation of 2,4-dichloropyrimidine occurred exclusively at 
the 4-position, giving 33 in 70% yield. The selectivity here 
parallels those which were observed in SNAr or Pd-catalyzed 
cross coupling processes. Retention of chloride substituents (in 
products 16–20, 31–33, and 38) is possible presumably because 
installation of the alkyl substituent via hydroarylation would 
effectively increase reduction potential, thereby protecting the 
product from subsequent activation. Without alteration of the 
standard conditions, this catalytic protocol functioned on 10 
mmol scale from the chloropyridine, affording 2.15 g of the 
trifluoromethylpyridine product 34 (74% yield), further 
illustrating the utility of this protocol (Scheme 1). Importantly, 
tert-butylvinylcarbamate can be accessed on large scale (100 
mmol) in a single pot from inexpensive reagents. 
  This design enables remarkably effective intermolecular 
reactivity of aryl radial species by employing a combination of 
thiol HAT catalyst and stoichiometric formate reductant. As 
illustrated in Scheme 1, there are two competing pathways for 

the aryl radical intermediates that are produced here: 
intermolecular addition to olefins (desired) and reduction by 
HAT from the electrophilic thiol (undesired). The relative rates 
of these pathways can be conveniently manipulated by varying 
thiol loading, and yields of the desired product were highest 
using aliphatic thiol catalysts (see SI for details). Increasing 
thiol loading was accompanied by a clear increase in arene 
reduction through HAT. Optimal conditions (with 5 mol% 
CySH, Ph–I as radical precursor) delivered hydroarylation 
product 1 in 78% yield. In contrast, when of a full equivalent of 
thiol (100 mol%) was utilized, the selectivity was completely 
overturned giving benzene (PhH) as the major product (81% 
yield). While it is understood that radical anion fragmentation 
rates vary with halide substituent, we propose that this system 
operates uniformly via neutral aryl radicals, regardless of the 
Ar–X substrate class. This hypothesis is supported by thiol 
loading experiments across a series of halobenzene substrates 
(using methyl-4-iodo, -bromo, and -chlorobenzoate), where the 
same thiol-dependent product ratios were observed throughout. 
 The arylethylamine scaffold is conserved across a wide range 
of natural and synthetic neuromodulators. To demonstrate 
practical utility, we applied this protocol to the synthesis of the 
endogenous neurotransmitter dopamine, as well as the trace 
amine associated receptor (TAAR) agonists32 that are shown in 
Scheme 2. This system allows for modular substitution of the 
aryl unit, affording phenethylamine (35), all three 
methylphenethylamine isomers (36–38), and dopamine (39) 
through a two-step hydroarylation/boc deprotection sequence 
(66–75% yield). In addition, this method allows for flexible 
substitution of the nitrogen atom, where tyramine (40), N-
methyltyramine (41), and hordenine (42) were all accessible in 
two-steps from tert-butyl (4-iodophenyl) carbonate.  
 To illustrate the potential of this process in the early-stage 
development of medicines or agrochemicals, we reacted 2- 
bromopyridine 43 with N-vinylbenzamide 44 to directly afford  
 
Scheme 2. Flexible Synthesis of Neuromodulatorsa 

 
aHydroarylation was accomplished as in Table 2, Boc-depro-
tection was performed with acid. aHordenine synthesis by 
reduction with LiAlH4. 

NHBoc

31: 86% yield

alkene hydroarylation product

5 mol% Cy-SH

5% H2O/DMSO

5 mol% PTH

blue LEDs, 23 °C

3 equiv HCO2NaCl

aryl chloride

R1 R1

NHBoc

H

NC

32: 88% yield

N

N

33: 70% yieldb

N

34: 74% (2.2 g)c

phenyl radical (from Ph–I)

H

1 (desired)

NHBoc

H

PhH (undesired)

CySH olefin

Thiol Concentration Dictates Reaction Outcome

CySH loadingd

G
C 

Yi
el

d 
(%

)

CO2Me

Cl

F3C

0

20

40

60

80

100

5 mol% 25 mol% 50 mol% 100 mol%

 1

 PhH

N

vinyl carbamate trace amines

1) hydoarylation

2) deprotectionI

iodoarenes

R1

NH2

Boc

R2

NH2

HO

42: 58% yieldb

N
H

HO

41: 62% yield

N

HO

40: 69% yield

Me

Me

Me

dopamine

39: 75% yield

Me

methylphenethylaminesphenethylamine

36–38: 66–72% yield35: 74% yield

HO

HO

hordenineN-methyltyraminetyramine

flexible substitution of amino group

modular substitutiuon of aryl unit

R1

Page 4 of 7

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Scheme 3. Rapid Synthesis of Fluopyram/Analogsa 

 
aReaction conditions: Haloarene (3.0 mmol), olefin (1.0 
mmol), PTH (5 mol%), CySH (5 mol%), sodium formate 
(3.0 mmol), 5% (v/v) H2O/DMSO (10.0 mL), blue light, 16 
h; isolated yields given. 

the fungicide Fluopyram (45),33,34 shown in Scheme 3. Optimal 
conditions for this transformation involved inverted 
stoichiometry (using 3 equiv of radical precursor 43). This 
olefinic partner is available in a single step from commercial 
materials. This two-step sequence compares favorably to the 
patent route of this agrochemical (7-steps). The value of this 
modular hydroarylation strategy is further highlighted by the 
expedient preparation of Fluopyram analogs 46–50, where 
systematic substitution on either side of the scaffold could be 
accomplished with excellent fidelity (82–92% yield for the 
corresponding hydroarylation processes). 
 In conclusion, we have developed a protocol for 
intermolecular addition of aryl and heteroaryl radicals to 
enecarbamate substrates. This process operates at ambient 
temperature, mediated by the concerted action of two different 
catalytic species (PTH and CySH) that accomplish transfer of 
electrons and hydrogen atoms, respectively. This system  
directly affords valuable arylethylamine structures with 
complete regiocontrol with excellent functional group 
compatibility, and it utilizes stable halogenated arenes as 
radical precursors. The highly-reducing character of the organic 
photoredox catalyst here allows for effective activation of a 
wide range of aryl halides, including electron-deficient aryl 
chlorides. We expect that this protocol, founded on the use of a 
thiol HAT catalyst in combination with stoichiometric 
reductant, will enable a range of mild aryl radical-based 
transformations.  
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