Note

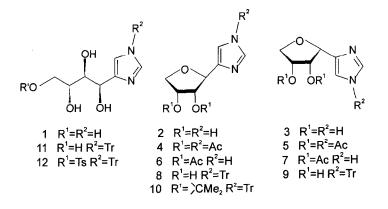
Synthesis of D-erythrofuranosyl C-nucleosides of imidazole from 4(5)-(D-*arabino*-tetritol-1-yl)imidazole

Dariusz Deredas and Andrzej Frankowski *

Institute of Organic Chemistry, Technical University, ul. Żwirki 36, 90-924 Łódź (Poland) (Received October 6th, 1992; accepted June 15th, 1993)

C-Nucleosides¹ have received considerable attention due to their significant antitumor and antiviral activities². Some of them, such as pyrazofurin^{3,4} and showdomycin⁵, contain five-membered heterocyclic rings in the aglycon part. Many natural N-glycosylimidazoles have been described⁶.

In this paper, we present the synthesis of the anomeric 4(5)- β - and - α -D-eryth-rofuranosylimidazoles, 2 and 3, and their derivatives 4-10, starting from the easily accessible 4(5)-(D-*arabino*-tetritol-1-yl)imidazole⁷ (1).


As yet, only the synthesis of one anomeric C-D-erythrosylimidazole based on desulfurization of 4(5)-(D-erythrofuranosyl)imidazoline-2-thione has been reported⁸.

RESULTS AND DISCUSSION

Refluxing of 4(5)-(*D*-arabino-tetritol-1-yl)imidazole⁷ (1) with glacial acetic acid gave a mixture of 4(5)- β - and - α -D-erythrofuranosylimidazole (2 and 3). The mixture of 2 and 3 was acetylated conventionally to give the anomeric peracetates 4 and 5 in the ratio of ca. 3:1. After separation by flash-column chromatography, 4 and 5 were deacetylated with Amberlyst A-26 (HO⁻) resin in methanol to give the free D-erythrofuranosyl C-nucleosides 2 and 3, respectively. The anomers 4 and 5 were also selectively N-deacetylated using an aqueous solution of sodium hydrogencarbonate at room temperature to produce the di-O-acetylated nucleosides 6 and 7. The free nucleosides 2 and 3 were separately tritylated to give the N-trityl derivatives 8 and 9, from which only the β anomer 8 undergoes acetonation under standard conditions to yield the 2,3-O-isopropylidene derivative 10. The reaction failed with the α anomer 9 probably for steric reasons.

The structures and configurations of compounds 2-10 were assigned as follows. Firstly, according to Hudson's rule⁹, all our compounds to which the α -anomeric

^{*} Corresponding author.

configuration is assigned show more positive optical rotation values than the respective β anomers. Secondly, in accord with the previous statements¹⁰, all β anomers, except **8**, are less polar in TLC than the corresponding α anomers.

Conclusive configurational assignments for 2 and 3 are, however, based predominantly on ¹H and ¹³C NMR spectroscopy. Thus, the H-1' protons of the β anomers of *C*-ribofuranosyl compounds resonate at higher field than those of α anomers because of the shielding effects of the cis HO-2' group¹². On the basis of the above correlation, we propose for our *C*-erythrosyl compounds 2 and 3, exhibiting H-1' chemical shifts at 4.70 and 4.93 ppm, the configurations β and α , respectively (Table I).

A comparison of the $J_{1',2'}$ coupling constants of nucleosides can also be applied. β Anomers of D-ribofuranosyl C-nucleosides display in general a larger $J_{1',2'}$ coupling than the corresponding α anomers¹⁵⁻¹⁸. The same relation was observed for our anomers 2 and 3, having $J_{1',2'}$ values of 6.6 and 4.8 Hz, respectively (Table I).

Furthermore, the $\Delta\delta$ value of the two methyl groups in the isopropylidene moiety of **10** ($\Delta\delta$ 0.19 ppm) indicates the β -anomeric configuration according to Imbach's rule¹⁹.

The correctness of our assignment was confirmed by ¹³C NMR data. It has been found that the C-1' signal of the α anomer always appears at higher field than that of the corresponding β anomer^{10,13,14}. Our proposed anomeric configurations of **2** and **3** are in accord with this correlation, since the C-1' chemical shifts of **2** and **3** are 79.03 and 77.88 ppm, respectively (Table II).

For the triacetates 4 and 5, we assume the 1,4-disubstituted imidazole structures on the basis of the cross-ring coupling constants between the two aromatic protons $(J_{25} > 1.1 \text{ Hz})^{20,21}$.

The configurations of the anomeric C-erythrosyl compounds 2-10, assigned mainly by their NMR spectra, were then confirmed independently by a stereospecific synthesis.

IH NM	¹ H NMR data ^a for 2-10	for 2-10														
- Com-	H-1′	H-2′	H-3′	H-4'a	H-4'b	H-2	H-5	OAc	NAc	CMe ₂	J _{1',2'}	J _{2',3'}	J _{3',4'a}	J _{3',4'b}	J _{4'a,4'b}	J _{2,5}
punod																
2^{b}	4.70	4.23	4.28	4.19	3.77	7.62	7.04				6.6	5.0	3.2	5.0	9.4	0.9
3 6	4.93	4.74	4.39	3.96	3.82	7.62	7.06				4.8	4.8	5.2	6.2	8.9	0.8
4 ^c	4.95	5.46	5.52	4.40	3.96	8.14	7.48	2.07	2.59		6.0	8.9	3.9	5.3	10.1	1.5
								2.11								
2 c	5.15	5.52	5.67	4.20	4.01	8.10	7.52	1.92	2.57		4.3	5.0	6.0	6.5	9.5	1.5
9	5.12	5.07	4.93	4.00	3.93	7.61	6.97	2.03 1.54			0	6.1	3.9	0	10.4	1.0
								1.36								
2 C	5.14	5.56	5.48	4.13	3.96	7.57	7.05	2.05			4.4	4.8	5.5	6.8	9.6	0
								1.92								
с 8	4.76	4.30	4.36	4.17	3.79	7.42	6.84				5.4	4.0	3.9	5.1	9.5	1.5
6 د	4.92	4.49	4.29	4.08	4.05	7.50	6.88				7.0	5.4	4.2	3.1	9.5	1.3
10 ^c	5.00	5.09	4.94	4.01	3.97		6.78			1.35	1.0	6.2	3.7	1.5	10.4	1.3
										1.54						
^a Recor	^a Recorded at 27°C (300 MHz),	°C (300 N	I .	n ppm, J	8 in ppm, J in Hz, internal standard Me ₄ Si. ^b Solvent CD ₄ OD. ^c Solvent CDCl ₃ .	rnal stan	dard Me	4Si. ^b So	lvent CD	OD. ⁶ So	olvent CL	Cl.				
										1		ı				
TABLE II	II															
¹³ C NM	$^{13}\mathrm{C}$ NMR data a for 2 and 3 b	for 2 and	13 b													
Compound	pur	U U	C-1′	С С	C-2′	C-3/	3,	C	C-4′	0	C-2		C4		C-5	
2		52	79.03	77	77.23	72.34	34	13	73.96	13	136.99		138.06		118.78	
3		7.	77.88	73	73.75	73.30	30	1	73.03	13	136.40		137.04		121.32	
" Recor	^a Recorded at 30°C in CD ₃ OD	°C in CD		00.6 MHz	at 100.6 MHz, δ in ppm, internal standard Me ₄ Si. ^b Chemical shifts were assigned using selective ¹ H-decoupling techniques.	ı, interna	ıl standa	rd Me ₄ S	i. ^b Chen	nical shifts	were ass	igned us	ing select	ive ¹ H-dec	coupling te	chniques.

TABLE I

Thus, the starting material 1 was regioselectively tritylated to give the *N*-trityl derivative 11 in good yield. Tosylation of the primary OH group in 11 was carried out by means of *p*-toluenesulphonyl chloride in the presence of pyridine at -15° C to produce the tosylate 12, which after addition of triethylamine, according to the Yoshimura procedure²², underwent intramolecular S_N2 ring closure to give the α anomer of 4-(p-erythrofuranosyl)-1-triphenylmethylimidazole (9). This anomer was identical (NMR, $[\alpha]_D^{20}$) with that recognized as 9 using NMR spectroscopy. The β anomer 8 was not detected (TLC) in the mixture.

Finally, we conclude that the stereospecific synthesis of 9 presented above undoubtedly proved the configuration of this compound and confirmed our assignments made above on the basis of the physical data.

EXPERIMENTAL

General methods.—Evaporations were conducted in vacuo at $< 40^{\circ}$ C (bath). Melting points were determined with a Buchi SMP 20 apparatus and are uncorrected. Optical rotations were measured with a Perkin–Elmer 241 polarimeter. IR spectra were recorded with a Spectromom 2000 MOM spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded with Bruker AC 200 and MSL 300 spectrometers. UV spectra were recorded with a Specord UV-VIS instrument. TLC was conducted on Silica Gel HF₂₅₄ (Merck) plates with A, 4:1 CH₂Cl₂ acetone; B, 4:1 CHCl₃–MeOH; C, 9:1 CHCl₃–EtOH; and detection with UV light and I₂ vapour. Column chromatography was performed in the flash mode on Silica Gel 60 (Merck; 230–400 mesh). Elemental analyses were carried out by the Microanalysis Service of the Technical University of Łódź.

1-Acetyl-4-(2,3-di-O-acetyl-α- and -β-D-erythrofuranosyl)imidazole (5 and 4).—A solution of 4(5)-(D-arabino-tetritol-1-yl)imidazole hydrochloride (1 HCl; 1.0 g, 4.45 mmol) in glacial AcOH (100 mL) was boiled for 15 h under reflux and then evaporated in vacuo to dryness. To the syrupy residue were added Ac₂O (3 mL) and Et₃N (1 mL), and the mixture was stirred at room temperature for 48 h. After addition of ether (50 mL), the salts were filtered off and washed with ether (3 × 20 mL). The combined filtrate and washings were evaporated in vacuo. Column chromatography of the residue (solvent *A*) gave 4 (840 mg), R_f 0.45 (solvent *A*); and 5 (290 mg), R_f 0.35 (solvent *A*) (combined yield, 86%). Compound 4 had mp 76–78°C (from CH₂Cl₂–isopropyl ether); $[\alpha]_D^{20} - 59^\circ$ (*c* 0.55, CHCl₃); ν_{max}^{KBr} 2940, 1745, 1710, 1605, 1490, 1380, 1240, 1085, 1050 cm⁻¹; λ_{max}^{CHCl3} 226 nm (ϵ 5600). The ¹H NMR data are given in Table I. Anal. Calcd for C₁₃H₁₆N₂O₆: C, 52.70; H, 5.44; N, 9.45. Found: C, 52.48; H, 5.65; N, 9.32.

Compound 5 was a syrup; $[\alpha]_D^{20} - 8^\circ$ (c 0.32, CHCl₃); ν_{max} 2940, 1745, 1715, 1610, 1485, 1380, 1240, 1085, 1050 cm⁻¹; $\lambda_{max}^{CHCl_3}$ 227 nm (ϵ 6700). The ¹H NMR data are given in Table I. Anal. Found: C, 52.55; H, 5.20; N, 9.30.

4(5)-(2,3-Di-O-acetyl- β -D-erythrofuranosyl)imidazole (6).—A solution of 4 (127 mg, 0.43 mmol) and NaHCO₃ (36 mg, 0.43 mmol) in water (1.5 mL) was stirred at

room temperature for 24 h. The water was removed in vacuo and the residue dried by several additions and repeated evaporations of anhyd EtOH (3×10 mL). Column chromatography (solvent C) gave **6** (98 mg, 90%) as a syrup; R_f 0.55 (solvent C); $[\alpha]_D^{20} - 73.5^\circ$ (c 1.05, MeOH); ν_{max} 1745, 1605, 1490, 1240, 1085 cm⁻¹. The ¹H NMR data are given in Table I. Anal. Calcd for C₁₁H₁₄N₂O₅: C, 51.97; H, 5.55; N, 11.02. Found: C, 51.70; H, 5.42; N, 10.85.

4(5)-(2,3-Di-O-acetyl- α -D-erythrofuranosyl)imidazole (7).—This compound was prepared from 5 (132 mg, 0.446 mmol) as described for 6, to yield 7 (95 mg, 84%) as a syrup; R_f 0.45 (solvent C); $[\alpha]_D^{20}$ + 36.5° (c 0.85, MeOH); ν_{max} 1745, 1605, 1485, 1240, 1085 cm⁻¹. The ¹H-NMR data are given in Table I. Anal. Found: C, 51.85; H, 5.45; N, 10.9.

4(5)-(β-D-Erythrofuranosyl)imidazole (2).—A solution of 4 (180 mg, 0.61 mmol) in MeOH (10 mL) was stirred slowly with Amberlyst A-26 (HO⁻) resin at room temperature for 24 h. The resin was collected and washed with MeOH (2 × 10 mL). The combined filtrate and washings were concentrated in vacuo to give 2 (74 mg, 71%) as a syrup; $[\alpha]_D^{20}$ -56.5° (c 1.33, MeOH); ν_{max} 1610, 1490, 1080 cm⁻¹. The ¹H and ¹³C NMR data are given in Tables I and II. Anal. Calcd for $C_7H_{10}N_2O_3$: C, 49.41; H, 5.92; N, 16.46. Found: C, 49.48; H, 5.82; N, 16.30.

4(5)-(α-D-Erythrofuranosyl)imidazole (3).—This compound was prepared from 5 (74 mg, 0.25 mmol) as described for 2, to yield 3 (33 mg, 78%) as a syrup; $[\alpha]_D^{20}$ -7.5° (c 1.37, MeOH), ν_{max} 1610, 1490, 1080 cm⁻¹. The ¹H and ¹³C NMR data are given in Tables I and II. Anal. Found: C, 49.38; H, 5.70; N, 16.35.

4-(β -D-Erythrofuranosyl)-1-triphenylmethylimidazole (8).—A solution of 2 (378 mg, 2.22 mmol), trityl chloride (618 mg, 2.22 mmol), and Et₃N (1.0 mL) in anhyd DMF (6 mL) was stirred at room temperature for 24 h. The resulting suspension was poured into ice-water, and the precipitate was filtered off and washed successively with water and ether. The crude product was purified by column chromatography (solvent C), and recrystallized from CH₂Cl₂-isopropyl ether to give 8 (789 mg, 86%); R_f 0.3 (solvent C); mp 198-200°C; $[\alpha]_D^{20} - 42^\circ$ (c 1.0, CHCl₃). The ¹H NMR data are given in Table I Anal. Calcd for C₂₆H₂₄N₂O₃: C, 75.71; H, 5.86; N, 6.79. Found: C, 75.35; H, 5.70; N, 6.85.

4-(α -D-Erythrofuranosyl)-1-triphenylmethylimidazole (9).—This compound was prepared from 3 (127 mg, 0.75 mmol) as described for 8, to yield, after column chromatography (solvent C), 9 (126 mg, 41%); R_f 0.55 (solvent C); mp 157–160°C (from CH₂Cl₂-isopropyl ether); $[\alpha]_D^{20}$ + 38° (c 1.0, CHCl₃). The ¹H NMR data are given in Table I. Anal. Found: C, 75.42; H, 5.65; N, 6.70.

4-(2,3-O-Isopropylidene- β -D-erythrofuranosyl)-1-triphenylmethylimidazole (10).— To a stirred suspension of 8 (92 mg, 0.223 mmol) in anhyd acetone (1 mL) was added a solution of anhyd ZnCl₂ (30 mg, 0.22 mmol) in anhyd acetone (0.14 mL). After 48 h stirring at room temperature, a solution of K₂CO₃ (31 mg, 0.223 mmol) in water (0.05 mL) was added, and the precipitate was filtered off and washed successively with 1:1 ether-acetone (5 mL) and CH₂Cl₂ (10 mL). The combined filtrates were evaporated and the residue was purified by column chromatography (solvent C) to give **10** as a foam (35 mg, 35%); $R_f 0.55$ (solvent C); $[\alpha]_D^{20} - 32.5^\circ$ (c 1.0, CHCl₃); $\nu_{\text{max}}^{\text{KBr}}$ 1372, 1363, 1120, 1095, 1075 cm⁻¹. The ¹H NMR data are given in Table I. Anal. Calcd for C₂₉H₂₈N₂O₃: C, 76.97; H, 6.24; N, 6.19. Found: C, 76.65; H, 6.11; N, 6.15.

4-(D-arabino-*tetritol-1-yl*)-1-triphenylmethylimidazole (11).—To a stirred solution of 1 HCl (1.8 g, 8 mmol) and Et₃N (3.5 mL) in anhyd DMF (9 mL) was added dropwise trityl chloride (2.45 g, 8.8 mmol) in anhyd DMF (30 mL). After 1.5 h at room temperature, the resulting suspension was poured into ice-water, and the precipitate was filtered off and washed with ether. The crude product was recrystallized from acetone to give 11 (3.1 g, 90%); mp 160–162°C; $[\alpha]_D^{20} - 1.8^\circ$ (*c* 0.9, MeOH); $\nu_{\text{max}}^{\text{KBr}}$ 3380, 3140, 2940, 1660, 1600, 1490, 1440, 1215, 1080, 1035, 750, 700 cm⁻¹; ¹H NMR (CDCl₃): δ 3.76–4.01 (m, 5 H, H-1',2',3',4'a,4'b), 7.17 (s, 1 H, H-5), 7.38–7.52 (m, 16 H, 3 C₆H₅ and H-2). Anal. Calcd for C₂₆H₂₆N₂O₄: C, 72.54; H, 6.09; N, 6.51. Found: C, 72.38; H, 5.85; N, 6.20.

4-(α -D-Erythrofuranosyl)-1-triphenylmethylimidazole (9) from (11).—To a stirred suspension of 11 (0.863 g, 2 mmol) and anhyd pyridine (0.395 g, 5 mmol) in anhyd CH₂Cl₂ (10 mL) was added dropwise at -15° C a solution of tosyl chloride (0.381 g, 2 mmol) in anhyd CH₂Cl₂ (10 mL). The resulting suspension was stirred for 3 h at -15° C and then for an additional 24 h at room temperature. The mixture was poured into ice-water, and the solid material was filtered off and washed with CH₂Cl₂. The organic solution was dried over anhyd MgSO₄, filtered, and concentrated to 5 mL. After addition of Et₃N (2 mL), the mixture was kept for 2 days, evaporated to dryness, and purified by column chromatography (solvent *C*) to give 9 (175 mg, 21.2%); R_f 0.55 (solvent *C*); mp 156–158°C (from CH₂Cl₂-isopropyl ether); $[\alpha]_D^{20}$ + 38° (*c* 1.0, CHCl₃). The ¹H NMR data were identical with those given in Table I for 9. Anal. Calcd for C₂₆H₂₄N₂O₃: C, 75.71; H, 5.86; N, 6.79. Found: C, 75.60; H, 5.75; N, 6.75.

ACKNOWLEDGMENTS

We thank the Polish Ministry of National Education for financial support, Dr. D. Le Nouen (Ecole Nationale Supérieure de Chimie de Mulhouse, France) for some of the ¹H and ¹³C NMR spectra, and Mrs. C. Seliga for experimental assistance.

REFERENCES

- 1 S.R. James, J. Carbohydr., Nucleosides, Nucleotides, 6 (1979) 417-465.
- 2 R.J. Suhadolnik, Nucleosides as Biological Probes, Wiley-Interscience, New York, 1979.
- 3 R.H. Williams, K. Gerzon, M. Hoehn, M. Gorman, and D.C. De Long, Int. Congr. Heterocycl. Chem., 2nd, Montpellier, France, July 1969, Abstr., 30C, p 131.
- 4 J. Farkaš, Z. Flegelová, and F. Šorm, Tetrahedron Lett., (1972) 2279-2280.
- 5 H. Nishimura, M. Mayama, Y. Komatsu, H. Kato, N. Shimaoka, and Y. Tanaka, J. Antibiot., Ser. A, 17 (1964) 148-155.

- 6 L.B. Townsend, Chem. Rev., 67 (1967) 533-563.
- 7 J. Parrod, C.R. Acad. Sci., 192 (1931) 1136-1138.
- 8 J. Fernandez-Bolanos, M. Repetto Jimenez, J. Fuentes Mota, and J. Martin, An. Quim., 69 (1973) 771-774.
- 9 C.S. Hudson, J. Am. Chem. Soc., 31 (1909) 66-86; Adv. Carbohydr. Chem., 3 (1948) 15-18.
- 10 C.M. Gupta, G.H. Jones, and J.G. Moffatt, J. Org. Chem., 41 (1976) 3000-3009.
- 11 C.K. Chu, F.M. El-Kabbani, and B.B. Thompson, Nucleosides Nucleotides, 3 (1984) 1-31.
- 12 L.B. Townsend, Synthetic Procedures in Nucleic Acid Chemistry, Vol. 2, Wiley-Interscience, New York, 1973, pp 267-398.
- 13 T.J. Cousineau and J.A. Secrist, III, J. Org. Chem., 44 (1979) 4351-4358.
- 14 H. Ohrui, G.H. Jones, J.G. Moffatt, M.L. Maddox, A.T. Christensen, and S.K. Byram, J. Am. Chem. Soc., 97 (1975) 4602-4613.
- 15 P.C. Srivastava and R.K. Robins, J. Med. Chem., 26 (1983) 445-448.
- 16 F.E. Hruska, A.A. Grey, and I.C.P. Smith, J. Am. Chem. Soc., 92 (1970) 4088-4094.
- 17 S. De Bernardo and M. Weigele, J. Org. Chem., 41 (1976) 287-290; 42 (1977) 109-112.
- 18 P.C. Srivastava, M.V. Pickering, L.B. Allen, D.G. Streeter, M.T. Campbell, J.T. Witkowski, R.W. Sidwell, and R.K. Robins, J. Med. Chem., 20 (1977) 256-262.
- 19 B. Rayner, C. Tapiero, and J.L. Imbach, Carbohydr. Res., 47 (1976) 195-202.
- 20 H.R. Matthews and H. Rapoport, J. Am. Chem. Soc., 95 (1973) 2297-2303.
- 21 G.S. Reddy, L. Mandell, and J.H. Goldstein, J. Chem. Soc., (1963) 1414-1421.
- 22 J. Yoshimura, S. Kondo, M. Ihara, and H. Hashimoto, Carbohydr. Res., 99 (1982) 129-142.