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SYNTHETIC ANALGESICS: PREPARATION OF RACEMIC 6,7-BENZOMORPHANS
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Abstract: A simple preparation of 2-carbomethoxy-2-azabicyclo[3.3.7]1nonan-6-one (7) and
its conversion to the racemic benzomorphans: 9, 10, 14 are described.

With a few notable exceptions, past as well as current synthetic approaches to the morphine
related analgesics, including the morphinans and benzomorphans, have relied on the acid-catalyzed
cyclization of 2-(arylmethyl)-tetrahydropyridines, chemistry pioneered by Grewe in the ]940'52’3.
In addition to the limitations this places on the aryl portion of these systems, this and related
synthetic approaches often lack effective stereocontrol and restrict the potential for the prep-
aration of natural and synthetic analgesics in the desired optically pure form3.

In recent communications, we have described the development and application of several
different aryl annulations and in each instance a keto group served as the necessary functional-

ity for the introduction of the aryl ring, equation 14,

tfm - ::II’ Eqn. (1)

As the first stage in the development of new, and potentially useful, synthetic approaches to
the morphine related analgesics we would like to report a simple and direct preparation of
racemic 6,7-benzomorphans based on this preliminary work, equation 2 and scheme I-II.

4559



4560

(2r) 0
Rp \p R].ja% Eqn. (2)
\\_éZ \\.Ré
R1/R2 H, alkyl:benzomorphan
R]/RZ

-(CH2)4-:morphinan

Lithium aluminum hydride reduction of the imine formed by condensation of allylamine with
the mono-ethylene ketal of 1,4—cyc10hexad10ne5 afforded 2. Carbamate formation followed by
ozonolysis and sodium borohydride reduction gave alcohol 4. Ketal hydrolysis and mesylate
formation preceded a base catalyzed intramolecular alkylation to give 2-carbomethoxy-2-
azabicyclo[3.3.1]nonan-6-one (1)6, a key intermediate capable of conversion to a number of
synthetic benzomorphans, scheme I.

The final conversion of 7 to a series of racemic 6,7-benzomorphans required the intro-
duction of appropriately substituted aromatic rings, typified by a phenol, and thus required
the simple implementation of our aryl annulations, scheme II. Conversion of 7 to the g-keto
sulfoxide lg6 followed by treatment with methyl vinyl ketone afforded 3-carbomethoxy-8-hydroxy-6,
7-benzomorphan (_9)6 in modest yie1d4a. A more satisfactory introduction of a phenol ring was

Scheme 1
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(a) 10.0 equiv. allylamine, a7 mol. sieves, CgHg, 40°C, 40 h; 4.0 equiv. LiA]Hq, THF, 60°C, 18 h,
80%. (b) 20 equiv. K2C03, 1.2 equiv. C]COZCH3, THF, 25°C, 12 h, 88%. (c) O3, EtOH, -78°C;
CH3SCHy, 25°C, 4 h; 3.3 equiv. NaBH4, 25°C, 4 h, 93%. (d) 3:1 HOA.: HZO’ 25°C, 17 h. (e) 1.5
equiv. Et3N, 1.2 equiv. C1S0pCH3, CHpClp, -20°C, 3 h. (f) 1.25 equiv. t-BuOLi, THF, 25°C, 4 h,
26% from 4.
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accomplished employing the inverse electron demand Diels-Alder reaction of 3-carbomethoxy-2-
pyrones4d with 1,1-dimethoxyethylene. Thus, conversion of 7 to the a-pyrone 8 followed by treat-
ment with 1,1-dimethoxyethylene afforded 3,9-dicarbomethoxy-8-methoxy-6,7-benzomorphan (19)6 in
high yield. Ester hydrolysis followed by decarboxy1ation7 and phenol demethy]ation7 gave 26 in
excellent yield (97%). In addition, treatment of the pyrrolidine enamine of 7 with 1,3.,5-
triazine in dioxane4C afforded the pyrimidine substituted benzomorphan 14 (50%)6.

Thus, the late introduction of a phenol or aryl ring provided a sound premise for the prep-
aration of a series of typical, racemic benzomorohans. Extrapcolation of this work to accommo-
date each class of natural and synthetic analgesics, to address the problem of effective stereo-
control, and for the implementation of a synthetic approach to ootically pure analgesics are the

focus of current efforts.
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(a) 1.2 equiv. lithium diisopropylamide (LDA), THF, -78°C to -25°C, 1.5 h; 1.2 equiv. dimethyl-
methoxymethylenemalonate, -25°C to 25°C, 4 h, 47%. (b) 10.0 equiv. 1,1-dimethoxyethylene,

toluene, 120°C, 13 h, 80%. {c) 2.0 equiv. 0.67 N aq. NaOH, THF, 25°C, 15 h; 10.0 equiv. copper
powder, quinoline, 220°C, 1 h, 97%. (d) 2.2 equiv. LDA, -78° to -15°C, 1.5 h; 2.2 equiv. CH3SSCH3,
HMPA, -20° to 25°C, 4 h; 1.0 equiv. NalO,, CH30H/H20, 25°C, 8 h, 60%. (e) 1.4 equiv. methyl vinyl
ketone, 0.1 equiv. CH30Na/CH30H, 0°C, 24 h; 1.2 equiv. CH30Na, 25°C, 35 h, 19-27%. (f) 3.0 equiv.
pyrrolidine, 43 mol. sieves, C6H6, 80°C, 18 h. (g) 1.2 equiv. 1,3,5-triazine, dioxane, 90°C, 20 h,
50% from 7.
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