CHEMISTRY LETTERS, pp. 483-484, 1987.

High Catalytic Activity of Sm_2O_3 for Oxidative Coupling of Methane into Ethane and Ethylene

Kiyoshi OTSUKA* and Takayuki KOMATSU Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152

The catalytic activity of Sm_2O_3 for oxidative coupling of CH_4 was measured at the conditions: $P(\text{CH}_4)/P(\text{O}_2)=6$, $P(\text{O}_2)=14.5$ kPa, W/F=0.000223-0.0891 g·h·l⁻¹, and T=750 °C. STY of C₂-compounds reached to 2.98 mol·g⁻¹·h⁻¹ at W/F of 0.000223 g·h·l⁻¹. The catalytic activity of Sm_2O_3 was one to three orders of magnitude greater than those reported for other metal oxides.

Oxidative coupling of CH_4 into C_2H_6 and C_2H_4 (C_2 -compounds) attracted much attention since the pioneering work done by Keller and Bhasin.¹⁻⁷⁾ We have reported that Sm_2O_3 is an active and selective catalyst for this reaction.^{8a,C)} However, low pressure of oxygen (0.4 kPa), high $P(CH_4):P(O_2)$ ratio (45), and slow flow rate of reactant (4.5 ml·min⁻¹) applied for the test of the catalyst were not suitable for evaluating the true catalytic activity of Sm_2O_3 because the

conversion of oxygen exceeded 95%. In this communication, we will describe the catalytic activity of Sm_2O_3 measured under higher $P(O_2)$, lower $P(CH_4):P(O_2)$, and larger flow rate than the conditions used previously.^{8a,c,d}

The Sm₂O₃ powder (purity>99.9%) used was obtained from Asahi Chemical Industry Co. The experiments were carried out using a fixed-bed reactor with a conventional gas-flow system at a total pressure of 101 kPa. The conversion of methane, the selectivities of the products were calculated on the basis of carbon number of CH₄ reacted.

Figure 1 shows the effect of W/F (weight of $Sm_2O_3/flow$

Fig. 1. The effect of W/F.

rate of reactant, 0.000223-0.0891 g·h·l⁻¹ (W=0.010-0.150 g, F=1.68-45.0 l·h⁻¹)) on C₂-STY (space time yield of C₂-compounds), C₂-yield, selectivity to higher hydrocarbons (=C₂+C₃+C₄, C₂/C₂+C₃+C₄>0.85), CH₄-conversion, and O₂-conversion. The experiments were carried out at 750 °C and P(CH₄):P(O₂)=6:1. The O₂-conversion was greater than 95% when W/F was larger than 0.01 g·h·l⁻¹. At lower W/F than this value, O₂-conversion decreased with a decrease in W/F. C₂-STY increased remarkably as decreasing W/F. C₂-STY reached to 2.98 mol·g⁻¹·h⁻¹ at 0.000223 g·h·l⁻¹ of W/F. The selectivity to the coupling products (mainly C₂-hydrocarbons) at this W/F was fairly high (64%).

The C₂-STY reported previously for different catalysts are shown in Table 1. Since the experimental conditions used for testing the catalytic activities are so different each other in Table 1, we cannot compare true catalytic activities of the catalysts. However, the C₂-STY observed for Sm_2O_3 in this work were one to three orders of magnitude greater than the values reported previously.^{1-7,9})

High stability,^{8c)} high C_2 -selectivity, and high catalytic activity observed for Sm_2O_3 suggest that this oxide is one of the most promising catalysts for practical use in converting natural gas into C_2 -hydrocarbons.

Catalyst	C ₂ -STY	C ₂ -select.	Temp	P(CH ₄)	P(CH ₄)/P(O ₂) W/F		Ref.No.
-	mmol·g ⁻¹ ·h ⁻¹	ક	°C	kPa		g•h•1-1	
PbO/SiO2	1.2	71.4	740	70	10	0.43	2
Li/MgO	0.9	46.5	720	29	1.9	1.3	3
Pb0/Mg0	11.1	85.3	750	61	37.8	0.045	6
LaAlO ₃	62.3	78	710	88	33.3	0.017	4
Li/Mn-oxi	de 13.5	43	750	57	2.0	0.167	8b
K/BaCO ₃	0.21	42	800	2.8	2.0	22.2	5
Li/ZnO	3.31	61	740	55	2.1	0.67	7
K/Bi/Al ₂ O	₃ 90	30	700	51	10	0.0029	9
Sm_2O_3	527	61	750	87	6.0	0.0033	This work
Sm_2O_3	2980	60	750	87	6.0	0.000223	This work

Table 1. Comparison of the activities of catalysts for oxidative coupling of CH_4

References

1) G.E. Keller and M.M. Bhasin, J. Catal., <u>73</u>, 9(1982).

2) W. Hinsen, W. Bytyn, and M. Baerns, Proc. 8th Int.Congr.Catal., 3, 581(1984).

3) T.Ito, J.-X.Wang, C.-H.Lin, and J.H.Lunsford, J.Am.Chem.Soc., 107, 5062(1985).

4) T. Tagawa and H. Imai, 52th JCS Meeting, 2C40(1986).

5) K.Aika, T.Moriyama, N.Takasaki, and E.Iwamatsu, J.Chem.Soc, Chem. Commun., 1986, 1210.

6) K.Asami, S.Hashimoto, T.Shikada, K.Fujimoto, and H.Tominaga, Chem.Lett., 1986, 1233.

7) I. Matsuura, Y. Utsumi, M. Nakai, and T. Doi, Chem. Lett., <u>1986</u>, 1981.

8) a)K.Otsuka, K.Jinno, and A.Morikawa, Chem.Lett., <u>1985</u>, 499;b)K.Otsuka, Q.Liu,
M.Hatano, and A.Morikawa, ibid., <u>1986</u>, 903; c)K.Otsuka, K.Jinno, and A.Morikawa,
J.Catal., <u>100</u>, 353(1986);d)K.Otsuka and K.Jinno, Inorg.Chim.Acta, <u>121</u>, 237(1986).

9) I.T.A.Emesh and Y.Amenomiya, J.Phys.Chem., 90, 4785(1986).

(Received December 8, 1986)