## Kurzmitteilungen:

# Synthesis and Reactions of Some Pyridazine Derivatives

## Synthese und Reaktionen einiger Pyridazin-Derivate

Fathy A. Khalifa

Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt

Received January 8, 1990



Biological and pharmacological activities of pyridazine derivatives stimulated considerable research in this field<sup>1,2)</sup>. As a part of a programme<sup>3,4)</sup> directed to the synthesis of some pyridazine derivatives as anticancer<sup>5)</sup>, bactericidal<sup>6)</sup>, and fungicidal compounds<sup>7)</sup>, a novel synthesis of some pyridazine derivatives and their substitution reactions are reported here.

Benzilhydrazone (1) reacted with cyanoacetamide (2) to yield 3,4-diphenyl-5-cyanopyridazin-6-one (3). The struc-

ture of 3 was confirmed by elemental analysis, IR- and <sup>1</sup>H-NMR spectra (Tables 1 and 2). Treatment of 3 with  $P_2S_5$ in pyridine afforded 3,4-diphenyl-5-cyanopyridazine-6thione (5) identical with an authentic sample prepared by another route  $^{8)}$ . Treatment of 3 with benzenesulphonyl chloride or p-toluene solphonyl chloride, respectively in basic medium afforded 6a, b. The structure of 5 and 6a, b were confirmed by elemental analyses, IR- and <sup>1</sup>H-NMR spectra (Tables 1 and 2). 3,4-Diphenyl-5-cyano-6-chloropyridazine (4) is obtained by the action of  $POCl_3^{9}$  on 3 in dioxane (Tables 1 and 2). The IR-spectrum of 4 displays no absorption in the carbonyl region. The reactivity of C-6-Cl in 4 is proved by its substitution with phenylhydrazine, aniline and thiophenol to yield the corresponding 6-substituted pyridazine derivatives 8, 9, and 10, respectively. The IR spectra of 8, 9, and 10 display the corresponding characteristic bands and the <sup>1</sup>H-NMR spectra of 8, 9, and 10 were in a good agreement with the proposed structures (Tables 1 and 2). In contrast to phenylhydrazine, hydrazine hydrate reacted with 4 under the same condition to afford the pyrazolopyridazine derivative 7. The assignment of structure 7 was based on analytical and spectral data. The IR-spectrum displays no CN group, and the <sup>1</sup>H-NMR spectrum shows the corresponding characteristic signals (Tables 1 and 2). Compound 4 reacted with anthranilic acid in glacial acetic acid to give 11. The structures of compounds 10, 11 were confirmed by elemental analyses, IR- and <sup>1</sup>H-NMR spectra (Tables 1, 2).

### **Experimental Part**

M.P.: uncorr. - IR spectra (KBr): Pye unicam SO-1100 spectrophotometer. - <sup>1</sup>H-NMR spectra: Varian EM-360, 60 MHz, in DMSO. TMS int. stand. Chemical shifts ( $\delta$  ppm). - Elementary analyses: Microanalytical Centre, Cairo University.

#### 3,4-Diphenyl-5-cyano-6-chloropyridazine (4)

A mixture of 3 (0.01 mole),  $POCl_3$  (30 ml) and dioxane (50 ml) was heated under reflux for 3 h. The solution was cooled and poured onto ice water. The solid was crystallised from ethanol to give 4 (Table 1).

#### 1-Benzenesulphonyl-3,4-diphenyl-5-cyanopyridazin-6-one (6a) and 1-p-Toluene sulphonyl-3,4-diphenyl-5-cyanopyridazin-6-one (6b)

A mixture of 3 (0.01 mole), arylsulphonyl halide (0.01 mole) and anhydrous  $K_2CO_3$  was refluxed for 5 h in dry acetone (40 ml). Compounds 6a, b were crystallized from the proper solvent (Table 1).

 Table 1: List of pyridazine derivatives 3-12

| Compound | Solvent of<br>Crystallization | Colour     | М.р.<br>( <sup>0</sup> С) | Yield<br>(%) | Mol. Formula                                                    | Analysis, X<br>Calc1/Found |             |              |              |              |
|----------|-------------------------------|------------|---------------------------|--------------|-----------------------------------------------------------------|----------------------------|-------------|--------------|--------------|--------------|
|          |                               |            |                           |              |                                                                 | <u> </u>                   | <u> </u>    | N            | S            | <u>Cl</u>    |
| 3        | Ethanol                       | Colouriess | 260-1                     | 70           | C <sub>17</sub> H <sub>11</sub> N <sub>3</sub> O                | 74.7<br>74.2               | 4.1<br>4.0  | 15.4<br>15.4 |              |              |
| 4        | Ethanol                       | Colourless | 201                       | 63           | C <sub>17</sub> H <sub>10</sub> N <sub>3</sub> Cl               | 70.0<br>69.6               | 3.5<br>4.0  | 14.4<br>13.9 | -            | 12.2<br>12.2 |
| 5        | Acetic acid                   | Brown      | <b>290-</b> 2             | 55           | C <sub>17</sub> H <sub>11</sub> N <sub>3</sub> S                | 70.6<br>71.0               | 3.8<br>4.0  | 14.5<br>14.6 | 11.1<br>11.1 | -            |
| ба.      | Petroleum ether               | Yellow     | 131                       | 60           | C <sub>23</sub> H <sub>15</sub> N <sub>3</sub> O <sub>3</sub> S | 66.8<br>66.6               | 3.1<br>3.5  | 10.2<br>10.3 | 7.8<br>7.8   | -            |
| 6Ъ       | Ethanol                       | Brown      | 142                       | 60           | C <sub>24</sub> H <sub>17</sub> N <sub>3</sub> O <sub>3</sub> S | 67.4<br>67.5               | 4.0<br>4.6  | 9.8<br>9.6   | 7.5<br>7.4   | -            |
| 7        | Ethanol                       | Yellow     | 27 <del>3:</del> 4        | 65           | C <sub>18</sub> H <sub>13</sub> N <sub>5</sub>                  | 72.2<br>72.5               | 4.1<br>4.3  | 23.4<br>23.1 | :            | -            |
| 8        | Ethanol                       | Brown      | 230-1                     | 70           | C <sub>23</sub> H <sub>17</sub> N <sub>5</sub>                  | 76.0<br>76.0               | 4.7<br>4.7  | 19.2<br>19.3 | -            | •            |
| 9        | Ethanol                       | Brown      | 222                       | 65           | C <sub>23</sub> H <sub>16</sub> N <sub>4</sub>                  | 79.3<br>79.3               | 4.6<br>4.5  | 16.1<br>16.2 | -            | -            |
| 10       | Petroleum ether               | Yellow     | 220                       | 70           | C <sub>23</sub> H <sub>15</sub> N <sub>3</sub> S                | 75.6<br>75.4               | 4,1<br>4,1  | 11.5<br>11.7 | 8.8<br>8.7   | •            |
| 11       | Dioxane                       | Brown      | >300                      | 65           | C <sub>24</sub> H <sub>16</sub> N <sub>4</sub> O <sub>2</sub>   | 73.5<br>73.5               | 4.1<br>4,0  | 14.<br>14.2  | -            | •            |
| 12       | Ethyl acetate                 | Brown      | 271 <del>.</del> 3        | 55           | C <sub>24</sub> H <sub>14</sub> N <sub>4</sub> O                | 77.0<br>76.8               | .3,8<br>3,8 | 15.0<br>15.0 | •<br>•       | -            |

Table 2: IR- and <sup>1</sup>H-NMR data of compounds 3-12

| Compound | IR (KBr), cm <sup>-1</sup>                                     | <sup>1</sup> H-NMR ( $\delta$ ppm)                                               |
|----------|----------------------------------------------------------------|----------------------------------------------------------------------------------|
| 3        | 3400, 3300, 3120 (NH); 2220<br>(CN) and 1690 (ring C=O)        | 8.8 (s, 1H, NH); 7.62-7.9 (m, 10 H, aromat.).                                    |
| 4        | 2220 (CN)                                                      |                                                                                  |
| 5        | 3400, 3300, 3100 (NH);<br>2220 (CN)                            | 8.7 (s, 1H, NH); 7.63-7.90 (m, 10 H, aromat.).                                   |
| ба       | 2220 (CN), 1690 (ring C=O),<br>1390 1195 (N-SO <sub>2</sub> ). |                                                                                  |
| бЪ       | 2100 (CN), 1690 (ring C=O);<br>1380, 1195 (N-SO <sub>2</sub> ) | 1.75 (s, 3H, CH <sub>3</sub> );<br>6.9-7.80 (m, 14 H aromat.).                   |
| 7        | 3350, 3250, 3180 (NH <sub>2</sub> , and NH).                   | 8.8 (s, 1H, NH), 7.61-7.91 (m,<br>10 H aromat.); 10.1 (s, 2H, NH <sub>2</sub> ). |
| 8        | 3400, 3300, 3120 (NH);<br>2220 (CN).                           |                                                                                  |
| 9        | 3500, 3250, 3120 (NH),<br>2220 (CN)                            | 7.60-7.92 (m, 15 H aromat.);<br>9.58 (s, 1H, NH).                                |
| 10       | 2220 (CN).                                                     |                                                                                  |
| 11       | 3150 (broad), NH, OH,<br>2220 (CN), 1650 (CO).                 | 7.63-7.97 (m, 14 H aromat.);<br>8.64 (s, 1H, NH); 11.93 (s, 1H,<br>COOH).        |
| 12       | 2220 (CN), 1680 (CO)                                           | 7.78, 8.20 (m, 14 H aromat.).                                                    |

#### **Pyridazine** Derivatives

3,4-Diphenyl-5-aminopyrazolo[3,4-c]pyridazine (7), 3,4-Diphenyl-5cyano-6-phenylbarazinopyridazine (8), 3,4-Diphenyl-5-cyano-6anilinopyridazine (9), 3,4-Diphenyl-5-cyano-6-phenylmercapto pyridazine (10), and 3,4-Diphenyl-5-cyano-6-(o-carboxyanilino)pyridazine (11)

A mixture of 4 (0.01 mole) and aniline, phenylhydrazine, hydrazine, thiophenol or anthranilic acid, respectively, (0.01 mole) in glacial acetic acid (60 ml) was refluxed for 5 h. The mixture was poured onto water after cooling. The solid was collected and crystallized from the proper solvent (Table 1).

#### 3,4-Diphenyl-5-cyanopyridazino[2,1-b]quinazolin-11-one (12)

A solution of 11 (1.5 g) in acetic anhydride (20 ml) was refluxed for 3 h. The solid separating while boiling was crystallized from ethyl acetate to give 12 (Table 1).

## Refernces

- R.K. Robins, L.B. Townsend, F.G. Cassidy, J.P. Gerster, A.F. Lewis, and R.L. Miller, J. Heterocycl. Chem. 3, 110 (1966).
- 2 G. Koyama and H. Umezawa, J. Antibiotic. 18, 175 (1965).
- 3 F.A. Khalifa, B.Y. Riad, and F.H. Hafez, Heterocycles 20, 1021 (1983).
- 4 B.Y. Riad, F.A. Khalifa, F.M. Abdel Galil, and M.H. Elnagdi, Heterocycles 19, 1637 (1982).
- 5 I. Ito (Tanabe Seiyaku Co. Ltd.), 7030, 101 (1970); C.A. 74, 22827 e (1971).
- 6 G.N. Preshin, L.I. Sherbakova, T.N. Zykova, and V.N. Sokolova, Farmakol. Tokisikol. 35, 466 (1972); C.A. 77, 1355802 (1972).
- 7 G. Matolcsy, World Rev., Pest. Contr., 10, 50 (1971); C.A. 76, 820315 (1972).
- 8 F.A. Khalifa, Sulfur Lett., 1989, in press.
- 9 A. Sakurai, Y. Motomura, and H. Midori, J. Org. Chem. 37, 1523 (1972). [KPh526]