Kurzmitteilungen:

Synthesis and Reactions of Some Pyridazine Derivatives

Synthese und Reaktionen einiger Pyridazin-Derivate

Fathy A. Khalifa
Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt

Received January 8, 1990

Biological and pharmacological activities of pyridazine derivatives stimulated considerable research in this field ${ }^{1,2)}$. As a part of a programme ${ }^{3,4)}$ directed to the synthesis of some pyridazine derivatives as anticancer ${ }^{5}$, bactericidal ${ }^{6}$, and fungicidal compounds ${ }^{7}$, a novel synthesis of some pyridazine derivatives and their substitution reactions are reported here.
Benzilhydrazone (1) reacted with cyanoacetamide (2) to yield 3,4-diphenyl-5-cyanopyridazin-6-one (3). The struc-
ture of 3 was confirmed by elemental analysis, IR- and ${ }^{1} \mathrm{H}$-NMR spectra (Tables 1 and 2). Treatment of 3 with $\mathrm{P}_{2} \mathrm{~S}_{5}$ in pyridine afforded 3,4-diphenyl-5-cyanopyridazine-6thione (5) identical with an authentic sample prepared by another route ${ }^{8)}$. Treatment of 3 with benzenesulphonyl chloride or p-toluene solphonyl chloride, respectively in basic medium afforded 6a, b. The structure of 5 and $6 a, b$ were confirmed by elemental analyses, \mathbb{R} - and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra (Tables 1 and 2). 3,4-Diphenyl-5-cyano-6-chloropyridazine (4) is obtained by the action of $\mathrm{POCl}_{3}{ }^{9)}$ on 3 in dioxane (Tables 1 and 2). The IR-spectrum of 4 displays no absorption in the carbonyl region. The reactivity of $\mathrm{C}-6-\mathrm{Cl}$ in 4 is proved by its substitution with phenylhydrazine, aniline and thiophenol to yield the corresponding 6 -substituted pyridazine derivatives 8,9 , and 10 , respectively. The IR spectra of 8,9 , and 10 display the corresponding characteristic bands and the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 8,9 , and 10 were in a good agreement with the proposed structures (Tables 1 and 2). In contrast to phenylhydrazine, hydrazine hydrate reacted with 4 under the same condition to afford the pyrazolopyridazine derivative 7. The assignment of structure 7 was based on analytical and spectral data. The IR-spectrum displays no CN group, and the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum shows the corresponding characteristic signals (Tables 1 and 2). Compound 4 reacted with anthranilic acid in glacial acetic acid to give 11. The structures of compounds $\mathbf{1 0}$, 11 were confirmed by elemental analyses, IR- and ${ }^{1} \mathrm{H}$-NMR spectra (Tables 1, 2).

Experimental Part

M.P.: uncorr. - IR spectra (KBr): Pye unicam SO-1100 spectrophotometer. - ${ }^{1} \mathrm{H}$-NMR spectra: Varian EM- $360,60 \mathrm{MHz}$, in DMSO. TMS int. stand. Chemical shifts ($\delta \mathbf{p p m}$). - Elementary analyses: Microanalytical Centre, Cairo University.

3.4-Diphenyl-5-cyano-6-chloropyridazine (4)

A mixture of 3 (0.01 mole), $\mathrm{POCl}_{3}(30 \mathrm{ml}$) and dioxane (50 ml) was heated under reflux for 3 h . The solution was cooled and poured onto ice water. The solid was crystallised from ethanol to give 4 (Table 1).

1-Benzenesulphonyi-3,4-diphenyl-5-cyanopyridazin-6-one (6a) and
 1-p-Toluene sulphonyl-3,4-diphenyl-5-cyanopyridazin-6-one (6b)

A mixture of 3 (0.01 mole), arylsulphonyl halide (0.01 mole) and anhy-
 b were crystallized from the proper solvent (Table 1).

Table 1: List of pyridazine derivatives 3-12

Compound	Solvent of Crystallization	Colour	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (x)	Mol. Formula	Analysis, $\%$ Calcl/Found				
						C	H	N	5	Cl
3	Ethanol	Colourless	260-1	70	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$	$\begin{aligned} & 74.7 \\ & 74.2 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 15.4 \\ & 15.4 \end{aligned}$		
4	Ethanol	Colourless	201	63	$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{Cl}$	$\begin{gathered} 70.0 \\ 69.6 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14.4 \\ & 13.9 \end{aligned}$	-	$\begin{aligned} & 12.2 \\ & 12.2 \end{aligned}$
5	Acetic acid	Brown	290-2	55	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}$	$\begin{aligned} & 70.6 \\ & 71.0 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.6 \end{aligned}$	$\begin{aligned} & 11.1 \\ & 11.1 \end{aligned}$	-
6	Petroleum ether	Yellow	131	60	$\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	$\begin{aligned} & 66.8 \\ & 66.6 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.2 \\ & 10.3 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 7.8 \end{aligned}$	-
6 b	Echanol	Brown	142	60	$\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	$\begin{aligned} & 67.4 \\ & 67.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 9.6 \end{aligned}$	7.5	-
7	Ethanol	Yellow	273.4	65	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{5}$	$\begin{aligned} & 72.2 \\ & 72.5 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 23.4 \\ & 23.1 \end{aligned}$	-	-
8	Ethanol	Brown	230-1	70	$\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{5}$	$\begin{aligned} & 76.0 \\ & 76.0 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 19.2 \\ & 19.3 \end{aligned}$	-	\bullet
9	Ethanol-	Brown	222	65	$\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~N}_{4}$	$\begin{aligned} & 79.3 \\ & 79.3 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 16.1 \\ & 16.2 \end{aligned}$	-	-
10	Petroleum ether	Yellow	220	70	$\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}$	$\begin{aligned} & 75.6 \\ & 75.4 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.1 \end{aligned}$	11.5	8.8 8.7	$\stackrel{-}{*}$
11	Dioxane	Brown	>300	65	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$	$\begin{aligned} & 73.5 \\ & 73.5 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14 . \\ & 14.2 \end{aligned}$	-	-
12	Ethyl acetate	Brown	271-3	55	$\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$	$\begin{aligned} & 77.0 \\ & 76.8 \end{aligned}$	$\begin{array}{r} .3 .8 \\ 3.8 \end{array}$	$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$	$\stackrel{-}{*}$	-

Table 2: IR- and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data of compounds 3-12

Compound	IR (KBr) cm^{-1}	${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta \mathrm{ppm})$
3	$3400,3300,3120(\mathrm{NH}) ; 2220$ (CN) and 1690 (ring $\mathrm{C}=0$)	8.8 (s, 1H, NH); 7.62-7.9 (m, 10 H , aromat.).
4	2220 (CN)	
5	$\begin{aligned} & 3400,3300,3100(\mathrm{NH}) ; \\ & 2220(\mathrm{CN}) \end{aligned}$	8.7 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$); 7.63-7.90 (m, 10 H , aromat.).
6 a	$\begin{aligned} & 2220(\mathrm{CN}), 1690 \text { (ring } \mathrm{C}=\mathrm{O} \text {), } \\ & 1390 \quad 1195\left(\mathrm{~N}-\mathrm{SO}_{2}\right) . \end{aligned}$	
6 b	$\begin{aligned} & 2100(\mathrm{CN}), 1690 \text { (ring } \mathrm{C}=\mathrm{O}) ; \\ & 1380,1195\left(\mathrm{~N}-\mathrm{SO}_{2}\right) \end{aligned}$	$\begin{aligned} & 1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \\ & 6.9-7.80(\mathrm{~m}, 14 \mathrm{H} \text { aromat.). } \end{aligned}$
7	$\begin{aligned} & 3350,3250,3180\left(\mathrm{NH}_{2},\right. \\ & \text { and } \mathrm{NH}) \text {. } \end{aligned}$	$\begin{aligned} & 8.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.61-7.91(\mathrm{~m}, \\ & 10 \mathrm{H} \text { aromat.); } 10.1\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) . \end{aligned}$
8	$\begin{aligned} & 3400,3300,3120(\mathrm{NH}) ; \\ & 2220(\mathrm{CN}) \end{aligned}$	
9	$\begin{aligned} & 3500,3250,3120(\mathrm{NH}), \\ & 2220(\mathrm{CN}) \end{aligned}$	$\begin{aligned} & 7.60-7.92(\mathrm{~m}, 15 \mathrm{H} \text { aromat.); } \\ & 9.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) . \end{aligned}$
10	2220 (CN).	
11	3150 (broad), NH, OH, 2220 (CN), 1650 (CO).	$\begin{aligned} & 7.63-7.97(\mathrm{~m}, 14 \mathrm{H} \text { aromat.); } \\ & 8.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; 11.93(\mathrm{~s}, 1 \mathrm{H}, \\ & \mathrm{COOH}) . \end{aligned}$
12	2220 (CN), 1680 (CO)	7.78, 8.20 (m, 14 H aromat.).

3,4-Diphenyl-5-aminopyrazolo[3,4-clpyridazine (7), 3,4-Diphenyl-5-cyano-6-phenylbarazinopyridazine (8), 3,4-Diphenyl-5-cyano-6anilinopyridazine (9), 3.4-Diphenyl-5-cyano-6-phenylmercapto pyridazine (10), and 3,4-Diphenyl-5-cyano-6-(o-carboxyanilino)pyridazine (11)

A mixture of 4 (0.01 mole) and aniline, phenylhydrazine, hydrazine, thiophenol or anthranilic acid, respectively, (0.01 mole) in glacial acetic acid (60 ml) was refluxed for 5 h . The mixture was poured onto water after cooling. The solid was collected and crystallized from the proper solvent (Table 1).

3,4-Diphenyl-5-cyanopyridazino[2,1-b]quinazolin-11-one (12)

A solution of $11(1.5 \mathrm{~g})$ in acetic anhydride (20 ml) was refluxed for 3 h . The solid separating while boiling was crystallized from ethyl acetate to give 12 (Table 1).

Refernces

1 R.K. Robins, L.B. Townsend, F.G. Cassidy, J.P. Gerster, A.F. Lewis, and R.L. Miller, J. Heterocycl. Chem. 3, 110 (1966).
2 G. Koyama and H. Umezawa, J. Antibiotic. 18, 175 (1965).
3 F.A. Khalifa, B.Y. Riad, and F.H. Hafez, Heterocycles 20, 1021 (1983).

4 B.Y. Riad, F.A. Khalifa, F.M. Abdel Galil, and M.H. Elnagdi, Heterocycles 19, 1637 (1982).
5 I. Ito (Tanabe Seiyaku Co. Ltd.), 7030, 101 (1970); C.A. 74, 22827 e (1971).

6 G.N. Preshin, L.I. Sherbakova, T.N. Zykova, and V.N. Sokolova, Farmakol. Tokisikol. 35, 466 (1972); C.A. 77, 1355802 (1972).
7 G. Matolcsy, World Rev., Pest. Contr., 10, 50 (1971); C.A. 76, 820315 (1972).

8 F.A. Khalifa, Sulfur Lett., 1989, in press.
9 A. Sakurai, Y. Motomura, and H. Midori, J. Org. Chem. 37, 1523 (1972).
[KPh526]

