MASSENSPEKTREN HETEROCYCLISCHER CARBONSÄUREAMIDE—I

PYRIDIN- UND CHINOLINCARBONSÄUREANILIDE

W. SCHÄFER und P. NEUBERT

Max Planck Institut für Biochemie, 8 München 15

(Received in Germany 8 August 1968; Received in the UK for publication 15 August 1968)

Zusammenfassung Die Hauptfragmente bei der MS-Fragmentierung heterocyclischer Carbonsäureamide werden durch die Amidspaltung mit nachfolgendem Verlust von CO gebildet. Chinaldinsäureanilide spalten unter Wanderung des Amidwasserstoffs an das Chinolinsystem Phenylisocyanate ab. Bei Chinolin-8-carbonsäureaniliden werden beide Fragmentierungstypen nebeneinander beobachtet. Für Chinaldinsäureanilide sind charakteristisch wenig intensive Signale bei M – CO und M – (CO + H).

Abstract—The main fragment-ions in the MS-fragmentation of heterocyclic carbonamides is by cleavage of the amide bond followed by loss of CO. Quinaldineanilides expel phenylisocyanate by migration of the amide-hydrogen to the quinoline-nitrogen. Anilides of quinoline-8-carboxylic acids show both types of fragmentation. For quinaldineanilides low intensity signals at M - CO and M - (CO + H) are characteristic.

Die elektronenstoss-induzierte Fragmentierung aromatischer und heteroaromatischer Carbonamide wurde bisher nicht systematisch untersucht. Studien des massenspektroskopischen Abbaus isomerer Methoxychinoline und isomerer Alkylchinoline zeigen, dass man die Isomeren in Gruppen einteilen kann: Nach Clugston und McLean¹ sind Massenspektren von 2- und 8-Methoxychinolinen durch intensive Signale bei M - 1 und Signale geringer Intensität bei M - 43 charakterisiert; die Spektren der anderen Isomeren zeigen umgekehrt keine Abspaltung von Wasserstoff und ein intensives Signal bei M – 43 (M – (CH₃ + CO)). Djerassi et al.² fanden eine analoge Gruppeneinteilung bei Alkylchinolinen und Alkylisochinolinen; darüber hinaus sind 4- und 8-Alkylchinoline mit mehr als drei C-Atomen in der Seitenkette wegen der bevorzugten Cyclisierung zur Peristellung von den Isomeren zu unterscheiden. Spiteller beobachtete bei 2-Alkylchinolinen eine bevorzugte γ -Spaltung.³ 2-Alkoxy- und 2-Arylamino-chinoline fragmentieren unter Wanderung der Alkyl-bzw. Arylgruppe an den Chinolinstickstoff.^{2,4,5} Allen Arbeiten gemeinsam ist die Erkenntnis, dass mögliche Gruppenwanderungen an den Chinolinstickstoff die Fragmentierung wesentlich beeinflussen.

Ähnliche, für die Stellung der Carbonamidgruppe charakteristische, Fragmentierungsunterschiede fanden wir bei Chinolincarbonsäureaniliden; bei diesen ist eine Differenzierung zwischen Substitutenten an C-2 und C-8 des Chinolinsystems möglich. Wir unterscheiden drei Fragmentierungstypen:

Amidspaltung

Aus Benzanilid entsteht ausgehend vom Molekülion unter Verlust des Amin-

radikals das Benzoylkation (m/e 105), das Kohlenoxyd (m/e 105 \rightarrow 77) und dann Acetylen (m/e 77 \rightarrow 51) abspaltet.⁶

ABB. 1. Massenspektrum des Nicotinsäureanilids (70 eV).

ABB 2. Massenspektrum des 2-Hydroxy-6,7-dimethoxy-chinolin-4-carbonsäureanilids.

Nicotinsäureanilid (Abb. 1) zeigt ein analoges Fragmentierungsmuster; die intensiven Signale des Spektrums sind dem Molekülion (m/e 198), dem Nicotinylion (m/e 106) und den Ionen C₅H₄N (m/e 78) und C₄H₃ (m/e 51) zuzuordnen. Diese Amidspaltung mit nachfolgender Eliminierung von Kohlenoxyd ist der dominierende Abbau von Aniliden der Nicotinsäure, der Chinolin-3-und Chinolin-4-carbonsäure, der Furan-2-, Thiophen-2- und Indol-2-carbonsäure. Beispiele sind in Tabelle 1 zusammengefasst. Dieser Abbau dürfte charakteristisch sein für alle aromatischen, heteroaromatischen und sog. π -Überschuss-heterocyclischen⁹ Carbonamide, sofern nicht ein zur Carbonamidgruppe orthoständiger Substituent zu Fragmentierungen im Sinne der McLafferty-Umlagerung führt. Wir nehmen an, dass die Amidspaltung dann stattfindet, wenn im Molekülion die positive Ladung bevorzugt am Carbonamidsauerstoff

	3	1	7

$R = C_6 H_5$ $R = C_6 H_4(p)Cl$	М	M + 1	M – NHR	M - (NHR + CO)
C-NHR	72	12	100	35
	100	15	46	24
H ₃ CO H ₃ CO NOH	65	13	34	100
	34/11*	4/1·5*	100	1
	100/34*	16/6*	100	7
	100	18	100	11

TABELLE 1. CHARAKTERISTISCHE BRUCHSTÜCKE AUS DEN MASSENSPEKTREN HETEROCYCLISCHER CARBONSÄUREAMIDE, 70 eV, % REL. INTENSITÄT

* Intensitäten der durch Cl entstehenden Dupletts.

lokalisiert ist.⁷ Beim 2-Hydroxy-6,7-dimethoxy-chinolin-4-carbonsäureanilid (Abb. 2) fallen zum Unterschied von analogen 4-Hydroxy-chinolin-2-carbonsäureaniliden intensive Signale bei M – OH, M – CO undM – (CH₃ + CO) (gesichert durch Massenspektren hoher Auflösung) auf. Bei den Amiden der Furan-, Thiophen- und Indolcarbonsäuren sind die Acylionen offenbar wesentlich stabiler (π -Überschuss-Heterocyclen) als bei den Pyridin und Chinolin-derivaten.

Spaltung mit H-Wanderung

Bei den Aniliden der Chinaldinsäure und der α -Picolinsäure tritt die Amidspaltung deutlich zurück. Wie Abb. 3 zeigt, führt beim Chinaldinsäureanilid das Ion a zum intensivsten Signal des Spektrums.

Das Ion a entsteht durch Spaltung der Aryl-Carbonylbindung unter gleichzeitiger Wanderung des Amidwasserstoffs an den Chinolinstickstoff; daran mag sich eine Isomerisierung zum Ion a' anschliessen. Analoge Abspaltungen von Åthylen aus Äthylpyridin, von Acetylen aus 2-Vinylpyridin und von Keten aus 2-Acetylpyridin

ABB. 3. Massenspektrum (70 eV) des Chinaldinsäureanilids.

ABB 4. Massenspektrum (70 eV) des Chinolin-8-carbonsäureanilids.

sind bekannt.³ Die Verschiebung des Amidwasserstoffs wird durch Deuterierung bestätigt: das Signal bei m/e 129 wird vollständig nach m/e 130 verschoben. Der Übergang m/e 248 \rightarrow 129 ist wie alle im Fragmentierungsschema gedeuteten Bruchstückionen durch das Signal eines metastabilen Ions gesichert (Tabelle 2). Als treibende Kraft der Fragmentierung sehen wir die Abspaltung des stabilen Phenylisocyanats an; die Fixierung der positiven Ladung am Chinolinstickstoff des Molekülions dürfte die Umlagerung einleiten. Nach Studien an Dreiding-Modellen der Chinaldinsäureanilide beträgt der Abstand zwischen dem Amidwasserstoff und dem Chinolinstickstoff 2.25 Å. Wie von Djerassi beim Studium der McLafferty-Umlagerung Massenspektren heterocyclischer Carbonsäureamide-I

an Steroidketonen festgestellt wurde, darf der interatomare Abstand zwischen dem Carbonylsauerstoff und dem wandernden cycloaliphatischen Wasserstoff maximal 1.8 Å betragen.⁸

Die Aroylamide haben jedoch nicht die starre Geometrie der Steroidketone; bei der Annahme von Fünfringwinkeln an der Amidbindung ist eine Annäherung des H-Atoms an den Chinolinstickstoff auf 1.9 Å möglich.

м	м		N	4*
IVI 1	M1 ₂	Δ	Ber.	Gef.
248	247	1	246-00	246-00
248	220	28	195-16	195-00
220	219	1	218-00	218-00
219	218	1	217-00	217-00
248	156	92	_	
156	128	28	105-03	105-10
128	101	27	79·69	79 ·70
101	75	26	55- 69	55-60
248	129	119	67.10	67-07
129	102	27	80-65	80-59
102	76	26	56.62	56-55
129	128	1	127-00	127-00

Tabelle 2. Metastabile Ionen M* im Massenspektrum des Chinaldinsäureanilids

Herrn Dr. A. Prox, München danken wir für die Zuordnung und Vermessung der metastabilen Ionen.

319

Die formal aus der Amidspaltung + CO-Eliminierung stammenden Ionen b und c zeigen mit einem Intensitätsverhältnis von 3: 50 einen deutlichen Unterschied gegenüber den entsprechenden Signalen im Spektrum des Nicotinsäureanilids: m/e106: m/e 78 = 2:1. Das Ion c dürfte darum zu einem kleinen Teil aus b durch Verlust von CO, zum grösseren Teil aus a durch Abspaltung eines H-Radikals entstehen. Für die Entstehung von c aus dem Molekülion gibt es keine Hinweise.

Die Abspaltung der Seitenkette unter H-Wanderung an den Chinolinstickstoff wurde bisher bei allen untersuchten Chinaldinsäureaniliden beobachtet, Tabelle 3 und 4 enthalten Beispiele. In Tabelle 3 sind für m/e > 100 alle Signale mit Intensitäten > 2% aufgeführt.

m/e % rel. Int.	м	M + 1	156	130	129	128	103	102	101	M – 28	8 M – 29
н	57	10	3	12	100	54	3	11	13	2	6
p-OCH ₃	81	18	5	11	100	60	3	2	9		—
p-Cl	58 20*	11 3*	7	10	100	80	2	8	11	1	2
<i>m</i> -Cl	46 15*	9 2*	7	10	100	76	3	10	11	2	4
o-Cl	38 13*	7 2*	1	7	70	70	3	13	11	-	_
p-CN	82	16	20	8	80	100	2	10	12	2	3
p-F	65	12	5	10	100	86	2	7	9	2	5
p-NO ₂	70	13	14	6	73	100	2	9	12		1
Chinolin-8	-carbon	säureanilid	le								
н	51	8	100	11†	13	30	1	5	8	0.5	0.2
p-OCH ₃	55	10	100	11†	13	30	1	4	6	0.5	0-5
p-CN	36	6	100	11†	8	26	1	5	8	0.1	0.3
p-Cl	30 10*	6 2*	100	13†	9	25	1	4	10	0.3	0.4

TABELLE 3. MASSENSPEKTREN (70) eV)) von Chinaldin- und	CHINOLIN-8-CARBONSÄUREANILIDEN
-------------------------------	-------	----------------------	--------------------------------

* Signale x + 2. † Int. für m/e 157.

Bei den Chinolin-8-carbonsäureaniliden (Abb. 4, Tabelle 3) führt wiederum die Amidspaltung ($\rightarrow m/e$ 156) zum intensivsten Ion des Spektrums. Die sog. α/H -Spaltung tritt mit relativen Intensitäten um 30% deutlich zurück. Hier ist die Amidspaltung bevorzugt, obwohl der interatomare Abstand Amidwasserstoff— Chinolinstickstoff nur 1.45 Å beträgt. Offenbar sind für die beiden möglichen Fragmentierungen primär die Lokalisierung der positiven Ladung im Molekülion und sekundär die sterische Anordnung im Molekülion von Bedeutung. Die Elektronendichten an C-2 und C-8 des Chinolinsystems wurden zu 0.044 und 0.003 bestimmt.⁹ Die positive Ladung ist somit auf der Carbonamidgruppe an C-8 besser stabilisiert als auf derjenigen an C-2 des Chinolinsystems.

Abspaltung von CO + H

Die von uns untersuchten Chinaldinsäureanilide zeigen charakteristische Signale von 2-6% rel. Intensität bei M – 28 und M – 29 (Tabelle 3). Bei den Chinolin-8carbonsäureaniliden sind die entsprechenden Signale noch deutlich sichtbar, jedoch um ca. eine Zehnerpotenz weniger intensiv. Aus dem Molekülion wird zunächst CO und aus dem resultierenden Radikalkation ein H-Radikal abgespalten. Die Ermittlung der Elementarzusammensetzung der Ionen und Signale metastabiler Übergänge (Tabelle 2) stützen diese Fragmentierungsfolge; für den direkten Übergang m/e248 \rightarrow 219 gibt es keine Hinweise.

Die Abspaltung von CO wird verständlich, wenn ausgehend von der Lokalisierung der positiven Ladung am Chinolinstickstoff der Aminrest an den Stickstoff zum Ion d umgelagert wird. Das Ion d hat mehrere Möglichkeiten, sich unter Eliminierung von Wasserstoff zu stabilisieren: der Verlust von H_a kann zum Ion e führen (Weg A), die Abspaltung eines zum Amidstickstoff orthoständigen H_b zum Ion f, das nochmals Wasserstoff verlieren kann (Weg B). Die Verschiebung von H_a nach C-2 des Chinolinsystems kann unter Eliminierung von H_c zum Ion h führen (Weg C). Schliesslich kann unter einfacher oder doppelter H-Wanderung das Ion i entstehen (Weg D).

Ausschnitte aus den Massenspektren verschieden deuterierter Chinaldinsäureanilide sind in Abbild. 5a-e zusammengestellt. Sie zeigen, dass die H-Abspaltung nach mehreren Mechanismen erfolgen muss. Zwischen den Abbauwegen B und C kann wegen des Mangels an C-8-deuterierten Chinaldinsäureaniliden vorläufig nicht unterschieden werden. Die Abbauwege B/D und C erklären die Hauptanteile der Wasserstoffeliminierung. Eine Bestätigung für das Auftreten der Ionen vom Typ f (Weg B) geben die Spektren der Mono- und Pentadeuterochinaldinsäureanilide (Abb. 5c und 5d): wie zu erwarten ist im Pentadeuteroanilid das Signal M - (28 + 2) (m/e 223) doppelt so intensiv

ABB. 5. Ausschnitte aus den Massenspektren (70 eV) deuterierter und undeuterierter Chinaldinsäureanilide.

wie das analoge Signal (m/e 219) im Monodeuteroanilid. Das Signal M – (28 + 1) (m/e 225) im Hexadeutero-chinaldinsäureanilid (Abb. 5e) zwingt zur Annahme einer H-Wanderung und Abspaltung nach Weg C. Der Abbauweg A ist von untergeordneter Bedeutung.

Anilide substituierter Chinaldinsäuren

Bei den Aniliden von Methoxy-chinaldinsäuren bleibt das Fragmentierungsmuster im wesentlichen erhalten. Wir beobachteten bisher folgende substituenten-spezifische Spaltungen:

(1) H-Abspaltung. 2- und 8-Methoxychinoline spalten Wasserstoff, CHO und CH₂O ab. Durch Markierung der Methylgruppe mit Deuterium und ¹³C wurde zweifelsfrei gezeigt, dass die Bruchstückionen durch Abspaltungen aus der Methoxylgruppe entstehen.¹

Bei 8-Methoxy-chinaldinsäureaniliden fanden wir keinen Verlust von CH_2O und nur eine geringe Abspaltung von CHO. Wie Tabelle 4 (Nr. 3-6) zeigt, wird der

Int.)
[.]
1%)
CHINALDINSÄUREN
ILIDE SUBSTITUIERTER
der An
ŝ
70 e
. MASSENSPEKTREN (
TABELLE 4.

Ŋ.		Σ	M – 1	но – м	M – NHC ₆ H ₅	M – OCNC ₆ H ₅	M^{-} [NHC ₆ H ₅ + CO]	м— [NHC ₆ H, + CO + H]
-	Н	59	4	1	3	100	2	3
7	4,5,6,7-(OCH ₃),	10	£	I)	8	50	I
e	8-(OCH ₃)	80	11	ł	1	100	30	36
4	4-OH-6-(OCH ₃)	82	10	7	4	100	47	10
ŝ	4-OH	65	31	13	ł	100	21	S
9	4-0H-8-(0CH ₃)	100	93	6 £	1	43	22	31

Verlust von Wasserstoff bei 8-Methoxy- und bei 4-Hydroxy-chinaldinsäureaniliden beobachtet; bei der Kombination der Substituenten kann das Ion M-1 sehr stabil werden (Tabelle 4 Nr. 6). Über die Deuterierung wird man die Hydroxylgruppe von der Methoxylgruppe unterscheiden können.

(2) OH-Abspaltung. 4-Hydroxy-chinaldinsäureanilide (Tabelle 4, Kr. 4-6) spalten eine Hydroxylgruppe ab (gesichert durch Ermittlung der Elementarzusammensetzung). Ist die Hydroxylgruppe durch Chlor substituiert oder veräthert, so bleibt die OH-Eliminierung aus. Damit ist der Verlust der Hydroxylgruppe aus der enolisierten Carbonamidgruppe auszuschliessen.

ABB. 6. Massenspektrum des Indol-2-carbonsäureanilids.

ABB. 7. Massenspektrum des Indol-2-carbonsäureanilids nach Deuterierung.

\sim
Int.
Ъ.
~
Ú
CHINALDINSÄUREN
N ANILIDEN SUBSTITUIERTER
Ş
-
70 eV
MASSENSPEKTREN (
Ś
TABELLE

												i
4,5,6,7-Tetramethoxychinaldinsäureanilid	369	368 (M)	367	353	250	249	248	234	233	218	191	<u>190</u>
	21	100	ŝ	14	14	8	50	ę	4	4	£	ę
	5											
8-Methoxychinaldinsäureanilid	279	278 (M)	277	260	259	250	249	231	219	185	160	159
	16	80	Π	4	9	'n	1	s	e	4	14	<u>8</u>
	158	157	156	130	128	127	116	115	114	103	102	101
	ଛ	36	7	17	16	9	4	4	ŝ	4	Ś	9
4-Hydroxy-6-methoxychinaldinsäureanilid	295	294 (M)	293	277	266	265	202	176	175	174	173	147
	15	82	10	7	'n	ę	4	10	<u>10</u>	47	10	7
	135	119	93	91								
	Q	22	ຊ	10								
4-Hydroxychinaldinsäureanilid	265	264 (M)	263	248	247	236	235	220	219	146	145	<u>4</u>
	12	65	31	4	13	Ś	7	ŝ	s	12	<u>10</u>	21
	143	117	116	115	105	93	68					
	Ś	s	90	Ŷ	21	9	90					
4-Hydroxy-8-methoxychinaldinsäureanilid	295	294 (M)	293	278	712	265	250	249	176	175	174	173
	61	100	93	11	39	s	4	7	4	43	22	31
	157	147	146	145	131	119	116	93	68			
	4	s	m	Ś	ę	4	4	2	00			

(3) Abspaltung der Seitenkette an C-2. 4-Hydroxy-8-methoxy-chinaldinsäureanilide bilden intensive Ionen der Masse M – $(C_6H_5NH + CO + H)$ (Tabelle 4, Nr. 3-6), deren Entstehung auf mehreren Wegen möglich ist: (a) 8-Methoxychinoline spalten Wasserstoff zum Ion M – 1 ab; die Amidspaltung und der Verlust von CO führen dann zum Ion M – 121. Dieser Abbau dürfte beim 8-Methoxychinaldinsäureanilid dominieren. (b) Die Sequenz Amidspaltung-CO-Verlust – H-Eliminierung (aus der OH \rightleftharpoons NH-Gruppe) und (c) die Abspaltung von Anilin unter Mitnahme des Wasserstoffs vom Chinolinstickstoff (Chinolonform), gefolgt von einer CO-Eliminierung, führen zum gleichen Ergebnis.

Zwischen den Möglichkeiten kann erst nach weiterer Markierung mit Deuterium entschieden werden. Das Massenspektrum des Indolcarbon-säureanilids (Abb. 6 and 7) bestätigt, dass Wasserstoff zumindest teilweise in einem Einstufenprozess in die Seitenkette verschoben werden kann: Nach Deuterierung wird das Signal des Anilin-Ions (m/e 93) entsprechend der Austauschrate quantitativ nach m/e 95 verschoben.

(4) Verschiedene Spaltungen. Polymethoxy-chinaldinsäureanilide wie z.B. 4-Hydroxy-5,6,8-trimethoxy- (Abb. 8) und 4,5,6,7-Tetramethoxy-chinaldinsäureanilid (Tabelle 5) verlieren, ausgehend vom Molekülion, eine Methylgruppe. Im

ABB. 8. Massenspektrum (70 eV) des 4-Hydroxy-5,6,8-trimethoxy-chinaldinsäureanilids.

Spektrum des 2-Hydroxy-6,7-chinolin-4-carbonsäureanilids findet sich ein intensives Signal bei $M - (CO + CH_3)$ (Abb. 2). Nach Beobachtungen an 6,7-Dimethoxycumarinen¹⁰ nehmen wir an, dass bevorzugt die Methylgruppe an C-6 in *p*-Stellung zum Chinolinstickstoff abgespalten wird.

EXPERIMENTELLER TEIL

Die Massenspektren wurden mit den Massenspektrometern CH-4 und SM-1 der Firma Varian MAT, GmbH, Bremen aufgenommen. Die Proben wurden direkt in die Ionenquelle eingeführt. Die Ionenquellentemperatur betrug 140-180 ; Elektronenenergie 70 eV.

Die Anilide wurden aus den Carbonsäuren mit N,N-Carbonyl-diimidazol und Amin nach Staab¹¹ dargestellt; sie sind in ihrer Reinheit durch spektroskopische Daten und Mikroanalysen gesichert. Die N-deuterierten Anilide erhielten wir durch mehrfachen Austausch mit Monodeuteromethanol. Pentadeuteroanilin wurde durch katalytische Hydrierung von Pentadeutero-nitrobenzol (Merck, Darmstadt) mit Raney-Nickel in Methanol gewonnen. Monodeuteroanilin wurde dargestellt aus o-Nitranilin durch Diazotierung, Reduktion mit D_3PO_2 und nachfolgende katalytische Hydrierung mit Raney-Nickel in Methanol.

LITERATUR

- ¹ D. M. Clugston und D. B. McLean, Canad J. Chem. 44, 781 (1966).
- ² Sh. D. Sample, D. A. Lightner, O. Buchardt und C. Djerassi, J. Org. Chem. 32, 997 (1967),
- ³ G. Spiteller, Mass Spektrometry of Heterocyclic Compounds in Advances in Heterocyclic Chemistry (Edited by A. R. Katrizky) Vol. 7; p. 301. Academic Press, New York (1966).
- ⁴ N. Neuner-Jehle, Tetrahedron Letters, 2047 (1968).
- ⁵ C. P. Whittle, *Ibid.* 3689 (1968).
- ⁶ H. Budzikiewicz, C. Djerassi, D. H. Williams, Mass Spektrometry of Organic Compounds p. 351. Holden-Day, San Francisco (1967).
- ⁷ Ref. 6, p. 9.
- ⁸ C. Djerassi, G. v. Mutzenbecher, D. H. Williams und H. Budzikiewicz, J. Am. Chem. Soc. 87, 817 (1965).
- ⁹ A. Albert, Chemie der Heterocyclen, S.40. Verlag Chemie, Weinheim (1962).
- ¹⁰ R. H. Shapiro und C. Djerassi, J. Org. Chem. 30, 955 (1965).
- ¹¹ H. A. Staab, Angew. Chem. 74, 407 (1962).