- Chopin, J., Besson, E. and Ramachandran Nair, A. G. (1979) *Phytochemistry* 18, 2059.
- Chopin, J., Besson, E., Dellamonica, G. and Ramachandran Nair, A. G. (1982) Phytochemistry 21, 2367.
- 4 Besson, E., Chopin, J., Gunasegaran, R. and Ramachandran Nair, A. G. (1980) *Phytochemistry* 19, 2787.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) The Systematic Identification of Flavonoids. Springer, Berlin.
- Lardy, C., Bouillant, M. L. and Chopin, J. (1983) C. R. Journ. Int Etudes Groupe Polyphénols (Toulouse 1982), Bull. Liaison Groupe Polyphénols 11, 420
- 7. Markham, K. R., Chari, V. M. and Mabry, T. J. (1982) in The

Flavonoids—Advances in Research (Harborne, J. B. and Mabry, T. J., eds), p. 19. Chapman & Hall, London.

- 8. Markham, K. R., Ternai, B., Stanley, R., Geiger, H. and Mabry, T. J. (1978) Tetrahedron 34, 1389.
- 9. Theodor, R., Zinsmeister, H. D., Mues, R. and Markham, K. R. (1981) Phytochemistry 20, 1851.
- Bouillant, M. L., Besset, A., Favre-Bonvin, J. and Chopin, J. (1978) Phytochemistry 17, 527.
- Bouillant, M. L., Favre-Bonvin, J. and Chopin, J. (1975) Phytochemistry 14, 2267.
- 12 (1956) Wealth of Indua, Raw Materials, Vol. IV, p. 136. C.S.I.R., New Delhi.

Phytochemistry, Vol 23, No 9, pp 2108-2109, 1984 Printed in Great Britain 0031-9422/84 \$3 00 + 0.00 © 1984 Pergamon Press Ltd.

FLAVONOID GLUCOSIDES FROM LICORICE

SHOJI YAHARA and ITSUO NISHIOKA*

Faculty of Pharmaceutical Sciences, Kyushu University 62, Maidashi, Higashi-ku, Fukuoka 812, Japan

(Received 30 December 1983)

Key Word Index—Glycyrrhiza uralensis; Leguminosae; licorice; flavonoid glycosides; liquiritigenin 4'-O- β -apiofuranosyl(1 \rightarrow 2)- β -glucopyranoside; liquiritigenin 7,4'-diglucoside; apigenin 6,8-di-C-glucoside.

Abstract—Two new flavanone glycosides, liquiritigenin 4'-apiosyl($1 \rightarrow 2$)-glucoside and liquiritigenin 7,4'-diglucoside together with a known flavone, apigenin 6,8-di-C-glucoside, have been isolated from licorice.

Licorice, the dried root of *Glycyrrhiza uralensis* (Leguminosae), is prescribed in many Chinese traditional medicines as a flavouring, a diluting agent and an antiinflammatory agent. It has been reported to contain triterpenoids (glycyrrhizin, etc.) and a variety of flavonoids [1-4] (isoflavonoids, chalcones and flavones). As part of our chemical examination of phenolic constituents in Chinese crude drugs, we have undertaken a further analysis of licorice. This has resulted in the isolation and structural characterization of two new flavanone glycosides (1 and 2), together with apigenin 6,8-di-*C*-glucoside (3).

Compound 1 showed UV absorptions at 274 and 312 nm, characteristic of flavanones. The ¹H NMR spectrum of 1 exhibited two anomeric proton signals at δ 5.38 (br s) and 4.95 (d, J = 7 Hz). Enzymatic hydrolysis of 1 with crude hesperidinase [5] yielded liquiritigenin (7,4-dihydroxy flavanone) (1a), glucose and apiose. The sugar sequence and the configuration in 1 were determined by the analogy of the chemical shifts (Table 1) with those of the corresponding chalcone glycoside licurazid [6], which contains a β -apiofuranosyl($1 \rightarrow 2$)- β -glucopyranosyl moiety. The location of the sugar moiety in 1 was confirmed by comparison of the ¹³C NMR spectrum of 1

with that of 1a. On going from 1a to 1, the carbon resonances of C-1', C-3' and C-5' in the flavanoid B-ring were displaced downfield by 3.0, 0.9 and 0.9 ppm, respectively, while the carbon resonances arising from the A- and C-rings remained unchanged. From these observations, the structure of 1 was assigned as liquiritigenin 4'-O- β -apiofuranosyl(1 \rightarrow 2)- β -glucopyranoside.

Compound 2 showed UV absorption similar to 1 (270 and 313 nm). Enzymatic hydrolysis of 2 yielded 1a and glucose. The occurrence of two β -glucosyl moieties in 2 was deduced from the fact that its ¹H NMR spectrum showed two anomeric proton signals at δ 4.99 and 4.90 (each d, J = 7 Hz). Furthermore, these two glucose residues were shown to be attached to the A- and B-rings in the flavanoid skeleton by comparison of the ¹³C NMR resonances in 2 with those of 1a; the carbon resonances of C-6, C-8, C-4a, C-1', C-3' and C-5' in 2 were shifted downfield by 0.4, 0.9, 1.7, 2.7, 1.0 and 1.0 ppm, respectively. Accordingly, the structure of 2 was determined as liquiritigenin 7,4'-di-O- β -glucopyranoside.

EXPERIMENTAL

Mps are uncorr. ¹HNMR and ¹³CNMR spectra were recorded at 100 and 25 05 MHz, respectively, and chemical shifts are given in the δ (ppm) scale with TMS as internal standard. TLC was performed on silica gel and compounds were detected by

^{*}To whom correspondence should be addressed.

Table 1 ¹³CNMR spectral data of 1a, 1, 2 and 4*

	1a	1	2		4	
2	78.7	78.4	78.6		142.9	C-a
3	43.0	42.9	42.9		118.9	β
4	189.6	189.4	189.8		190.7	7′
5	128.1	128.0	127.7		132.5	1′
6	110.2	110.2	110.6		108.4	2'
7	164.2	164.1	163.0		165.6	3′
8	102.3	102.2	103 2		102.4	4′
8a	162.7	162.6	162 3		165.6	5'
4a	113 3	113.2	115.0		1124	6′
1′	129.0	132.0	131.7		128.1	1
2′	127.9	127 7	127.7		130.4	2
3'	114.8	115.7	115.8		116.1	3
4'	157.8	156.9	157.0		158.8	4
5'	114.8	115.7	115.8		116.1	5
6'	1278	1277	127.7		130.4	6
glc						
1		98 3	99.4	100.0	98.1	
2		76.6	72.9	72.9	76.7	
3		75.5	76.3	76.3	75.6	
4		69.7	69.3	69.5	69.9	
5		75.8	76.8	76.1	75.9	
6		60.4	60.4	60.4	60.4	
api[7]						
1		108.3			108.4	
2		76.6			76.7	
3		79.0			79.0	
4		73.7			73.8	
5		64.0			64.1	

*Measured in DMSO- d_6 at 25.05 MHz with TMS as internal standard. δ values in ppm.

spraying with 10% H₂SO₄ and heating. Sugars were detected on PC by aniline hydrogen phthalate reagent.

Isolation. The aq. suspension of MeOH extracts of licorice (commercial name: Tohoku-kanzo in Japanese; *Glycyrrhiza* uralensis Fisch. et DC.) [8] was successively extracted with EtOAc and n-BuOH. The n-BuOH layer was evapd under red. pres. to give a residue (60 g), which was chromatographed over Sephadex LH-20. Elution with H₂O containing increasing amounts of MeOH yielded five fractions. Fraction 2 was separated by MCI gel CHP20P (high-porosity polystyrene gel) using EtOH-H₂O (1:4) and then by Avicel cellulose CC eluted with H₂O to give 2 (44 mg) and 3 (162 mg). MCI gel CHP20P chromatography of fraction 3 using MeOH-H₂O (1:1) afforded 1 (280 mg). Fraction 1 contained triterpenoid glycosides, while fractions 4 and 5 contained known flavonoid glycosides.

Liquiritigenin 4'-apiosyl($1 \rightarrow 2$)glucoside (1). An amorphous, white powder; $[\alpha]_{19}^{19} - 79.6^{\circ}$ (MeOH; c 1.37). Found. C, 55.76: H,

5.62. $C_{25}H_{30}O_{13}$ requires: C, 56.25; H, 5.48 %. CD (MeOH; c 1.8 × 10⁻³) [θ]²⁰ (nm): +5.69 × 10³ (326), 0 (315), -8.67 × 10³ (297). UV λ_{max}^{MaxOH} nm (log ε): 274 (4.25), 312 (4.04). FDMS *m/z*: 573 [M + Na]⁺, 551 [M + 1]⁺, 133 [pentose]^{+ 1}H NMR (DMSO-d₆): δ 7.64 (1H, d, J = 8 Hz. H-5), 7.43 (2H, d, J = 8 Hz, H-2', H-6'), 7.02 (2H, d, J = 8 Hz, H-3', H-5'), 6.52 (1H, dd, J = 2, 8 Hz, H-6), 6.37 (1H, d, J = 2 Hz, H-8), 5.52 (1H, dd, J = 3, 12 Hz, H-2), 5.38 (1H, br s, api H-1). 4.95 (1H, d, J = 7 Hz, glc H-1), 3.15 (1H, dd, J = 12, 17 Hz, H-3), 2 67 (1H, dd, J = 3, 17 Hz, H-3).

Enzymatic hydrolysis of 1. 1 (30 mg) in aq. soln was incubated with crude hesperidinase (30 mg) at 40° for 16 hr. The reaction mixture was extracted with Et₂O. The Et₂O layer was washed with H₂O, dried over dry Na₂SO₄ and evapd to dryness to yield colourless needles (EtOH, 6.3 mg, mp 208°, $[\alpha]_{b}^{18} - 35.0^{\circ}$ (MeOH; c 0.60), which were shown to be identical to 1a. The aq. layer was concd and run on PC giving apiose (R_f 0.42; *n*-BuOH-pyridine-H₂O, 6:4:3) and glucose (R_f 0.23).

Liquiritigenin 7,4'-diglucoside (2). An amorphous powder, $[\alpha]_{19}^{19} - 94.9^{\circ}$ (MeOH; c 1.1). Found: C, 54.30; H, 5.56 $C_{27}H_{32}O_{14} \cdot H_2O$ requires: C, 54 16; H, 5.73 %. CD (MeOH; c 2.08 × 10⁻³) $[\theta]^{20}$ (nm). + 7 25 × 10² (334), 0 (325), -2.08 × 10³ (307). UV λ_{max}^{MeOH} nm (log ε): 270 (4.36), 313 (3.97). FDMS m/z: 603 [M + Na]⁺, 581 [M + 1]⁺, 163 [hexose]⁺ ¹H NMR (DMSO-d₆): δ 7.72 (1H, d, J = 8 Hz, H-5), 7.45 (2H, d, J = 8 Hz, H-2', H-6'), 7 06 (2H, d, J = 8 Hz, H-3', H-5'), 6.75 (1H, dd, J = 2, 8 Hz, H-6), 6.68 (1H, br s, H-8), 5.59 (1H, dd, J = 3, 12 Hz, H-2), 4.99 and 4.90 (each 1H, d, J = 7 Hz, glc H-1), 2.73 (1H, dd, J = 3, 17 Hz, H-3).

Enzymatic hydrolysis of 2.2 (10 mg) in aq. soln was incubated with crude hesperidinase (5 mg) as for 1 and 1a and glucose were detected

Apigenin 6,8-di-C-glucoside (3) Pale yellow needles (H₂O), mp 245–247°, $[\alpha]_{19}^{19}$ + 37.1° (pyridine; c 043) 3 was identified by UV, ¹H NMR and ¹³C NMR spectral analyses.

Acknowledgements—Thanks are due to Mr. Y. Tanaka, Miss Y. Soeda and Mr. R. Isobe for the measurements of ¹³CNMR, ¹H NMR and mass spectra, respectively and to the staff of the Central Analysis Room of this University for microanalysis.

REFERENCES

- 1. Kinoshita, T, Saitoh, T. and Shibata, S. (1976) Chem. Pharm Bull. 24, 991.
- Nordström, C G. and Swain, T. (1956) Arch. Biochem Biophys. 60, 329.
- 3. VanHulle, C., Braeckman, P. and Vandewalle, M. (1971) Planta Med. 20, 278.
- 4. Saitoh, T. and Shibata, S. (1975) Tetrahedron 31, 4461.
- 5. Kohda, H. and Tanaka, O. (1975) Yakugaku Zasshi 95, 246
- 6 Litvinenko, V. I. and Obolentseva, G. N. (1964) Med Prom. U.S.S.R 18, 20
- Kudo, K., Nohara, T., Kawasaki, T. and Schulten, H. R. (1980) Planta Med. 40, 250.
- 8 Saitoh, T., Kinoshita, T. and Shibata, S. (1976) Chem. Pharm. Bull. 24, 752.