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Abstract: New allylphosphonates have been prepared; an X-ray
structural proof for the major Z-isomer has been given for phospho-
nate 3. Horner–Wadsworth–Emmons reaction of 3 or 6 (Z isomer)
with aromatic aldehydes leads to carbomethoxy/ cyano substituted
butadienes. In the reaction using cyanoallylphosphonate 6, use of
either Z or E isomer leads to the same E,Z product; stereochemistry
of one such cyano product is confirmed by X-ray crystallography.
In the reaction of 3 with 4-nitrobenzaldehyde stereochemistry for
the (E,E) isomer is confirmed by X-ray crystallography.

Key words: allylphosphonates, Baylis–Hillman adducts, 2-substi-
tuted butadienes, Horner–Wadsworth–Emmons reaction

The enormous synthetic utility of organophosphonates as
Horner–Wadsworth–Emmons (HWE) reagents has been
abundantly exploited in synthetic organic chemistry and
hence there is always scope for developing new phospho-
nates or improving the existing methodology for their syn-
thesis.1 In view of the ease of synthesis, cost-effectiveness
and stability (towards oxidation) of the cyclic chlorophos-
phite (OCH2CMe2CH2O)PCl (1),2 we became interested
in utilizing this compound to obtain synthetically useful
phosphonates. In one approach we utilized the Pudovik
product of the phosphite (OCH2CMe2CH2O)P(O)H
(readily obtained from the hydrolysis of 1) with an alde-
hyde and in the second one, we directly used the reaction
of 1 and its substituted products [P-Cl or P(O)H � P-OR
or P-NMe2] with suitable aldehydes (Scheme 1).2–4 Here-
in we report (i) the synthesis of phosphonates derived
from 1 and the Baylis–Hillman adducts of an aldehyde
with acrylonitrile or methylacrylate5 and (ii) utility of
these phosphonates in HWE reactions. We also give the
structural proof for the stereochemistry of one of the phos-
phonates and two of the HWE products, thus facilitating
structural assignment in future work. The phosphonates
synthesized here can be attractive reagents for further re-
actions in view of their facile and economic synthesis cou-
pled with the presence of functional groups.

Scheme 1

Synthesis of the phosphonates is accomplished by using
allylic type rearrangement of the allylphosphites 2
[Scheme 2; Table 1].6–8 In the case of 2-carbomethoxy
compounds 3–5, the Z-isomer is obtained as the most pre-
dominant/ exclusive isomer; the stereochemistry has been
proven by an X-ray structure determination for the major
isomer of 3 (Figure 1). In the case of 2-cyanoallylphos-
phonates 6–8, both Z and E isomers are obtained in com-
parable quantities when the corresponding allylphosphite
was heated under neat conditions. In the case of 6 we have
isolated both the E and Z isomers as crystalline solids.

Scheme 2

We have also isolated the intermediate allylphosphites 2
[R = H; X = CO2Me, Ar = Ph (a) or C6H4-4-Me (b), X =
CN, Ar = Ph (c) or C6H4-4-Me (d); �(P) for these 120.7 �
0.1)] in a spectroscopically pure state. The rearrangement
of 2c in toluene at 70 °C is essentially complete in 1 h and
no intermediate could be detected [31P NMR]. Interesting-
ly, the intensity of the downfield isomer relative to the up-
field one increases with time.
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Figure 1 An ORTEP drawing of 3 [Z isomer]. Selected bond di-
stances: P-O(1) 1.544(2), P-O(2) 1.554(2), P-O(3) 1.433(3), P-C(6)
1.777(3), C(6)-C(7) 1.488(4), C(7)-C(8) 1.326(4).

In view of a recent report on the facile conversion of allyl
alcohols I to cinnamyl alcohols II,9 we felt that substituted
cinnamyl phosphite 9 derived from II (Ar = Ph) also can
lead to phosphonates 10 (Scheme 3).10 However, under
the conditions analogous to those used to prepare 3–8, this
rearrangement did not take place, probably because of
greater steric factors at the terminal CH(Ph) end of the
double bond and the non-availability of a convenient
transition state. Upon heating 9 at 170 °C, however, for-
mation of a mixture of phosphonates [31P NMR] was
noticed and 10 could be isolated in low yields.

Scheme 3

The Z isomer of allylphosphonate 3 (X-ray; Figure 111,12)
and the E isomer of 6 (assignment tentative; see below)
were employed to prepare 2-substituted-1,3-butadienes
11a–d and 12a–e by the HWE reaction (Scheme 4;
Table 2).13 The stereochemistry at the newly formed dou-
ble bond was essentially E, with � 5% of a second isomer
in the case of 11a, 11b, 11d and 12e, based on the 1H
NMR spectra of the reaction mixtures. The 3J(H-H) value
16–18 Hz for the protons at the newly formed double bond
is also consistent with this. For 11d the stereochemistry is
proven by X-ray structural analysis.11,12 The E stereo-
chemistry at the newly formed double bond and the Z con-
figuration at the existing double bond for the cyano
system is convincingly proven by an X-ray structure de-
termination of 12b.11,12

Scheme 4

In the case of 6, from the HWE reaction using the second
isomer (assigned Z stereochemistry) and 4-chlorobenzal-
dehyde, we again obtained 12b as the only isolable prod-
uct [IR, TLC, mp, 1H and 13C NMR]. This result is
different from that reported before by Janecki.14 There is

Table 1 Phosphonates 3–8 Isolated in the Present Study (cf Scheme 2)a

Compd Ar X R Z/E Yield (%) �(P)

3 Ph CO2Me H 95:5 90 21.1, 18.2

4 C6H4-4-Me CO2Me H 100:0 89 21.3

5 C6H4-4-OMe CO2Me H 100:0 87 21.3

6 Ph CN H 50:50 80 17.8, 17.6

7 C6H4-4-Me CN H 60:40 81 18.0, 17.7

8 Ph CN CO2Et 40:60 96 17.0, 15.8

a Chemical shifts are referenced to ext. 85% H3PO4. We observed a dependence of �(P) value for the phosphonates on the concentration to an 
extent of �1 ppm.
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possibly a delocalization of the negative charge in the
phosphonate anion [cf. structures III and IV (Figure 2),
which are the extreme resonance canonicals]. Although
this feature is possible for carbomethoxy derivatives also,
we were not able to verify this because the second isomer
is not formed in significant quantities. However, as re-
gards the synthesis of 2-substituted-1,3-butadienes that
may be valuable precursors for Diels–Alder reactions, our
phosphonates appear to be better than those available pre-
viously in view of the ease of preparation.13

Figure 2

An analogous reaction of phosphonate 8 (E/Z 1:1) with p-
chlorobenzaldehyde gave 13 (Figure 3) as a mixture of
(EE/EZ) isomers in 1:1 ratio. This result is in consonance
with that described above assuming that the stereochem-
istry at the newly formed double bond is E.

Figure 3

In a previous study, Janecki noted that it was not possible
to make unambiguous configurational assignments based
on the spectroscopic data for the mixtures of 2-cyano-
butadienes. In our case, using a pure isomer of phospho-
nate, the configurational assignment of the products has
been made based on the X-ray structure determination of
the carbomethoxy phosphonate (3) and the HWE products

(11d and 12b). The use of NaH by us, in place of LDA
used by Janecki and Bodalski,14 has probably avoided
the formation of other phosphonate side products. In
addition (as noted above), since the precursor
(OCH2CMe2CH2O)PCl (1) is readily prepared and more
convenient to handle than (EtO)2PCl, our phosphonates
are relatively easier to prepare and are cost effective; the
yields are also quite high. Given the synthetic potential of
both Baylis–Hillman and HWE reactions, we believe that
the results reported here are quite significant and useful.
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