286 Communications synthesis

Eine neue Synthese für 3-Brom-2-methoxybenzoesäure

Heinz Pudleiner, Hartmut Laatsch*

Institut für Organische Chemie der Universität Göttingen, Tammannstraße 2, D-3400 Göttingen, Federal Republic of Germany

A New Synthesis of 3-Bromo-2-methoxybenzoic Acid

A convenient preparation of 3-bromo-2-methoxybenzoic acid (8) from 2-bromophenol via 3-bromo-2-methoxy-1-(1-propenyl)benzene (11) is presented.

Halogenierte Benzoesäuren sind geeignete Ausgangssubstanzen für substituierte 2-Phenylpyrrole, etwa dem in marinen Bakterien gefundenen Antibioticum Pentabrompseudilin¹, den Pyrrol- und Bromnitrinen^{2,3} und einer Reihe verwandter Strukturen.

Zwar sind Brommethoxybenzoesäuren gewöhnlich leicht zugänglich, zur Synthese von 3-Brom-2-hydroxybenzoesäure (2) konnten wir jedoch mehrere Literaturangaben nicht reproduzieren. Für deren bei Untersuchungen über Phenylpyrrole benötigtes Methylierungsprodukt 8 wurde daher ein neuer Zugang entwickelt, der die leichte Oxidierbarkeit von Vinylbenzolen ausnutzt.

N. W. Hirwe und B. V. Patil⁴ bedienten sich in ihrer 2-Synthese der reversiblen Sulfonierung zur Blockierung der 5-Position in Salicylsäure, um anschließend Brom in 3-Stellung einzuführen.

Beim Nacharbeiten gelang die nachfolgende Abspaltung der Sulfonsäuregruppe aus 1 mit überhitztem Wasserdampf jedoch nur unter gleichzeitiger Decarboxylierung zu o-Bromphenol. Eine weitere Synthese⁴ sollte durch Bromierung von N-(2,2,2-Trichlor-1-hydroxyethyl)salicylamid (4) das in 3-Stellung substituierte 5 ergeben, das in 2 überführbar ist. Das ¹H-NMR-Spektrum des auf diese Weise erhaltenen Produktes zeigte jedoch, daß stattdessen 5-Bromsalicylamid (3) entstanden war. Auch eine mehrstufige Synthese von 2 über 3-Brom-2-hydroxybenzaldehyd scheiterte, da nach der Nitrierung von Salicylaldehyd, anders als von W.v. Miller⁵ beschrieben, nicht der 3-Nitroaldehyd, sondern das unerwünschte 5-Isomere auskristallisierte, und 3-Nitrosalicylaldehyd aus der Mutterlauge nicht rein zu erhalten war.

Günstiger erschien es daher, die Carboxylgruppe erst auf einer späteren Stufe durch Oxidation einer Aromat-Seitenkette zu generieren. Blockierung der 4-Position in 2-Methylphenol durch Sulfonierung zu 6, Bromierung, Desulfonierung und O-Methylierung ergaben 3-Brom-2-methoxytoluol⁶ (7), das aber durch Oxidation mit Kaliumpermanganat nur in geringer Ausbeute (23 %) in 8 umgewandelt werden konnte.

Wesentlich verbessern ließ sich die **8**-Synthese jedoch durch Einführung einer leichter oxidierbaren olefinischen Doppelbindung in die Seitenkette. Dazu wurde 2-Bromphenol zunächst mit Allylbromid zum Ether **9** alkyliert und dieser anschließend nach Claisen in 2-Brom-6-(2-propenyl)phenol (**10 a**) umgelagert. Nach Methylierung wurde letzteres durch ethanolisches Kaliumhydroxid zu **11** isomerisiert, in dem die ³*J*-Kopplungskonstante von 16 Hz die erwartete *trans*-Konfiguration der Doppelbindung beweist. Oxidation der olefinischen Seitenkette in **11** mit Kaliumpermanganat in Aceton ergab **8** in einer auf **9** bezogenen Gesamtausbeute von 62 % über 4 Stufen.

Die Schmelzpunkte sind nicht korrigiert. – ¹H-NMR-Spektren: Gerät Varian FT 80, TMS als interner Standard. ¹³C-NMR: Gerät Varian XL 200.

3-Brom-2-methoxy-1-(2-propenyl)benzol (10b):

Eine Suspension von $10a^7$ (35.0 g, 0.164 mol) und geglühtem K_2CO_3 (43 g) in Ethylmethylketon (70 mL) erhitzt man mit Me_2SO_4 (22 mL) 4 h unter Rückfluß, läßt abkühlen, destilliert das Lösungsmittel ab und versetzt den Rückstand mit heißem Wasser (300 mL). Fraktionierung i. Vak. des nach dem Erkalten mit CH_2Cl_2 (2 × 100 mL) extrahierten und getrockneten Produktes ergibt 36.0 g (97 %) 10b als farblose Flüssigkeit mit bp $70^{\circ}C/0.1$ Torr.

C₁₀H₁₁BrO ber. C 52.89 H 4.88 Br 35.18 (227.1) gef. 52.76 4.86 35.29

¹H-NMR (CDCl₃): δ = 7.35 (dd, 1 H, ${}^{3}J_{4,5}$ = 8 Hz, ${}^{4}J_{4,6}$ = 2.5 Hz; H-4); 7.05 (dd; 1 H, H-6); 6.85 (dd, 1 H, ${}^{3}J_{5,6}$ = ${}^{3}J_{5,4}$ = 8 Hz; H-5); 5.90 (ddt, 1 H, ${}^{3}J_{2',1'}$ = 6.3 Hz, ${}^{3}J(trans)_{2',4'}$ = 16.4 Hz, ${}^{3}J(cis)_{2',3'}$ = 10.7 Hz; H-2'); 5.05 (dq, 1 H, ${}^{2}J_{3',4'}$ = 1.6 Hz, ${}^{3}J(cis)_{3',2'}$ = 10.7 Hz, ${}^{4}J_{3',1'}$ = 1.6 Hz; H-3'); 5.00 (dq, 1 H, ${}^{2}J_{4',3'}$ = 1.6 Hz, ${}^{3}J(trans)_{4',2'}$ = 16.4 Hz, ${}^{2}J_{4',1'}$ = 1.6 Hz; H-4'); 3.80 (s; 3 H, OCH₃); 3.40 (dt, 2 H, ${}^{3}J_{1',2'}$ = 6.3 Hz, ${}^{4}J_{1',3'}$ = 1.6 Hz; H-1').

(E)-3-Brom-2-methoxy-1-(1-propenyl)benzol (11):

3-Brom-2-methoxy-1-(2-propenyl)benzol (10b; 36.0 g, 0.159 mol) erhitzt man in einer Lösung von KOH (60.8 g, 1.09 mol) in $\rm H_2O$ (20 mL) und EtOH (140 mL) 5 h auf 90 °C. Anschließend destilliert man EtOH ab, verdünnt den Rückstand mit $\rm H_2O$ (300 mL) und extrahiert mit $\rm CH_2Cl_2$ (2 × 100 mL). Der Eindampfrückstand ergibt bei Fraktionierung i. Vak. 32.0 g (89 %) 11 als farblose Flüssigkeit mit bp 87 °C/0.1 Torr.

³H-NMR (CDCl₃): δ = 7.30 (m, 2 H, H-4, H-6); 6.83 (m, 1 H, H-5); 6.60 (dq, 1 H, H-1'); 6.17 (dq, 1 H, $^3J(trans)_{2',1'}$ = 16 Hz, $^2J_{2',3'}$ = 6.1 Hz; H-2'); 3.75 (s, 3 H, OCH₃); 1.85 (dd, 3 H, $^3J_{3',2'}$ = 6.1 Hz, $^4J_{3',1'}$ = 1.3 Hz; CH=CHCH₃).

3-Brom-2-methoxybenzoesäure (8):

Eine Lösung von (E)-3-Brom-2-methoxy-1-(1-propenyl)benzol (11: 26.0 g. 0.115 mol) in Aceton (1.3 L) versetzt man innerhalb von 3 h bei 0°C unter kräftigem Rühren mit gepulvertem KMnO₄ (60 g. 0.134 mol). Anschließend destilliert man das Lösungsmittel ab, versetzt mit $\rm H_2O$ (300 mL) und NaHSO₃ bis zur Auflösung des MnO₂, säuert mit 10% HCl an und filtriert die rohe Carbonsäure ab. Durch Auflösen in verdünnter 2 N NaOH, Ausschütteln mit CH₂Cl₂ (2 × 100 mL) und erneutes Ausfällen mit HCl erhält man 23 g (87%) 8 als weiße feine Nadeln mit mp 121°C (Lit. 4 mp 134–136°C).

¹H-NMR (CDCl₃9: δ = 10.10 (br s, austauschbar mit D₂O; 1 H, COOH); 7.90 (dd, 1 H, ${}^{3}J_{6,5}$ = 8 Hz, ${}^{4}J_{6,4}$ = 1.5 Hz; H-6); 7.70 (dd, 1 H, ${}^{3}J_{4,5}$ = 8 Hz, ${}^{4}J_{4,6}$ = 1.5 Hz; H-4); 7.05 (t, 1 H. ${}^{3}J_{5,4}$ = ${}^{3}J_{5,6}$ = 8 Hz; H-5); 4.00 (s; 3 H, OCH₃). Alle Signale sind durch Assoziatbildung stark verbreitert, werden jedoch nach D₂O-Austausch scharf.

Die Umsetzung von Salicylamid 4 mit Bromdampf nach Hirwe und Patil⁴ ergab kein N-[2,2,2-Trichlor-1-hydroxy)ethyl]-3-brom-2-hydroxybenzamid (5), sondern nur 5-Bromsalicyclsäureamid (3).

¹H-NMR (DMSO- d_6): δ = 13.00 (s, austauschbar mit D₂O; 1 H, OH); 8.35, 7.95 (2 br s, austauschbar mit D₂O; je 1 H, NH₂); 8.00 (d, 1 H, H-6); 7.45 (dd, 1 H, $^3J_{4,3}$ = 9 Hz, $^4J_{4,6}$ = 2.5 Hz; H-4); 6.78 (d, 1 H, H-3). 13 C-NMR (DMSO- d_6), 20 MHz): δ = 170.7 (C=O); 160.2 (C-2); 136.5 (C-4); 130.5 (C-6); 119.8 (C-3); 116.4 (C-1); 109.5 (C-5).

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung.

Received: 18 November 1988

- (1) Pudleiner, H., Laatsch, H. Liebigs Ann. Chem., in Vorbereitung.
- (2) Imanaka, H., Kousaka, M., Tamura, G., Arima, K. J. Antibiot. 1965, 18, 205.
- (3) Ajisaka, M., Kariyonc, K., Kazujoshi, K., Yazawa, H. Japanese Pat. 14916 (1972), Fujisawa Pharmaceutical Co. Ltd.; C.A. 1972, 77, 60049.
- (4) Hirwe, N. W., Patil, B. V. Proc. Indian Acad. Sci. Sect. A 1937, 5, 321; C.A. 1937, 31, 6215.
- (5) Miller, W. v. Ber. Dtsch. Chem. Ges. 1887, 20, 1927.
- (6) Benkeser, R. A., Buting, W.E. J. Am. Chem. Soc. 1952, 74, 3011.
- (7) Hurd, C.D., Webb, C.N. J. Am. Chem. Soc. 1936, 58, 941.