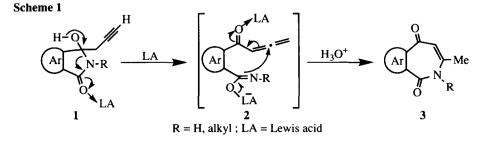


0040-4039(95)02184-1


Ring Enlargement Reaction of 3-Hydroxy-3-propargylisoindolin-1-ones : A New Synthetic Method for the 2-Benzazepine-1,5-diones

Yoshimitsu Nagao,* Ill-Yun Jeong, and Woo Song Lee

Faculty of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770, Japan

Abstract: Several 2-benzazepine-1,5-diones were efficiently obtained by treatment of the corresponding N-alkyl-3-hydroxy-3-propargylisoindolin-1-ones with some tentative Lewis acids via intramolecular endo-mode cyclization in the allenyl ketone intermediates generated *in situ*.

Recently, considerable interest has been focused on the development of new construction methods¹ for the benzazepine skeletons which are common structural moieties of pharmacologically active alkaloids.^{1d},g We have recently disclosed various carbocyclic endo-mode cyclization reactions by utilizing the intramolecular Michael type addition of the aromatic ring to the conjugated allenyl ketone moiety in the presence of some Lewis acids.² On the basis of our earlier studies,² we designed an expeditious synthetic method for the 3,4-olefinic 2benzazepine-1,5-diones by utilizing the Lewis acid-promoted ring enlargement³ of hydroxy propargyl γ -lactams 1 toward 7-membered lactams 3 *via* intramolecular endo-mode ring closure in the allenyl ketones 2 generated *in situ* as shown in Scheme 1. Thus, treatment of commercially available phthalimide 4a and the Gabriel reaction⁴

products **4b** - **e** with 1.2 mol eq. of propargylmagnesium bromide^{2a} in Et₂O at 0 °C for 5 min readily afforded the corresponding *N*-alkyl-3-hydroxy-3-propargylisoindolin-1-ones **5a** - **e** as a colorless powder or needles in 69 - 85% yields (Scheme 2 and Table 1). The structures of **5a** - **e** were confirmed by their characteristic spectroscopic data [IR (CHCl₃) v 3295–3272 (-C=CH), 3138–2922 (-OH), and 1713–1669 (lactam carbonyl) cm⁻¹; ¹H NMR (200 MHz, CDCl₃) **5a** : δ 2.00 (t, 1H, *J* = 2.68 Hz, -CH₂-C=C-H), δ 2.94 (d, 1H, *J* = 2.68 Hz, -CH₂-C=C-H), and δ 2.96 (d, 1H, *J* = 2.68 Hz, -CH₂-C=C-H) ppm **5b** - **5e** : δ 1.81-1.83 (ABX, 1H, *J*AX, BX = 1.47-2.69 Hz, -CH₂-C=C-H), 2.67-2.92 (ABX, 1H, *J*AB = 16.84-16.85, *J*AX = 1.47-2.69 Hz, -CH₂-C=C-H), and 2.93-3.08 (ABX, 1H, *J*AB = 16.84-16.85, *J*BX = 1.47-2.69 Hz, -CH₂-C=C-H) ppm ; MS (M⁺ ion)]. Scheme 2

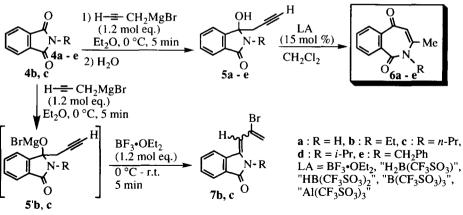
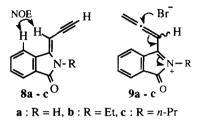



Table 1. Preparation of N-Alkyl-3-hydroxy-3-propargylisoindolin-1-ones 5a - e

Product 5	Yield (%) ^{a)}	mp (°C) 158-159	
5a	69		
5b	83	111-112	
5c	70	132	
5d	83	160-161	
5e	85	156	

a) All yields are those of the isolated compounds.

First, we tentatively carried out the ring enlargement reaction without isolation of **5b**, **c**. Namely, after reaction of **4b**, **c** with 1.2 mol eq. of propargylmagnesium bromide in Et₂O at 0°C for 5 min, 1.2 mol eq. of BF₃•OEt₂ was immediately added at 0 °C and then the mixture was stirred at room temperature for 5 min. However, we could not obtain the desired 2-benzazepine-1,5-diones **6b**, **c** at all. Instead, unexpected bromo dienes **7b**, **c** were obtained in 65% and 79% yields each as sole products. The stereochemistry (*E* or *Z*) of **7b**, **c** could not be determined by the ¹H NMR NOE experiment because of difficulty in assignment of the three olefinic proton signals. These compounds **7b**, **c** might be furnished by bromination onto plausible allenyl acyliminium species **9b**, **c** generated *in situ* from the corresponding ene-ynes **8b**, **c**, which were formed by BF₃-promoted elimination of BrMgOH from the propargylmagnesium bromide adducts **5'b**, **c**, respectively. The detailed mechanistic study is now in progress.

Subsequently, the reaction conditions to obtain a satisfactory amount of 2-benzazepine-1,5-dione **6c** were examined by employing 3-hydroxy-3-propargylisoindolin-1-one **5c** and a range of 2.4 - 0.05 mol eq. of BF3•OEt2. Consequently, **6c** was best obtained in 56% yield in the presence of 0.15 mol eq. (15 mol %) of BF3•OEt2 in CH₂Cl₂ at -78 °C over room temperature. Treatment of some other compounds **5a**, **b**, **d**, **e** with 15 mol% of BF3•OEt2 also resulted in 27 - 56% yields of 7-membered lactams **6a**, **b**, **d**, **e**, as shown in Table 2. Then, similar reactions of **5** toward **6** were examined in detail by exploiting slightly soft Lewis acids (15 mol%) such as "H₂B(CF₃SO₃)", "HB(CF₃SO₃)₂", "B(CF₃SO₃)₃", and "Al(CF₃SO₃)₃".⁵ Table 2 summarizes the experimental results.⁶

Compd 5	Re	Reaction Conditions		Product	Yield (%) ^{b)}	mp (°C)
	LA ^{a)}	Temp (°C)	Time (h)	6	1 iciu (%)	mp (C)
5a ^{c)}	В	-78 - r.t.	6.5	6a	27 ^{d)}	120 - 122
"	AT	-78 - 0	2.5		40 ^{e)}	**
	BT	-78 - 10	2.6		81 ^{f)}	**
11	HBT		1.8	11	30 ^{g)}	"
5b	В	-78 - r.t.	6.5	6b	56	92 - 94
**	AT	-78 - 0	3	н	68	11
"	BT	-78 - 10	2.5	"	79	"
	HBT		3		80	"
5c	В	-78 - r.t.	6.5	6c	56	73 - 74
**	AT	-78 - 0	6.5	**	51	11
**	ВТ	-78 - 10	3	**	78	"
"	HBT		3	*1	98	
н	H ₂ BT		1.5	11	93	
5d	В	-78 - r.t.	6.5	6d	50	83 - 84
"	AT	-78 - 0	6.2	*1	80	"
"	BT	-78 - 10	2.8		93	**
u.	HBT		2.8	"	94	**
5e	В	-78 - r.t.	6.5	6e	54	125 - 126
11	AT	-78 - 0	3.2	11	71	"
	вт	-78 - 10	4		79	
"	HBT	"	3.5		85	

 Table 2. Ring Enlargement Reaction of 3-Hydroxy-3-propargylisoindolin-1-ones 5 to 3,4-Olefinic 2-Benzazepine-1,5-diones 6

a) LA : Lewis acid (15 mol%), B = BF3•OEt2, AT = "Al(CF3SO3)3", BT = "B(CF3SO3)3", HBT = "HB(CF3SO3)2", H2BT = "H2B(CF3SO3)". b) All yields are those of isolated compounds. c) A solution (CH2Cl2 : THF = 2 : 1) was employed. d-g) Ene-yne compound **8a** was also obtained in various yields [d) 25%, e) 9%, f) trace, and g) 42%].

The desired ring enlargement reactions $(5 \rightarrow 6)$ with these slightly soft Lewis acids [approximate softness order⁷: "H₂B(CF₃SO₃)" > "HB(CF₃SO₃)₂" > "B(CF₃SO₃)₃" ≥ "Al(CF₃SO₃)₃" > BF₃] proved to be excellent in the yields of the 3,4-olefinic 2-benzazepine-1,5-diones **6b** - **e** except for compound **5a** with easy imine formation. These slightly soft Lewis acids may coordinate better with a soft Lewis base, "carbonyl oxygen atom" than with a hard base, "hydroxyl oxygen atom".⁷ Thus, these tentative Lewis acids were efficient for essential ring-opening of the γ -lactam moiety of **5** followed by intramolecular endo-mode cyclization between the resulting imidate moiety and the conjugated allenyl ketone moiety generated *in situ* as shown in Scheme 1. Treatment of **5c** with a hard acid reagent system, a mixture of BF₃·OEt₂ with CF₃SO₃H⁸ resulted in 57% yield of **6c**. Interestingly, with compound **5a**, ene-yne compound **8a** [mp 138-140 °C dec. (CH₂Cl₂-Et₂O)] was always produced as a by-product of **6a**. The structures of the synthesized 3,4-olefinic 2-benzazepine-1,5-diones **6a-e** were deduced from their characteristic spectroscopic data [IR (KBr) v 1724-1713

(Ph<u>CO</u>CH=CR₂) and 1686-1575 (Ph<u>CO</u>NR₂) cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 2.43-2.26 (s, 3H, =CR-CH₃) and 6.22-6.01 (s, 1H, -COCH=CR₂) ppm ; MS (M⁺ ion)].

In summary, we have established a new expeditious synthetic method for the 3,4-olefinic 2-benzazepine-1,5-diones based on the ring enlargement reaction of *N*-alkyl-3-hydroxy-3-propargylisoindolin-1-ones in the presence of a catalytic amount of the Lewis acid prepared from BH3•THF (or Me3Al) and CF3SO3H.

Acknowledgment : This work was supported in part by a Grant-in-Aid for General Scientific Research (No. 06453215) from the Ministry of Education, Science and Culture, Japan.

References and Notes

- a) Maruyama, K.; Kubo, Y. Chem. Lett., 1978, 851. b) Alonso, R.; Castedo, L.; Domínguez, D. Tetrahedron Lett., 1986, 27, 3539. c) Fang, F. G.; Danishefsky, S. J. ibid., 1989, 30, 2747. d) Busacca, C. A.; Johnson R. E. ibid., 1992, 33, 165 and references cited therein. e) Griesbeck, A. G.; Mauder, H. Angew. Chem. Int. Ed. Engl. 1992, 31, 73. f) Lamas, C.; Saá, C.; Castedo, L.; Domínguez, D. Tetrahedron Lett., 1992, 33, 5653. g) Paleo, M. R.; Domínguez, D.; Castedo, L. ibid., 1993, 34, 2369 and references cited therein.
- a) Nagao, Y.; Lee, W. S.; Kim, K. Chem. Lett., 1994, 389. b) Nagao, Y.; Lee, W. S.; Komaki, Y.; Sano, S.; Shiro, M. *ibid.*, 1994, 597. c) Nagao, Y.; Lee, W. S.; Jeong, I.-Y.; Shiro, M. Tetrahedron Lett., 1995, 36, 2799.
- 3. Recent progress of the ring enlargement reactions, see : Hesse, M. "Ring Enlargement in Organic Chemistry", VCH publishers, Inc., New York, 1991.
- 4. Gibson, M. S.; Bradshaw, R. W. Angew. Chem. Int. Ed. Engl. 1968, 7, 919.
- A solution prepared by treatment of BH3•THF or Me3Al / hexane with 1.3 3.3 mol eq. of CF3SO3H in CH2Cl2 at 0 °C, was tentatively termed "H2B(CF3SO3)", HB(CF3SO3)2", "B(CF3SO3)3", or "Al(CF3SO3)3" by us.
- 6. A typical experimental procedure for the preparation of 6 : To a solution of BH3•THF (1M solution in THF) (32.7 μl, 0.03 mmol) in anhydrous CH₂Cl₂ (2 ml) was added CF3SO3H (6.3 μl, 0.07 mmol) at 0 °C under N₂. The mixture was stirred at 0 °C for 10 min and then compound 5c (50 mg, 0.2 mmol) was added at -78 °C. After being stirred at -78 over 10 °C for 3 h, the reaction mixture was submitted to the usual work-up and chromatographic purification (silica gel, ether : hexane = 1 : 2) to give compound 6c (49 mg, 98% yield) as colorless needles from CH₂Cl₂ ether.
- Ho, T. L. "Hard and Soft Acids and Bases Principle in Organic Chemistry", Academic Press, New York, 1977.
- Cf. a) Nicolaou, K. C.; Hwang, C. K.; Duggan, M. J. Am. Chem. Soc., 1989, 111, 6682. b) Jun, J. G.; Ha, T. H.; Kim, D. W. Tetrahedron Lett., 1994, 35, 1235.

(Received in Japan 2 October 1995; revised 14 November 1995; accepted 17 November 1995)