Synthesis, Structure, and Dynamic Behavior of a New Series of Titanacyclopentane Compounds Containing Ancillary Aryloxide Ligands

John E. Hill, Phillip E. Fanwick, and Ian P. Rothwell*

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Received September 27, 1990

Summary: A new series of titanacyclopentane compounds have been isolated by reaction of the titanacyclopentadiene complex $[Ti(OAr'')_2(C_4Et_4)]$ (OAr'' = 2,6-diphenylphenoxide) with ethylene, propene, and 1-butene.

The study of metallacyclic compounds of the transition metals remains an extremely active area of research.¹⁻⁵ During our studies of the early-transition-metal organometallic chemistry that can be supported by aryloxide ligation,⁶ we have isolated a new series of titanacyclopentane complexes. We communicate here the structure, dynamic behavior, and reactivity of these compounds.

Exposure of solutions of the titanacyclopentadiene complex $[(Ar''O)_2Ti(C_4Et_4)]$ (1)⁷ to an atmosphere of

(2) (a) Schrock, R. R. Acc. Chem. Res. 1986, 19, 342. (b) Yasuda, H.; Tatsumi, K.; Nakamura, A. Acc. Chem. Res. 1985, 18, 120. (c) Buchwald, S. L.; Nielson, R. B. Chem. Rev. 1988, 88, 1047. (d) Negishi, E. Acc. Chem. Res. 1987, 20, 65. (e) Negishi, E.; Takahashi, T. Synthesis 1988, I, 1. (f) Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23, 539.
(g) Gilliom, L. R.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 733. (h) Erker, G.; Zwettler, R.; Kruger, C.; Hyla-Krypsin, I.; Gleiter, R. Organometallics 1990, 9, 524.

Erker, G.; Zwettler, R.; Kruger, C.; Hyla-Krypsin, I.; Gleiter, R. Organometallics 1990, 9, 524.
(3) (a) Thorn, D. L.; Hoffman, R. Nouv. J. Chim. 1979, 1, 39. (b) Fachinetti, G.; Floriani, C.; Marchetti, F.; Mellini, M. J. Chem. Soc., Dalton Trans. 1978, 1398. (c) Albers, M. O.; de Waal, D. J. A.; Liles, D. C.; Robinson, D. J.; Singleton, E.; Wiege, M. B. J. Chem. Soc., Chem. Commun. 1986, 1680. (d) Curtis, M. D.; Real, J.; Hirpo, W.; Butler, W. M. Organometallics 1990, 9, 66. (e) Kerschner, J. L.; Fanwick, P. E.; Rothwell, I. P. J. Am. Chem. Soc. 1988, 110, 8235. (f) Atwood, J. L.; Hunter, W. E.; Alt, H.; Rausch, M. D. J. Am. Chem. Soc. 1976, 98, 2454. (g) Nugent, W. A.; Thorn, D. L.; Harlow, R. L. J. Am. Chem. Soc. 1987, 109, 2788. (h) Strickler, J. R.; Wexler, P. A.; Wigley, D. E. Organometallics 1988, 7, 2067. (i) Strickler, J. R.; Bruck, M. A.; Wigley, D. E. J. Am. Chem. Soc. 1990, 112, 2814. (j) Wallace, K. C.; Dewan, J. C.; Schrock, R. R. Organometallics 1986, 5, 2162. (k) Liebeskind, L. S.; Chidambaram, R. J. Am. Chem. Soc. 1987, 109, 5025. (l) Giolando, D. M.; Rauchfuss, T. B.; Rheingold, A. L.; Wilson, S. R. Organometallics 1987, 6, 667.

(4) (a) Manriquez, J. M.; McAlister, D. R.; Sanner, R. D.; Bercaw, J.
E. J. Am. Chem. Soc. 1978, 100, 716. (b) McDermott, J. X.; Wilson, M.
E.; Whitesides, G. M. J. Am. Chem. Soc. 1976, 98, 6529. (c) Steigerwald,
M. L.; Goddard, W. A., III J. Am. Chem. Soc. 1985, 107, 5027. (d) Erker,
G.; Dorf, U.; Rheingold, A. L. Organometallics 1988, 7, 138. (e) Kai, Y.;
Kanehisha, N.; Miki, K.; Kasai, N.; Mashima, K.; Nagasuna, K.; Yasuda,
H.; Nakamura, A. Chem. Lett. 1982, 1979. (f) McLain, S. J.; Wood, C.
D.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 4558.

D., Schlock, R. R. J. Am. Chem. Soc. 191, 101, 4065.
(5) (a) Chisholm, M. H.; Huffman, J. C.; Hampden-Smith, M. J. J. Am. Chem. Soc. 1989, 111, 5284. (b) Cohen, S. A.; Auburn, P. R.; Bercaw, J. E. J. Am. Chem. Soc. 1983, 105, 1136. (c) Takahashi, T.; Fujimori, T.; Seki, T.; Saburi, M.; Uchida, Y.; Rousset, C. J.; Negishi, E. J. Chem. Soc., Chem. Commun. 1990, 182. (d) McKinney, R. J. J. Chem. Soc., Chem. Commun. 1977, 864. (f) Grubbs, R. H.; Miyashita, A. J. Chem. Soc., Chem. Soc., 1977, 864. (f) Grubbs, R. H.; Miyashita, A. J. Am. Chem. Soc. 1978, 100, 1300.

(6) (a) Durfee, L. D.; Hill, J. E.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1990, 9, 75.
(b) Hill, J. E.; Fanwick, P. E.; Rothwell, I. P. Inorg. Chem. 1989, 28, 3602.
(c) Durfee, L. D.; Hill, J. E.; Kerschner, J. L.; Fanwick, P. E.; Rothwell, I. P. Inorg. Chem. 1989, 28, 3095.
(d) Chamberlain, L. R.; Durfee, L. D.; Fanwick, P. E.; Kobriger, L. M.; Latesky, S. L.; McMullen, A. K.; Steffey, B. D.; Rothwell, I. P.; Folting, K.; Huffman, J. C. J. Am. Chem. Soc. 1987, 109, 6068.

Figure 1. ORTEP view of molecule 1 in the unit cell of 2. Selected bond distances (Å) and angles (deg): Ti(1)-O(110) = 1.799 (1), Ti(1)-O(120) = 1.804 (1), Ti(1)-C(11) = 2.087 (2), Ti(1)-C(14) = 2.084 (2), C(11)-C(12) = 1.510 (3), C(12)-C(13) = 1.511 (4), C(13)-C(14) = 1.517 (3); O(110)-Ti(1)-O(120) = 132.62 (6), C-(11)-Ti(1)-C(14) = 85.59 (9). Bond distances and angles for molecule 2 are almost identical.

ethylene rapidly results in formation of the titanacyclopentane compound 2 along with 1,2,5,6-tetraethyl-1,3cyclohexadiene (Scheme I).⁸ Although cyclotrimerization of 3-hexyne by 1 is slow,⁷ addition of ethylene to a mixture of 3-hexyne and 1 leads to the rapid catalytic formation of 1,2,5,6-tetraethyl-1,3-cyclohexadiene. In the presence

 ⁽a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, 2nd ed.; University Science Books: Mill Valley, CA, 1987; Chapter 9. (b) Ingrosso, G. In Reactions of Coordinated Ligands; Braterman, P. S., Ed.; Plenum Press: New York, London, 1986; Vol. 1, p 639. (c) Puddephatt, R. J. Coord. Chem. Rev. 1980, 33, 149. (d) Erker, G.; Kruger, C.; Muller, G. Adv. Organomet. Chem. 1985, 24. (e) Chappell, S. D.; Cole-Hamilton, D. J. Polyhedron 1982, 1, 739. (f) Shore, N. E. Chem. Rev. 1988, 88, 1081. (g) Grubbs, R. H. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, U.K., 1982. (h) Basset, J. M.; Leconte, M. CHEMTECH 1980, 762. (2) (a) Schrock, R. R. Acc. Chem. Res. 1986, 19, 342. (b) Yasuda, H.;

⁽⁷⁾ Hill, J. E.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1990, 9, 2211.

^[8] Anal. Calcd for $\text{TiC}_{40}\text{H}_{24}\text{O}_2$ (2): C, 80.80; H, 5.76. Found: C, 80.69; H, 6.02. ¹H NMR (C₆D₆, 30 °C): δ 6.90–7.41 (m, aromatics), 1.98, 1.60 (broad s, CH₂). Selected ¹³C NMR (C₆D₆, 30 °C): δ 160.3 (Ti–O–C), 89.7 (¹J(¹³C–¹H) = 127.4 Hz, TiCH₂), 31.1 (¹J(¹³C–¹H) = 127.7 Hz, TiCH₂CH₂).

of excess ethylene, 2 will catalytically convert 1,2,5,6tetraethyl-1,3-cyclohexadiene into 1,2,3,5,6-pentaethyl-1,3-cyclohexadiene. Reaction of 1 with propene or 1butene yields the substituted titanacyclopentane compounds 3 and 4, respectively.⁹ In the room-temperature 200-MHz ¹H NMR spectrum of 2, the methylene protons of the metallacycle ring appear as two broad, equal-intensity signals at δ 1.60 and 1.98 ppm. Selective irradiation of either of these peaks results in almost complete loss of intensity for the other signal. Furthermore, spin magnetization transfer is found to occur at room temperature not only between the α - and β -methylene protons but also between the metallacycle ring protons and free ethylene in solution. A variable-temperature ¹H NMR study of toluene- d_8 solutions of 2 in the presence of ethylene shows that coalescence of the two methylene signals occurs at 55 °C. At temperatures above 40 °C, broadening of the signal due to the free ethylene protons is also observed. These observations can be rationalized in terms of rapid fragmentation of the titanacyclopentane ring to generate a bis(ethylene) complex. Rotation of the ethylene units followed by coupling back to 2 accounts for exchange of methylene units in the titanacyclopentane ring, while a somewhat slower dissociation of the bound ethylene ligands accounts for exchange with free C_2H_4 .¹⁰ The rate of exchange of methylene groups at 55 °C is calculated to be 187 s⁻¹, yielding an estimate of ΔG^{\ddagger} for the exchange process of 15.9 (5) kcal mol⁻¹. This exchange rate is considerably faster than a value of 6.5 (2) $\times 10^{-3}$ min⁻¹ at 50 °C reported by Negishi et al. for the isomerization of a hafnacyclopentane ring.^{5c} In the ¹³C NMR spectrum of 2, the two triplets at δ 89.7 ppm (${}^{1}J({}^{13}C{}^{-1}H) = 127.7 \text{ Hz}$) and δ 31.1 ppm (${}^{1}J({}^{13}C{}^{-1}H) = 127.7 \text{ Hz}$) confirm a titanacyclopentane structure in solution. In the solid state,

(10) The fragmentation and isomerization of metallacyclopentane rings has been well documented. 5

2 crystallizes with two independent molecules in the unit cell (Figure 1).¹¹ The $[(Ar'O)_2Ti]$ unit in pseudotetrahedral 2 is unexceptional, while the titanacyclopentane ring is puckered in a manner observed for other metallacyclopentane compounds.

The solution NMR spectra of the substituted titanacyclopentane compounds 3 and 4 indicate the presence of more than one isomer. In both cases the major isomer (80%) is the trans-2,3-disubstituted species.⁹

Hydrocarbon solutions of 2 in the absence of added C_2H_4 undergo decomposition over hours at 25 °C to produce the new organometallic product 5 along with detectable amounts of ethane (Scheme I). In the presence of added ethylene (1–5 equiv), 2 is more stable in solution. However, over days decomposition to 5 takes place along with the formation of ethane and 1-butene. The identification of 5 as the titanacyclohept-3-ene species $[(Ar''O)_2Ti-(CH_2CH=CHCH_2CH_2CH_2)]$ is based upon its NMR spectra.¹² The formation of 5 via a titanacyclopent-3-ene (1,3-butadiene) complex is strongly indicated by the fact that addition of 1,3-butadiene to 2 rapidly produces 5 in quantitative yield.¹³

Acknowledgment. We thank the National Science Foundation (Grant CHE-8915573) for support of this research. We also thank Joe Mickiewicz for his assistance with the variable-temperature NMR study.

Supplementary Material Available: Variable-temperature ¹H NMR spectra of 2, a 2D NMR spectrum of 5, and tables of fractional coordinates, anisotropic thermal parameters, and full bond distances and angles for 2 (28 pages); a table of observed and calculated structure factors for 2 (46 pages). Ordering information is given on any current masthead page.

(13) The formation of 1,3-butadiene from a titanacyclopentane compound has precedence.^{5b}

Platinum-Complex-Catalyzed Dehydrogenative Double Silylation of Acetylenes, Dienes, and Olefins with Bis(hydrosilane) Compounds

Masato Tanaka, Yuko Uchimaru, and Hans-Jürgen Lautenschlager National Chemical Laboratory for Industry, Tsukuba, Ibaraki 305, Japan Received July 25, 1990

Summary: Acetylenes, dienes, and olefins underwent dehydrogenative double silylation with bis(hydrosilane) species in the presence of platinum complex catalysts to give disilacyclic compounds in good yields.

The synthesis of silicon compounds is a rapidly growing field relevant to silicon-based functional polymers, selective organic synthesis, and biological activity.¹ Of particular importance among complex-catalyzed syntheses of silicon compounds is the double silylation of unsaturated hy-

⁽⁹⁾ Anal. Calcd for TiC₄₂H₃₈O₂ (3): C, 81.02; H, 6.15. Found: C, 81.21; H, 6.56. ¹H NMR (C₆D₆, 30 °C): trans isomer δ 6.88–7.48 (m, aromatics), 2.04 (m, CHMe), 1.88 (t), 1.24 (dd, TiCH₂), 0.93 (d, CHMe). Selected ¹³C NMR (C₆D₆, 30 °C): trans isomer δ 160.1 (Ti-O-C) 98.0 (¹J(¹³C⁻¹H) = 129.2 Hz, TiCH₂), 44.8 (¹J(¹³C⁻¹H) = 126.2 Hz, CHMe), 23.3 (CHMe). Anal. Calcd for TiC₄₄H₄₂O₂ (4): C, 81.22; H, 6.51. Found: C, 81.54; H, 6.91. ¹H NMR (C₆D₆, 30 °C): trans isomer δ 6.88–7.48 (m, aromatics), 2.03 (m, CHEt), 1.85 (t), 1.22 (m, TiCH₂), 1.22 (m, CH₂CH₃), 0.60 (t, CH₂CH₃). Selected ¹³C NMR (C₆D₆, 30 °C): trans isomer δ 160.2 (Ti-O-C) 95.0 (¹J(¹³C⁻¹H) = 126.5 Hz, TiCH₂), 48.7 (¹J(¹³C⁻¹H) = 126.8 Hz, CHEt) 28.9 (CH₂CH₃), 18.1 (CH₂CH₃).

⁽¹¹⁾ Crystal data for TiC₄₀H₃₄O₂ (2) at -61 °C: a = 10.047 (1) Å, b = 14.625 (2) Å, c = 22.415 (2) Å, V = 3088 (1) Å³, Z = 4, $\rho_{celod} = 1.211$ g cm⁻³ in space group PI_{-} A total of 8046 unique intensities were collected with use of Mo K α radiation ($4 \le 2\theta \le 45^{\circ}$), of which 6555 with $I > 3\sigma(I)$ were used in the final refinement. Final residuals are R = 0.033 and $R_{\rm W} = 0.049$.

^{0.049.} (12) Anal. Calcd for TiC₄₂H₃₆O₂ (5): C, 81.28; H, 5.85. Found: C, 81.27; H, 5.92. ¹H NMR (C₆D₆, 30 °C): δ 6.8–7.5 (m, aromatics), 4.41 (td, TiCH₂CH), 3.21 (broad td, TiCH₂CHCH), 2.27 (m, TiCH₂CH₂), 1.94 (dd), 0.86 (dd, TiCH₂CH), 1.7 (m, TiCH₂CH₂CH₂), 1.7 (m), -0.18 (m, TiCH₂CH₂). Selected ¹³C NMR (C₆D₆, 30 °C): δ 160.4, 160.3 (Ti-O-C), 136.3, 135.6 (TiCH₂CHCH), 77.7, 77.2 (Ti-CH₂), 45.3, 35.8 (TiCH₂CH₂-CH₂).

⁽¹⁾ Silicon-Based Polymer Science; Zeigler, J. M., Fearon, F. W. G., Eds.; Adv. Chem. Ser. 224; American Chemical Society: Washington, DC, 1990. Silicon Chemistry; Corey, J. Y., Corey, E. Y., Gaspar, P. P., Eds.; Ellis Horwood: Chichester, U.K., 1988. Organosilicon and Bio-organosilicon Chemistry; Sakurai, H., Ed., Ellis Horwood: Chichester, U.K., 1985. Weber, W. P. Silicon Reagents for Organic Synthesis; Springer: Berlin, 1983.